
Received November 13, 2020, accepted December 9, 2020, date of publication December 15, 2020,
date of current version December 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3044945

rocorl: Transferable Reinforcement
Learning-Based Robust Control for
Cyber-Physical Systems With Limited
Data Updates
GWANGPYO YOO, MINJONG YOO, IKJUN YEOM, AND HONGUK WOO , (Member, IEEE)
Department of Computer Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Honguk Woo (hwoo@skku.edu)

This work was supported in part by the DNA+ Drone Technology Development Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science and ICT (MSIT) under Grant 2020M3C1C2A01080819, in part by the ICT Creative
Consilience Program supervised by the Institute for Information & Communications Technology Planning & Evaluation (IITP) under
Grant IITP-2020-0-01821, in part by the Basic Science Research Program through the NRF funded by MSIT under Grant
2020R1A2C2009809, and in part by Samsung Electronics.

ABSTRACT Autonomous control systems are increasingly using machine learning technologies to process
sensor data, making timely and informed decisions about performing control functions based on the data
processing results. Among such machine learning technologies, reinforcement learning (RL) with deep
neural networks has been recently recognized as one of the feasible solutions, since it enables learning
by interaction with environments of control systems. In this paper, we consider RL-based control models
and address the problem of temporally outdated observations often incurred in dynamic cyber-physical
environments. The problem can hinder broad adoptions of RL methods for autonomous control systems.
Specifically, we present an RL-based robust control model, namely rocorl, that exploits a hierarchical
learning structure in which a set of low-level policy variants are trained for stale observations and then their
learned knowledge can be transferred to a target environment limited in timely data updates. In doing so,
we employ an autoencoder-based observation transfer scheme for systematically training a set of transferable
control policies and an aggregated model-based learning scheme for data-efficiently training a high-level
orchestrator in a hierarchy. Our experiments show that rocorl is robust against various conditions of
distributed sensor data updates, compared with several other models including a state-of-the-art POMDP
method.

INDEX TERMS Cyber-physical system, real-time data, reinforcement learning, model-based learning, stale
observations.

I. INTRODUCTION
Recently, deep reinforcement learning (RL) has gained
much attention and been recognized as a practical solution
to implement autonomous control functions for intelligent
cyber-physical systems, e.g, vehicles [1], [2], robots [3],
drones [4], and others. Such an RL-based control function
normally relies on timely observations by several sensing
mechanisms as part of system operations to acquire state
information about its surroundings and make informed deci-
sions about control actions in response to state changes. In

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

a networked system environment, on the other hand, sensors
might not be centralized but distributed, and thus they need
to communicate with a controller to keep observations highly
up-to-date. In this case, while an RL-based control function
can be formulated upon real-time data models commonly
used for navigation and tracking [5], [6], its underlying
communication infrastructure might have inherent restriction
in completely meeting data synchronization requirements of
real-time data [7]. That is, a real-time data model necessitates
continual updates of remote sensor data, but network resource
constraints (e.g., limited bandwidth, intermittent connections,
transmission delays) inherently limit the timeliness of those
updates. This inconsistency between real-time data models

225370 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0003-0619-0338

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

and underlying network constraints can cause robustness
issues for RL-based controls, particularly when observations
are dependent on the timeliness of sensor data updates.

Figure 1 briefly depicts a performance degradation pattern
in our RL-based control tests in which agents with neural
networks utilize sensor data updates (i.e., periodic updates
with variable intervals) to make decisions about control oper-
ations. In this simulation test, we configure variable periods
of data updates from sensors to an RL agent to generate tem-
porally outdated data input (stale observations) for the agent,
as abstracted in Figure 1(b).We first test an agent with vanilla
RL (the red line in Figure 1(a)) that is trained without any spe-
cific consideration on stale observations but tested with stale
observations. The simulation environment will be detailed in
Section V. The ‘‘Perf. ratio’’ on the Y-axis represents the
relative performance degraded from the ‘‘normal’’ casewhere
no stale observation exists. Its definition is in Eq. (44). The
low performance of vanilla RL, less than 30% of the normal
case, indicates the negative effect of stale observations on
RL-based controls. Considering temporal features of sensor
data, we also evaluate several different types of RL policy
network structures which are known to be effective for partial
observation problems. Recurrent RL (the orange line in Fig-
ure 1(a)) shows the test result when an LSTM (long short term
memory)-based RL agent exploits a sequence of sensor data
as input to its recurrent policy network. As shown, the longer
the update periods (on the X-axis), the lower the performance.
This result is contrary to our expectation that some effective
rules for handling stale observations could be learned by
this seemingly proper network structure that makes use of
a sequence of observations for state estimation. It turns out
that recurrent RL barely shows robust performance when
having limited data updates, e.g., where the mean ≥ 2 on
the X-axis. We will provide our analysis on this result in
Section II-A.

FIGURE 1. The effect of limited data updates on the control function
operated by RL: in (a), the X-axis denotes mean values of variable data
update periods in discrete timesteps, where the standard deviation sets
to be 2.5 for lognormal distribution, and the Y-axis denotes the
performance ratio calculated by Eq. (44). In (b), the observations are
acquired from sensor data streams with variable update periods, thus
inherently containing stale information, i.e., represented by circle data.

In this paper, motivated by the test results aforementioned,
we address the problem of stale observations for RL-based

controls in a networked environment with random periods
of sensor data updates. Such a control process with lim-
ited data updates is not an unusual structure, since geo-
graphically distributed sensing mechanisms are often part
of a cyber-physical system; numerous sensing and actuation
components are connected on a network. We consider a
self-operation device as a target cyber-physical system, for
which controls are governed by an RL agent and observations
contain temporally outdated, stale information.

To do so, we employ a hierarchical learning structure
by which a set of low-level transferable policies are sys-
tematically trained and then their learned knowledge can
be transferred to a complex target environment having lim-
ited data updates. In generating a set of low-level policy
variants that can collectively handle stale observations in a
hierarchy, we leverage the autoencoder structure to reduce
the difference of state estimates between different environ-
ments with respect to variable staleness. We also exploit a
high-level orchestrator, which can be seen as a meta policy
that learns rules for continuously selecting the most appro-
priate low-level policy from several over time. Furthermore,
for tackling the issue of sample inefficiency induced by the
meta policy on the higher level which has only fewer data
sampling points than controlling timesteps, we take an effi-
cient model-based learning approach.

The contributions of our paper are as follows.

• We address the stale observation problem for RL-based
controls of a network-constrained cyber-physical sys-
tem. To do so, we employ transfer learning driven
through a hierarchical model that consists of a high-level
orchestrator and a set of low-level transferable control
policies (in Section II). We name our proposed model
rocorl (robust control using RL).

• We present the hierarchical policy training schemes
of rocorl: autoencoder-based observation transfer that
facilitates the systematic generation of transferable con-
trol policies upon stale observations (in Section III), and
aggregated policy learning that accelerates model-based
learning for the orchestrator upon insufficient rollout
samples (in Section IV).

• We conduct a case study with the Airsim simulator [8]
for autonomous drone operation in edge computing.
The case study demonstrates robust performance and
wide applicability of our approach for adopting RL
in a networked environment, e.g., showing up to 11%
performance improvement over a state-of-the-art RL
method in the configuration of variable update periods
(in Section V).

II. OVERALL SYSTEM
In this section, we explain our assumption on limited updates
of spatio-temporal sensor data in a target networked environ-
ment, describe the problem of stale observations caused by
limited data updates, and then briefly present our approach to
the problem.

VOLUME 8, 2020 225371

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

A. STALE OBSERVATION PROBLEM
In a cyber-physical system with distributed sensors, data
updates are considered periodic or sporadic. Temporally out-
dated observations are often inherent and they cannot be
completely avoided especially due to underlying network
limitations. Throughout this paper, we refer to this situation,
temporally outdated observations incurred by variable peri-
ods of sensor data updates, as the stale observation problem
for RL-based control systems, which makes it hard to train an
end-to-end RL model.

1) STALE OBSERVATION
In general, an RL-based control system operates upon
real-time data streams that are managed by a set of net-
worked modules, where the data streams continuously main-
tain observations for making informed decisions about device
controls. As shown in Figure 2, we consider two types of
real-time data according to the location of sensing mecha-
nisms: global data e managed by an edge service and local
data d managed by a device. That is, we refer to global data
as near-edge, i.e., long-range low-resolution sensor data that
can be accessed in real-time on the edge-side, while we refer
to local data as near-device, i.e., short-range high-resolution
sensor data that can be accessed in real-time on the device-
side. We focus on the issue related to a network-constrained
environment, and accordingly we presume that most sen-
sor data cannot be both due to the limitation of timely
edge-device synchronization. For a self-operation vehicle,
sensor measurements of the vehicle can be near-device local
data (e.g., lidar, radar, visual images), whilst long-range real-
time map information around the vehicle can be near-edge
global data (e.g., the location of moving obstacles or traffic
information).

FIGURE 2. The overall structure of rocorl: we consider a networked
system that consists of a self-operation device node and an edge service,
where the device has its locally observed short-range high-resolution
sensor data (local data), the edge service has its globally observed
long-range low-resolution sensor (global data), and they communicate
for conducting device control operations with network limitations.

In our notation, we represent (near-edge) global and (near-
device) local data as

e, E = {e}; d, D = {d}. (1)

We assume that E andD are bounded regions onRn for some
n ∈ N without loss of generality. We also represent a state at
discrete timestep t ∈ N0 as

st = (et , dt), st ∈ S = E ×D. (2)

Considering limited updates, we then formalize stale obser-
vations on the device-side as

ωt = (et−i, dt), ωt ∈ � = E ×D (3)

for some i ∈ N0 that specifies the elapsed period from the
last update. Similarly, stale observations on the edge-side can
be represented as ωt = (et , dt−i). In most cases, we consider
stale observations from the device perspective, since we con-
centrate on RL-based controls for a self-operation device that
exploits its observations to make control decisions.

2) RL TRAINING ISSUE WITH STALE OBSERVATION
Here, we describe the problem of RL training upon stale
observations. In principle, RL is a method that finds an opti-
mal policy π ,

π : S ×A→ [0, 1] (4)

that maximizes the expected reward sum over an MDP
(Markov decision process) with

(S,A,P,R). (5)

Note that S is a set of states, A is a set of actions, P : S ×
A × S → [0, 1] is a transition probability, R : S × A →
R is an immediate expected reward function. Then, for a θ -
parameterized policy πθ , the objective function is represented
as

J (θ) = E
at∼πθ

st ,T∼Pπθ

[
T∑
t=0

R(st , at)

]
(6)

wherePπθ is a probability distribution of states s ∈ S induced
by πθ and T ∈ N0 denotes the episode timesteps.

In case that stale observations are involved, however, this
objective function rarely optimizes the policy πθ due to the
fact that states st cannot be accurately estimated. In the RL
research community, for the cases when the observation is
partial or limited, i.e., a POMDP (partially observable MDP)
where an RL agent is not able to observe true states from
its environment, several methods including the recurrent pol-
icy [9], [10] have been investigated. In general, a POMDP is
represented by

(S,A,P,R, �,O) (7)

where� is a set of observations,O : S → (�→ [0, 1]) is an
observation probability, and the other elements are the same
as in Eq. (5). Specifically, given a history ht of observation
and action samples, the recurrent policy (e.g., LSTM policy)
parameterized by θ , say π (r)

θ , intends to infer an action from
the history ht .

π
(r)
θ (ht = (ωt−i, at−i . . . , ωt)) 7→ at (8)

225372 VOLUME 8, 2020

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

This work is based on a property of POMDPs such that the
observation probability O is a fixed probability distribution
that completely depends on the current state [9], [10].

O(st) = Pr[ωt |st] for ωt ∈ � (9)

However, given stale observations, the assumption on a fixed
observation distribution does not hold. Suppose that at i previ-
ous step, global data are updated from the edge service to the
device. For the current state st , we have O(st) = Pr[ωt =
(et−i, dt)|st] which is not fixed, according to Eq. (3); the
distribution of observations ωt is not completely determined
by the current state st , i.e.,

Pr[(et−i, dt)|st] 6= Pr[(et−i, dt)|st , st−i] (10)

since et−i is necessarily part of st−i. The difference between
a typical POMDP and a process with stale observations is
illustrated in their transition diagrams in Figure 3.

FIGURE 3. A typical POMDP and a process with state observations.

In the following, we show why this different temporal
dependency leads to incorrect calculations of policy gradients
when a conventional end-to-end RL model is applied for a
process with stale observations. Let H be a random variable
form of a history h. Then, we can rewrite the objective func-
tion in Eq. (6) in

J (θ) =
∫
H
Pr(H |θ)R(H)dH (11)

where R(H) is the sum of rewards obtained during a history
h ∼ H . By taking the log derivative trick and Monte Carlo
approximation in N -episodes of history samples, we obtain

∇θJ = EH
[
∇θ log Pr[H]R(H)

]
≈

1
N

N∑
i=1

∇θ log Pr[H (i)]R(H (i)). (12)

In a POMDP, the log derivative for model parameters θ
in ∇θ log Pr[h] computed by the observed history h can be
acquired by realizing that the conditional probability of a
particular history is the product of all observation and action
samples [10]. Accordingly, the log derivative term becomes

∇θ log Pr[H (i)] =
T∑
t=0

∇θ logπ
(r)
θ (at |h

(i)
t) (13)

where π (r)
θ denotes our target θ -parameterized policy. This is

valid with the fixed distribution assumption in Eq. (9). Com-
bining Eq. (12) and (13), we obtain the estimated gradients of

the objective function

∇θJ ≈
1
N

N∑
i=1

T∑
t=0

∇θ logπ
(r)
θ (at |h

(i)
t)R(i)t . (14)

While the gradient calculation in Eq. (14) is intended for
optimizing π (r)

θ for a typical POMDP, stale observations in
Eq. (10) make Eq (13) invalid, thereby resulting in inaccurate
gradient values when a gradient-based optimization method
is used. This explains the performance degradation previously
shown in Figure 1, and motivates us to reformulate the stale
observation problem into a hierarchical form, as we will
present in the following.

B. OVERALL APPROACH
To tackle the aforementioned issue of policy gradient meth-
ods related to stale observations, we exploit the hierarchical
structure of RL processing as shown in Figure 4, where a set
of low-level control policies are maintained, and over time,
one of them is continuously selected and used for performing
rollouts. We name this hierarchical RL model rocorl, where
the selection is made by a high-level decision maker, called
orchestrator.

FIGURE 4. Hierarchical controls on rounds.

Consider a control procedure at a specific timestep t: (i) on
the device-side, one of the control policies (say πu) continu-
ously rolls out with respect to its projection data from stale
observations ωt in Eq. (3), where near-device local data dt
are maintained update-to-date, while near-edge global data et
often become stale. (ii) Suppose that at some timestep (t+k+
1) after a certain amount of time, an available connection is
made between the device and the edge service, and up-to-date
data can be shared through the connection. The orchestratorµ
selects a policy (sayπv) at the same time. (iii) This enables the
device to switch its running policy from πu to πv, if needed.
Then, πv keeps rolling out from the timestep (t + k + 1) to
the next update. We refer to the time period between two
successive updates with a variable time interval as a round.
These steps of hierarchical controls over successive rounds
are depicted in Figure 4.We presume that such update periods
are neither configurable nor deterministic, considering the
variability of underlying network conditions. That is, neither
edge-side nor device-side modules know the next update time
in advance.

VOLUME 8, 2020 225373

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

As we will explain in Section III-A, an inter-round process
can be abstracted as an MDP.We thus take a conventional RL
method for training the orchestrator,

µ : Sµ ×5→ [0, 1] (15)

where Sµ denotes the state set for the orchestrator and 5
denotes a set of control policies. On the other hand, we take
several steps for systematically generating the set of control
policies,

5 = {π1, . . . , πm}, πj ∈ 5 : �
(j)
×A→ [0, 1] (16)

where �(j) denotes the observation space for πj.
To generate such a set of control policies that are capable of

collectively dealing with variable staleness, we take a system-
atical training scheme that exploits the feature compression
capability of autoencoder networks. The autoencoder-based
scheme is capable of creating a set of control policies that can
correspond to different spatio-temporal observation spaces,
while aiming at reducing the difference of state distribu-
tions of different environments for each control policy. Thus,
the scheme renders the control policies transferable between
different environments with respect to limited data updates
and data staleness.

Furthermore, we address the difficulty in training the
orchestrator policy, which requires relatively long training
times due to the temporal abstraction of a two-level hierarchy.
To mitigate the difficulty, we adapt a model-based RL struc-
ture by employing the efficient policy parameter aggregation
from both model-based and model-free learning. We will
explain these policy training schemes in the next sections,
the autoencoder-based observation transfer in Section III and
the aggregated policy learning in Section IV.

III. HIERARCHICAL RL CONTROL
The rocorl model consists of an orchestrator µ and a set of
control policies 5 = {π1, . . . , πm}, and it makes two-level
inferences: (i) selecting a policy for each round by the
orchestrator when a connection is made, and (ii) conduct-
ing low-level control actions by a selected control policy
over timesteps within a round. Algorithm 1 represents the
two-level inference, where the first inference function called,
inference(µ, s), corresponds to the former in Eq (15)
where the orchestrator µ selects a control policy based on
its state s, and the second one corresponds to the latter in
Eq (16) where a selected control policy πv calculates an
action a based on its observation transfer from observations
ω. The inference(·) function yields an action, given a
policy and an observation (or a state). The transfer(·)
function conducts observation transfer for πv, from ω to ω(v),
which will be explained in Section III-B.

To make the inference robust against stale observations,
we leverage a transfer learning mechanism via hierarchical
RL, aiming to adapt the knowledge of RL policies from
a learnable environment (without stale observations) for a
target, hard-to-learn environment (with stale observations).

Algorithm 1 Two-Level Inference
Control policies 5 = {πj}, orchestrator policy µ
// on the edge-side
loop
s.e← e← GetData () // retrieve global data
if Connected () then
s.d ← UpdateData (e) // update between edge and device
SetPolicy (Inference (µ, s)) // set policy for device

end if
end loop

// on the device-side
loop
ω.d ← GetData () // retrieve local data
if Connected () then
ω.e← UpdateData (d) // update between edge and device
πv = GetPolicy () // update control policy by orchest. µ

end if
// projection map 8v in Eq. (25)
a← Inference (πv, Transfer (8v, ω)) // get control action
Execute (a) // execute control action

end loop

In the following, we show how to train the policies in a
hierarchy of rocorl. We first provide the proof that a decision
process by the orchestrator µ conforms to an MDP between
successive rounds. We then show how to train each control
policy π ∈ 5 by employing the autoencoder-based observa-
tion transfer scheme that alters the observation formulation
according to selective global data for each policy πj ∈ 5.

A. ORCHESTRATION IN ROUNDS AS AN MDP
To show that the inter-round orchestration conforms to an
MDP, we exploit the uniformization property that can turn
a Semi-MDP (SMDP) into an equivalent MDP [11], [12]. An
SMDP is used for representing a generalized decision process
with variable time intervals (i.e., holding times) between
successive actions. For an SMDP, the distribution of holding
times τ (s, a, s′) is specified for s, s′ ∈ S, a ∈ A in addition
to the MDP representation in Eq. (5)

In the following, we first formulate the orchestrator µ as
an SMDP, (Sµ,Aµ,Pµ,Rµ, τ), and then finds its equivalent
MDP. Given a set of states S and a set of control policies 5
in our model, obviously we have Sµ = S andAµ

= 5 since
the orchestrator µ performs macro-actions such as selecting
a policy from 5 for each round without any modification on
underlying states. Given π ∈ 5 for a round I , further suppose
that the holding time of I is given k (i.e., k ∼ τ).We then have
the reward function Rµ : S × 5 → R based on averaging
over I ,

Rµ(st , π) =
1

k + 1

t+k∑
i=t

R(si, π(ωi)) (17)

where t is the starting timestep in I : [t, t + k]. Furthermore,
we represent the transition of the orchestrator µ according to
its hierarchy by

Pµ(s, π, s′, k) = Pr[s′ = st+k+1|st , π, k]. (18)

In our model, the holding times τ correspond to the vari-
able periods of rounds which are completely governed by

225374 VOLUME 8, 2020

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

underlying network conditions. We thus establish the SMDP
formulation forµ using Eq. (17)-(18) and network-dependent
τ values.

Now, we can find such an MDP M ′ = (S ′,A′,P ′,R′)
equivalent to the SMDP that we established above for a round
I : [t, t + k]. It is obvious that we have

S ′ = Sµ, A′ = Aµ
= 5 (19)

because they have nothing to do with the temporal abstraction
by the holding times τ . Furthermore, we have R′ = Rµ since
the holding time effect can be removed when average rewards
are taken. Regarding P ′, we have the conditional expectation
over the holding time k ∼ τ ,

P ′ = E
k∼τ

[
P(s, π, s′)|k

]
= Pµ(s, π, s′,T (s, π)) (20)

for π during I , where T denotes the expected holding time
such as

T (s, π) =
∫
s′∈S

E
τ

[
τ (s, π, s′)

]
d Pr[s′|s, π]. (21)

To maintain the Markov property on P ′, we design our
hierarchical model to make the observation space of each
control policy strictly confinedwithin a single round.We then
establish the equivalent MDP by Eq. (19) and (20).

The equivalent MDP enables the orchestrator to learn
macro-action rules in a hierarchy, similarly to other hierar-
chical RL methods such as the option framework [13]. Given
a set of policies 5 = {π1, . . . , πm}, it is possible to train
the orchestrator µ using a conventional RL method with the
objective function,

J (µ) = E
πn∼µ
k∼τ

[
N∑
n=1

Rµ(stn , πn)

]
(22)

where {stn}
N
1 is a finite subsequence of {st } whose elements

correspond to the starting time of rounds I : [t, t + k].

B. TRAINING CONTROL POLICIES
As theoretically discussed in Section II-A and empirically
shown in Figure 1, it is non-trivial to have a properly learned
model in environments with stale observations, when using
a conventional end-to-end RL method. Therefore, in rocorl,
we train each control policy instead in a normal environment
that is particularly set to have no stale observations (i.e.,
no restriction on data updates), and adapt it for a target
environment having limited data updates.

Here, we describe how to use autoencoders for train-
ing a set of control policies. Later, we will explain how
rocorl makes the control policies transferable from the nor-
mal to the target environment, by exploiting different obser-
vation spaces and combining a high-level orchestrator with
the control policies in a hierarchy in Section III-C.

For training several control policies to be transferable,
we employ the autoencoder-based observation transfer
scheme. We first define an individual policy as a composite

function g ◦ f such as

f : �#
→ Z, g : Z → A. (23)

The function f intends for exploiting a decomposable
observation space and increasing the diversity in latent
representation, while the function g conducts a common
decision-making task. We refer to such a function f as a
observation transfer and g as a common decider.

To generate a set of observation transfer in a systematic
way, we adopt the autoencoder structure. (i) We first exploit
the policy π well-learned for the normal environment Mnm

to obtain samples S of full observation trajectory. (ii) Then,
we train the autoencoder (dec◦ffull : s 7→ z 7→ s) using s ∈ S,
where the full observation space � is exploited at this time.
Let the encoder part of the learned autoencoder be

ffull : �→ Z where ω ∈ �, z ∈ Z. (24)

(iii) We then obtain restricted observations �(j) from � with
projection maps 8j for j = 1, . . . ,m− 1.

8j : �→ �(j) where �(j)
⊂ �, ω(j)

∈ �(j) (25)

For instance, a projection can be made from � by excluding
all (or some) features of global data. For each projection map,
we then obtain another observation transfer fj that is learnable
by the pair samples from �(j) and Z ,

fj : �(j)
→ Z. (26)

Since each z ∈ Z for �(j) is equal to that in Eq. (24),
each observation transfer fj can be supervised-learned using
relevant loss such as similarity distance from ground truth
states [14],

L(fj, ω) = ‖fj(8j(s))−z‖ (27)

for j = 1, . . . ,m − 1, where z = ffull(s). This learning
process is iteratively conducted for different projection maps.
To obtain the projection maps, we first group global data
using their correlation into c sets. Then, for each set, including
or not including it, we can create c2 combinations for partial
observation spaces, while several candidates turn out to be
lower-performance policies than others and so they can be
pruned.

(iv) To obtain the common decider g, we also train the
policy π = g ◦ ffull for the fixed ffull. Finally, given a set
of m observation transfers {f1, . . . , fm−1, ffull}, we combine
each with the common decider g, thereby achieving a set of
m policies 5,

{π1 = g ◦ f1, . . . , πm−1 = g ◦ fm−1, πm=g ◦ ffull}. (28)

Algorithm 2 shows the aforementioned steps (i)-(iv) for
generating a set of control policies. TheSLTrain(·) function
is the implementation of conventional supervised learning
algorithms, given a target model and labeled samples. Simi-
larly, the RLTrain(·) function is the implementation of con-
ventional RL algorithms for the normal environment, given
a target policy. Note that we obtain the normal environment

VOLUME 8, 2020 225375

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

Algorithm 2 Training a Set of Control Policies
set normal env., RLTrain (π) // RL training
// (i) collect samples using π in normal environment
samples D← ∅
while |D| < K do
done← False, t ← 0
while not done do
Append (D, st) // append states to samples D
at ← Inference (π , st)
st+1, done← EnvStep (at)
t ← t + 1

end while
end while
// (ii) train autoencoder with samples D
autoencoder dec ◦ ffull
SLTrain (dec ◦ ffull,D) // supervised learning Eq. (24)
// (iii) train observation transfers fj
for j = 1, . . . ,m− 1 do

samples (�(j) ×Z)← ∅ // samples of �(j) ×Z
for s ∈ D do

// extract samples for observation transfer Eq. (25)
ω(j) ← Transfer(8j, s), z← Inference(ffull, s)
Append ((�(j) ×Z), (ω(j), z)) // append pair (ω(j), z)

end for
SLTrain (fj, (�(j) ×Z)) // for fj(ω(j)) 7→ z Eq. (26)

end for
// (iv) train common decider g
RLTrain (g ◦ ffull) // RL training
return 5 ={ π1 = g ◦ f1, . . . , πm = g ◦ ffull } // Eq. (28)

from our target environment by statically configuring no
limitation on global data updates. This normal environment
setting is only for training each policy by Algorithm 2. All
the tests are done under the target environment with various
stale observations and non-deterministic round lengths.

C. POLICY TRANSFERABILITY
Given a target environment with stale obervations M st

=

(S,A,R,P, �,O) where we have S = � as a set by
Eq. (2) and (3), we can naturally induce such a normal MDP
environmentMnm

= (S,A,R,P). Suppose we have optimal
policies π∗st for M

st and π∗nm for Mnm. Then, it is possible to
obtain identical state distributions which are induced by those
policies [15].

Pπ∗nm ≈ Pπ∗st (29)

This leads to the same identical property for the reward
distributions induced by the policies. That is, if there exist
only morphological differences between the two environ-
ments, it is possible to transfer knowledge between the envi-
ronments [15]. In our case, the normal Mnm and stale M st

environments have only morphological differences upon O
and �, because they are the same except whether or not data
updates are limited. In line with Eq. (29), then, our goal with
respect to training an orchestrator can be formulated as the
below, minimizing the statistical distance between Mnm and
M st .

µ∗ = argmin
µ
‖Pπ∗nm − Pµ‖

= argmin
µ
‖Rπ∗nm

−Rµ‖

= argmax
µ

J (µ) (30)

Here,R denotes a reward distribution, ‖·‖ is a norm between
two probability measures (e.g., L1 norm), and J is in Eq. (22).
In the following, we show that a set of control policies

obtained by Algorithm 2 and a well-trained orchestrator
together minimize the statistical distance of normal and target
environments, as represented by the hierarchical learning
objective in Eq (30).
Suppose that we have an orchestrator µ and a set of con-

trol policies 5 in Eq. (28) trained according to the loss in
Eq. (27). Further suppose that the target environment M st is
Lipschitz [16], [17] with respect to actions. That is, for actions
a, a′ ∈ A, there exist K1,K2 ≥ 0 such that

sup
s∈S
‖P(s, a, ·)− P(s, a′, ·)‖ ≤ K1‖a− a′‖

sup
s∈S
|R(s, a)− R(s, a′)| ≤ K2‖a− a′‖. (31)

Then, we have Mnm is also Lipschitz, since Mnm is naturally
induced by M st ; recall that Mnm shares S, A, P , and R with
M st .
Given the hypothesis in Eq. (31), here, we show that the

orchestrator µ with the policy set 5 satisfies Eq. (30) with
a bounded error. Specifically, we show that there is a fixed
number K > 0 such that

‖Rπ∗nm
−Rµ‖1 ≤ K min

j=1,...,full
E[L(fj, ω)|s] (32)

where ‖·‖1 is the L1 norm.
First, we show that the error bound of each control policy

πj ∈ 5 is

‖Rπ∗nm
−Rπj‖1 ≤ KE

[
L(fj, ω))

]
. (33)

For each observation transfer function fj and z = ffull(s) ∈ Z ,
consider the estimation error εj > 0 (i.e., loss in Eq. (27))
such that

‖z− ẑ(j)‖ < εj (34)

holds where ẑ(j) is the estimated feature by fj, i.e., ẑ(j) =
fj(8j(ω)) ∈ Z and z is the ground truth, ffull(s).We then obtain
a fixed number K3 > 0 such that

‖z− ẑ(j)‖ < εj ⇒ ‖g(z)− g(ẑ(j))‖ < K3εj (35)

holds, since the common decider function g is also a Lipschitz
function as a feed forward neural network [18]. Note that
we implemented the g using a feed forward neural network.
Using Eq. (31) and (35), we then obtain that the rewards
achieved by g ◦ fj are bounded as

‖g(z)− g(ẑ(j))‖ < K3εj

⇒ |R(st , g(z))− R(st , g(ẑ(j)))| ≤ K2K3εj. (36)

By integrating both sides of the second inequality in Eq. (36),
we obtain the below,∫
|R(st , g(z))− R(st , g(ẑ(j)))|dλ ≤

∫
K2K3εjdλ

⇒ ‖Rπ∗nm
−Rπj‖1 ≤ E

[
K2K3εj

]
(37)

225376 VOLUME 8, 2020

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

where λ = |Pπ∗nm − Pπj | is a measure defined on the set of
events in S. Let K = K2K3. Since K is a constant, we obtain

‖Rπ∗nm
−Rπj‖1 ≤ KE

[
εj
]
= KE

[
L(fj, ω))

]
(38)

that satisfies the error bound of Eq. (33).
Second, we show that the bound of Eq. (38) (or Eq. (33))

obtained above drives Eq. (32), if combined with the
well-trained orchestrator µ upon all πj ∈ 5. For the
well-trained orchestrator µ that maximizes the objective in
Eq. (22), it is obvious that

J (µ) ≥ max
j=1,...,m

J (πj). (39)

By exploiting the below relation based on Eq. (30),

‖Rπ∗nm
−Rπi‖ ≤ ‖Rπ∗nm

−Rπj‖ ⇔ J (πi) ≥ J (πj), (40)

we can obtain that

J (µ) ≥ max
j=1,...,m

J (πj)

⇒ ‖Rπ∗nm
−Rµ‖1 ≤ min

j=1,...,m
‖Rπ∗nm

−Rπj‖1 (41)

from Eq. (39). Using Eq. (41) and Eq. (38), we finally obtain
the below same to Eq. (32).

‖Rπ∗nm
−Rµ‖1 ≤ min

j=1,...,m
‖Rπ∗nm

−Rπj‖1

≤ K min
j=1,...,full

E[L(fj, ω)]. (42)

IV. MODEL-BASED ORCHESTRATOR
In this section, we describe our data-efficient training method
for a high-level orchestrator.

A. DIFFICULTY IN TRAINING ORCHESTRATOR
In rocorl, an orchestrator makes decisions less frequently
than control policies, which makes it hard to collect sufficient
samples for training. Figure 5(a) depicts sample through-
put (on the Y-axis) with respect to various time periods in
timesteps for a single round (on the X-axis), when the orches-
trator is trained with the Airsim simulator [8]. As the aver-
age time period increases, the sample throughput decreases;
e.g., a 10 fold increase period results in 83.5% reduction
in throughput, increasing the training hours 6 times. It is
because the longer each round period, the fewer sampling
points within a given training time.

FIGURE 5. Difficulty in training a high-level orchestrator.

Model-based RL methods are effective for solving
real-world decision problems because of data-efficient learn-
ing capability [19]. However, in applying model-based RL
methods to orchestrator training, we need to consider the
uncertainty of a learned model-environment. In general,
a learned model-environment often becomes inaccurate due
to the high complexity of its target environment or overfitting,
and this raises the problem of policies not being optimized by
interaction with the model-environment [20], [21].

In our case, the orchestrator performs actions at variable
time periods that are randomly determined based on net-
work conditions. While each orchestrator action takes place,
a control policy performs a relatively large number of actions,
which can have a significant impact on environment dynam-
ics. This hierarchical structure increases the uncertainty in
predicting the next state for the orchestrator, hence reducing
the accuracy of a learned model-environment. Figure 5(b)
indicates such limitation where learning loss (on the Y-axis)
increases with longer periods of each round (on the X-axis),
where learning loss represents the model-environment accu-
racy measured by L2 one-step predictions. Several meth-
ods are used to learn a model-environment, e.g., splitting
a validation dataset for early stopping, input/output data
normalization, batch normalization, L2 regularizer [22], and
model-ensemble techniques [21].

B. AGGREGATED POLICY LEARNING
To mitigate the issue of low accuracy of a learned model-
environment, we propose the aggregate policy learning
scheme by which the model parameters of the orches-
trator are updated through interacting with not only a
model-environment but also a target environment in parallel.

In general, a model-based learning process con-
sists of transition sampling, model-environment learn-
ing, and policy improvement. First, a fixed policy
is exploited to collect experienced transitions D =

{(st , πt ,Rµ(st , πt), st+k+1) |I : [t, t + k]} through interact-
ing with its target environments for update periods I . Then,
a model-environment is learned to approximate a transition
probability Pµ(s, π, s′) and reward function Rµ(s, π) via a
dynamics function Pψ and a reward function Rφ . We see the
transition probability as a distribution of random variable s′,
given s and π . Notice that learningPψ and Rφ is conducted in
a supervised manner with the experienced transitions D. The
objective functions are defined to minimize the L2 one-step
prediction losses: min

ψ

1
|D|

∑
D‖st+k+1 − Pψ (st , πt)‖2 and

min
φ

1
|D|

∑
D‖R

µ(st , πt)− Rφ(st , πt)‖2 respectively. Then,

a learned model-environment with Pψ and Rφ can be used
for policy improvement.

Figure 6 depicts the aggregated policy learning scheme
in which model-free learning with a target environment
is performed in parallel with model-based learning. In
model-free learning, accurate trajectories from target envi-
ronments are used for policy improvement, thus the sam-
ple throughput is low. On the other hand, in model-based

VOLUME 8, 2020 225377

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

FIGURE 6. Training orchestrator by aggregated policy learning.

learning, more trajectories including inaccurate ones from
model-environments are used, thus the sample throughput is
high.

As such, to alleviate the low accuracy issue of policy
improvement, the two policies updated by model-free and
model-based learning are aggregated. Specifically, for policy
aggregation, we use the weighted model averaging algorithm
in federated learning techniques [23],

θf , θm← (1− α)θf + αθm (43)

where θf and θm represent the respective model parameters
of learned policies by model-free and model-based learning,
and α ∈ (0, 1) denotes an aggregation weight.

V. EVALUATION
In this section, we describe the implementation of rocorl,
and evaluate it with various simulation conditions. We also
demonstrate our case study, automated drone navigation in
the Airsim simulator, where a flying RL agent is presumed
to run on a drone and to rely on observations with near-edge
global and near-device local sensor data.

Our model implementation is based on Python v3.7 and
Tensorflow v1.14, and neural networks for policies are
trained on a system of an Intel(R) Core(TM) i7-7700 pro-
cessor and an NVIDIA RTX 2080 GPU. The orchestrator
and control policies share common hyperparameter settings
for their neural network structure, except that each con-
trol policy has its own observation space, as explained in
Section III-B. For training policies, we use the PPO and
SAC algorithms [24], [25], and the Adam optimizer [26].
The hyperparameter settings are summarized in Table 1. For
comparison purposes, we also implement and test several
algorithms in addition to the rocorl model.
• REC_FU and REC_PA are recurrent models with differ-
ent observation spaces, where the former manages a full
observation space with stale data, and the latter manages
a partial observation space without stale data.

• DVRL is a state-of-the-art POMDP method [27]. Dif-
ferent from recurrent models that has no direct influ-
ence on belief states, it exploits the evidence lower
bound (ELBO) loss to directly affect the belief state
inference during learning.

In evaluating models upon stale observations, we concen-
trate on model robustness, and accordingly, we measure the

TABLE 1. Hyperparameter settings for policy networks.

ratio of the model performance to an ideal reference. That is,
for a model F , the performance degradation ratio (Perf. ratio)
is calculated as

E
M st

[J (F)] / E
Mnm

[
J (π∗nm)

]
(44)

where M st and Mnm are the stale and normal environments
defined in Section III-C and J is defined in Eq. (6). In our
tests, the reference performance is empirically calculated
based on the accumulated reward obtained in normal environ-
ments through the properly learned policy π∗nm. We conduct
10K trials for each test case.

A. SIMULATION TESTS
For various simulation tests, we implement a moving object
environment using pyBox2D [28]. Similar to self-driving
scenarios, an agent is set to avoid moving objects and go to
the goal location. The agent receives the lidar-like yet simple
sensor data as local data, while it receives dynamic map
information including the position and speed of long-range
obstacles as global data. Regarding actions and rewards,
the agent manipulates its steering and velocity, acquiring
a binary reward; 1 if the agent achieves its goal, 0 other-
wise. The simulation environment settings are summarized
in Table 2.

TABLE 2. Simulation environment settings: in the type column, e and d
denote the global and local data type respectively, while c denotes
non-temporal data that can be commonly accessed from both device
node and edge service with no stale observation.

225378 VOLUME 8, 2020

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

FIGURE 7. Various settings on data update periods.

Figure 7 shows that rocorl outperforms the other mod-
els, where we measure model performance in Eq. (44)
with respect to various settings on data update periods.
rocorl shows that it maintains stable performance regardless
of (a) mean and (b) deviation values on data update periods
in timesteps, in contrast to other models. The larger mean or
deviation, the more degraded the performance of REC_FU.
On the other hand, REC_PA is not significantly affected by
the update periods since stale data are all removed from its
observations, but it has a limitation of relatively low perfor-
mance.

FIGURE 8. Environment dynamics: the environment dynamics is set by
obstacle speed ranges.

In Figure 8, we also evaluate themodels with respect to var-
ious dynamics levels of target environments. We observe that
high dynamics settings with rapid moving obstacles increase
the difficulty of goal tasks and thus affect the performance of
all the models in comparison. Yet, the performance degra-
dation of rocorl is not relatively significant, indicating its
robustness. In a highly dynamic environment, it is important
to make good use of available observations including stale
global data, while doing so might have an adverse effect of
increasing the likelihood of misusing them. rocorl selectively
uses proper control policies over time to effectively reduce the
likelihood of such misuse through the orchestrator.

In Figure 9(a), we evaluate the models with respect to
various staleness. Here, the number of partitions (on the
X-axis) represents the number of sensor data sets with dif-
ferent update times; e.g., two individual global data sets
differently updated make three partitions including one for
device data. Accordingly, more partitions normally increase
the variety of stale observations in most cases, tending to
make hard to learn stable rules upon stale observations.While
the default setting of our target environments sets to have two

partitions, one from the device and the other from the edge
service, we also consider a situation in which global data from
multiple edge services (or nodes) are asynchronously updated
to the device. rocorl shows more robust performance than the
others against various staleness, e.g., 17∼25% higher than
REC_FU.

While the performance of REC_FU degrades with more
partitions, that of REC_PA and rocorl does not. Moreover,
rocorl outperformsREC_PA by 6∼9%.As the number of par-
titions increases, the variety of stale observations increases,
which in turn renders a more difficult environment and more
unstable observation probability for REC_FU to learn the
optimal policy.

In Figure 9(b), we evaluate the relationship of the number
of policies with different observation spaces and the number
of partitions in rocorl. The large policy set (i.e., the size =
8) shows slightly more robust performance than the other (the
size = 2). Note that the large set is configured to contain all
the policies of the small set in this test for direct comparison.
The result clearly shows the benefit of rocorl that makes use
of the diverse capability of transferable control policies upon
variable staleness. It is consistent with Eq. (32).

FIGURE 9. Policy sets upon various staleness.

B. CASE STUDY
In the following, we describe our case study for autonomous
quad-copter controls with the Airsim simulator [8]. Figure 10
illustrates the system implementation where rocorl works
as a flying agent for a self-operation drone. We set
device-attached sensor measurements such as device posi-
tion, velocity, acceleration, orientation as well as lidar mea-
surements as near-device local data. We set long-range
dynamic map information such as the trajectories of moving

FIGURE 10. Case study system architecture with Airsim.

VOLUME 8, 2020 225379

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

TABLE 3. Case study environment settings: the type specifies different
data types in the same as in Table 2.

objects as near-edge global data. This configuration is based
on one of the edge computing scenarios [29], [30]. Further-
more, the dynamic map information is updated to the device,
similarly to the learning map scenario [31], where update
periods are randomly given.

Regarding actions and rewards, we implement an agent that
continuously manipulates the 3-D acceleration of a drone,
and acquires rewards according to the distance from the goal,
i.e., R(st , at) = ‖go− pot‖2 − ‖go− pot+1‖2 where pot is
the drone position at time t and go is the goal location. The
case study environment settings are summarized in Table 3,
while other unspecified settings are the same as those for the
previous simulation experiments.

Here we evaluate model performance with respect to var-
ious settings on update periods. We set random periods with
various mean and deviation values (on the X-axis) for suc-
cessive near-edge global data updates from the edge service
to the drone. In Figure 11, we assume that those values
are independent from other environment conditions, while
in Figure 12, we configure a practical correlation pattern
between update periods and environment density. Timely
updates to the drone can be more restricted due to possible
interference in a harsh area where many obstacles exist. As
shown, rocorl outperforms the other models, e.g., 60∼71%
enhancement over the recurrent REC_FU and REC_PAmod-
els as well as 2∼11% enhancement over the state-of-the-art
DVRL for all test cases.

FIGURE 11. Performance w.r.t. uncorrelated update periods: the X-axis
denotes update periods in timesteps (and in seconds).

FIGURE 12. Performance w.r.t. correlated update periods: the X-axis
denotes update periods in timesteps (and in seconds).

FIGURE 13. Performance with respect to environment dynamics.

In Figure 13, we evaluate model performance with respect
to dynamic conditions of a flying environment where the
dynamics level is configured by speed distributions ofmoving
obstacles. rocorl shows highly stable performance for all
cases, while the others show degraded performance when
they are affected by severe changes; e.g., DVRL is degraded
by 15%with an 8 times increase of maximum obstacle speed.

FIGURE 14. Data efficiency of rocorl.

In Figure 14, we evaluate the data-efficiency of rocorl.
The aggregated policy learning of rocorl shows its learning
curve with rapid increases of acquired discounted rewards
over timesteps, in comparison with the other case where only
model-free learning is used, indicating 2∼3 times improved
training capability than the other case in terms of data-
efficiency.

In Figure 15(a), we compare the discounted reward pat-
terns achieved over time by different models. Here, in addi-
tion to DVRL and rocorl, we include the well-learned ref-
erence model running in the normal environment (denoted
as ‘‘normal’’ in the figure) and one of the control policies
in rocorl (denoted as ‘‘POL_FU’’) in this comparison. The

225380 VOLUME 8, 2020

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

FIGURE 15. Transferable policies of rocorl.

POL_FU policy takes full observation data as input. Except
for the normal model, these models run in the target environ-
ment. As noticed, the normal model and rocorl show more
similar patterns than others. This implies that we have trans-
ferable control polices in rocorl, which canminimize the state
and reward distribution differences between the normal and
target environments, thus allowing Eq. (30) to be established.

Furthermore, in Figure 15(b), we compare the obstacle
distance patterns obtained by different models. Given the
probability distribution of moving obstacle distance by the
normalmodel, we represent its difference from anothermodel
(i.e., ‖Pπ∗nm−Pµ‖ in Eq. (30)). Similar to the reward patterns,
we notice that the difference between the normal model and
rocorl is much smaller than that between the normal model
and DVRL or POL_FU. It indicates that rocorl running in the
target environment learns how to control upon stale observa-
tions, as if it were running in the normal environment. This
policy transferability is enabled by hierarchical learning with
the autoencoder-based observation transfer scheme in rocorl.

VI. RELATED WORKS
The recent advance of reinforcement learning (RL) has
yielded its broad adoption in the area of autonomous
cyber-physical systems that operate through interacting with
surrounding environments, e.g., autonomous driving [1], [2],
robots [3], [32], [33], drones [4], [34], mobile edge com-
puting [30], and others. Such an RL-based system senses
environment states, aiming to make timely observations and
conduct proper reactions. Thus, the system performance nor-
mally becomes dependent on the quality of observations to
some extent.

For a linear dynamic system with Gaussian noise obser-
vations, the Kalman filter has been adopted to estimate the
ground truth of underlying system states [35], [36]. While
Gaussian noise observations normally form a POMDP (par-
tially observable MDP) problem, stale observation prob-
lems cannot be necessarily formulated with Gaussian noise
observations. In the RL research community, many works
were investigated to address the issues of partial or noisy
observations which are formulated as a POMDP. In [10],
Wierestra et al. demonstrated that recurrent networks with
policy gradient algorithms can be effective for POMDPs.
Similarly, in [9], Hausknecht et al. adopted the recurrent neu-
ral network with the Q-learning algorithm (DQN). Recently,

the multi-agent RL system with noisy private observations
and selective communication between agents was investi-
gated [37]. Moreover, DVRL [27] and PILCO [20], [38] were
proposed. DVRL exploits the evidence lower bound (ELBO)
loss, leading to direct estimation on belief states for recurrent
RL policies, while PILCO employs dynamic models learned
upon belief states directly than observations. These previous
works commonly concentrated on partial observations, yet
none of them addressed the stale observation problem.

Since POMDPmethods were generally designed under the
assumption of a fixed correlation between ground truth states
and observations (i.e., O(st) = Pr(ωt |st)), it is difficult to
apply them for an environment with stale observations in
which gradients of neural networks cannot be given accu-
rately. To the best of our knowledge, our work is the first to
formulate the problem of stale observations in the RL context
and to propose the solution employing the transfer learning
via a hierarchical model.

The option framework was first proposed in [13], and was
much studied recently, e.g., the end to end option learning
with deep RL [39], transfer learning with options [40]. Our
work is in the same vein of these option-based works for
handling different levels of temporal abstraction and solv-
ing a complex decision making problem. However, none of
the previous works considered limited data updates or stale
observations.

Meanwhile, Gupta et al. [15] presented a knowledge trans-
fer theory for RL agents in the form of statistical distance.
They focused on finding out good feature extraction func-
tions that can reduce the morphological difference between
two different environments. In our problem, it is difficult
to directly extract features from stale environments. Thus,
we exploit observation transfer functions in an option-like
hierarchical learning structure, rather than extracting features
directly from stale environments.

There has been a body of research on model-environment
representation in the field of robotics [32], [33]. Recently,
several studies have been introduced for adopting deep neural
networks in model-based RL and handling complex environ-
ments [21], [41], [42]. In [21], the model ensemble technique
based on the trust-region policy optimization was introduced
to tackle the shortcomings of backpropagation through time.
In [41], asynchronous process structures were investigated to
alleviate themodel bias problem. Using the techniques of [21]
and [41], we employ an integrated learning approach that
combines both model-free and model-based learning to solve
the model-bias issue caused by hierarchical RL structures.

Our system design is based on edge-device data synchro-
nization and it shares a similar structure with decentralized
POMDPs [37], [43], [44]. In [37], MADDPG-M handles a
specific constrained case where agents operate under partial
observations that are weakly correlated to true states. While
MADDPG-M focuses on agents’ decisions about what to
share with others, our work seeks to intelligently make use
of imperfect observations, under a simple but nonrestrictive
assumption that data are shared randomly in time.

VOLUME 8, 2020 225381

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

VII. CONCLUSION
In this paper, we presented rocorl, the hierarchical RL-based
control model that can effectively deal with temporally
outdated observations incurred by intermittent sensor data
updates in a cyber-physical environment. For training the
model, we employ the autoencoder-based observation trans-
fer and aggregated policy learning schemes. Our approach is
based on a set of policy variants with different observation
transfers by which the learned knowledge is transferable for
environments with stale observations. Through experiments
with the Airsim simulator, we show that rocorl is robust
against various restrictive conditions of sensor data updates,
compared with several other models including a state-of-the-
art POMDP method.

Our future work is to adapt the rocorl model for a large
scale edge computing environment where many edge com-
puting nodes communicate and interact.

REFERENCES
[1] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, ‘‘Deep reinforcement

learning framework for autonomous driving,’’ Electron. Imag., vol. 2017,
no. 19, pp. 70–76, Jan. 2017.

[2] B. Osinski, A. Jakubowski, P. Miłos, P. Ziecina, C. Galias, S. Homoceanu,
and H. Michalewski, ‘‘Simulation-based reinforcement learning for real-
world autonomous driving,’’ 2019, arXiv:1911.12905. [Online]. Available:
http://arxiv.org/abs/1911.12905

[3] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, ‘‘Collec-
tive robot reinforcement learning with distributed asynchronous guided
policy search,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2017, pp. 79–86.

[4] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, ‘‘Generalization
through simulation: Integrating simulated and real data into deep rein-
forcement learning for vision-based autonomous flight,’’ inProc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 6008–6014.

[5] K.-D. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelzaher, ‘‘A QoS-
sensitive approach for timeliness and freshness guarantees in real-time
databases,’’ in Proc. 14th Euromicro Conf. Real-Time Systems. Euromicro
RTS, Jun. 2002, pp. 203–212.

[6] C. Deng, G. Li, Q. Zhou, and J. Li, ‘‘Guarantee the quality-of-service of
control transactions in real-time database systems,’’ IEEE Access, vol. 8,
pp. 110511–110522, 2020.

[7] S. Kaul, R. Yates, and M. Gruteser, ‘‘Real-time status: How often should
one update?’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 2731–2735.

[8] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘‘AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,’’ 2017,
arXiv:1705.05065. [Online]. Available: http://arxiv.org/abs/1705.05065

[9] M. Hausknecht and P. Stone, ‘‘Deep recurrent q-learning for partially
observable MDPs,’’ in Proc. AAAI Fall Symp. Ser., 2015, p. 32.

[10] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, ‘‘Solving
deep memory POMDPs with recurrent policy gradients,’’ in Proc. Int.
Conf. Artif. Neural Netw. (ICANN). Berlin, Germany: Springer, 2007,
pp. 697–706.

[11] R. Fruit and A. Lazaric, ‘‘Exploration-exploitation in MDPs with
options,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, 2017,
pp. 576–584.

[12] B. Ravindran and A. G. Barto, ‘‘SMDP homomorphisms: An algebraic
approach to abstraction in semi-Markov decision processes,’’ in Proc. 18th
Int. Joint Conf. Artif. Intell. (IJCAI), 2003, pp. 1011–1016.

[13] R. S. Sutton, D. Precup, and S. Singh, ‘‘Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,’’ Artif.
Intell., vol. 112, nos. 1–2, pp. 181–211, Aug. 1999.

[14] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric dis-
criminatively, with application to face verification,’’ in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1, Jun. 2005,
pp. 539–546.

[15] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, ‘‘Learning invari-
ant feature spaces to transfer skills with reinforcement learning,’’ 2017,
arXiv:1703.02949. [Online]. Available: http://arxiv.org/abs/1703.02949

[16] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and
M. G. Bellemare, ‘‘DeepMDP: Learning continuous latent space
models for representation learning,’’ 2019, arXiv:1906.02736. [Online].
Available: http://arxiv.org/abs/1906.02736

[17] M. Pirotta, M. Restelli, and L. Bascetta, ‘‘Policy gradient in Lips-
chitz Markov decision processes,’’ Mach. Learn., vol. 100, nos. 2–3,
pp. 255–283, Sep. 2015.

[18] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein generative adver-
sarial networks,’’ in Proc. 34th Int. Conf. Mach. Learn. (ICML), 2017,
pp. 214–223.

[19] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement
learning: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[20] M. Deisenroth and C. E. Rasmussen, ‘‘PILCO: A model-based and data-
efficient approach to policy search,’’ in Proc. 28th Int. Conf. Mach. Learn.
(ICML), 2011, pp. 465–472.

[21] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, ‘‘Model-
ensemble trust-region policy optimization,’’ in Proc. 6th Int. Conf. Learn.
Represent. (ICLR), 2018.

[22] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), 2015, pp. 448–456.

[23] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, ‘‘Federated learning: Strategies for improving com-
munication efficiency,’’ 2016, arXiv:1610.05492. [Online]. Available:
http://arxiv.org/abs/1610.05492

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[25] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochas-
tic actor,’’ in Proc. 35th Int. Conf. Mach. Learn. (ICML), 2018,
pp. 1861–1870.

[26] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.

[27] M. Igl, L. Zintgraf, T. Anh Le, F. Wood, and S. Whiteson, ‘‘Deep vari-
ational reinforcement learning for POMDPs,’’ 2018, arXiv:1806.02426.
[Online]. Available: http://arxiv.org/abs/1806.02426

[28] Pybox2d. (2020). Pybox2d. [Online]. Available: https://github.
com/pybox2d/pybox2d

[29] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang, and
M. Satyanarayanan, ‘‘Bandwidth-efficient live video analytics for drones
via edge computing,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Oct. 2018, pp. 159–173.

[30] L. Xiao, Y. Ding, D. Jiang, J. Huang, D. Wang, J. Li, and H. V. Poor,
‘‘A reinforcement learning and blockchain-based trust mechanism for
edge networks,’’ IEEE Trans. Commun., vol. 68, no. 9, pp. 5460–5470,
Sep. 2020.

[31] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. Anderson,
D. Teplyashin, K. Simonyan, A. Zisserman, and R. Hadsell, ‘‘Learning to
navigate in cities without a map,’’ in Proc. Conf. Neural Inf. Process. Syst.
(NIPS), 2018, pp. 2419–2430.

[32] J. A. Bagnell and J. G. Schneider, ‘‘Autonomous helicopter control using
reinforcement learning policy search methods,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), vol. 2, May 2001, pp. 1615–1620.

[33] V. Kumar, E. Todorov, and S. Levine, ‘‘Optimal control with learned local
models: Application to dexterous manipulation,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2016, pp. 378–383.

[34] H. Lu, Y. Li, S. Mu, D. Wang, H. Kim, and S. Serikawa, ‘‘Motor anomaly
detection for unmanned aerial vehicles using reinforcement learning,’’
IEEE Internet Things J., vol. 5, no. 4, pp. 2315–2322, Aug. 2018.

[35] R. E. Kalman, ‘‘A new approach to linear filtering and prediction prob-
lems,’’ J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[36] G. Welch and G. Bishop, ‘‘An introduction to the Kalman filter,’’ Dept.
Comput. Sci., Univ. North Carolina Chapel Hill, Chapel Hill, NC, USA,
Tech. Rep. TR 95-041, 1995.

[37] O. Kilinc and G. Montana, ‘‘Multi-agent deep reinforcement learning
with extremely noisy observations,’’ 2018, arXiv:1812.00922. [Online].
Available: http://arxiv.org/abs/1812.00922

[38] R. McAllister and C. E. Rasmussen, ‘‘Data-efficient reinforcement learn-
ing in continuous state-action Gaussian-POMDPs,’’ in Proc. Conf. Neural
Inf. Process. Syst. (NIPS), 2017, pp. 2040–2049.

[39] P.-L. Bacon, J. Harb, and D. Precup, ‘‘The option-critic architecture,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–9.

225382 VOLUME 8, 2020

G. Yoo et al.: rocorl: Transferable Reinforcement Learning-Based Robust Control

[40] B. Fernandez-Gauna, J. M. Lopez-Guede, and M. Graña, ‘‘Transfer learn-
ing with partially constrained models: Application to reinforcement learn-
ing of linked multicomponent robot system control,’’ Robot. Auto. Syst.,
vol. 61, no. 7, pp. 694–703, Jul. 2013.

[41] Y. Zhang, I. Clavera, B. Tsai, and P. Abbeel, ‘‘Asynchronous methods
for model-based reinforcement learning,’’ in Proc. Conf. Robot Learn.
(CORL), 2020, pp. 1338–1347.

[42] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine, A. Mohiud-
din, R. Sepassi, G. Tucker, and H. Michalewski, ‘‘Model based reinforce-
ment learning for Atari,’’ in Proc. 8th Int. Conf. Learn. Represent. (ICLR),
2020.

[43] F. A. Oliehoek, ‘‘Decentralized POMDPs,’’ in Reinforcement Learning.
Berlin, Germany: Springer, 2012, pp. 471–503.

[44] B. Eker and H. L. Akın, ‘‘Using evolution strategies to solve DEC-POMDP
problems,’’ Soft Comput., vol. 14, no. 1, pp. 35–47, Jan. 2010.

GWANGPYO YOO received the B.S. degree
in mathematics and computer engineering from
Sungkyunkwan University, Suwon, in Febru-
ary 2020, where he is currently pursuing the M.S.
degree in computer science and engineering. His
research interests include real time data orchestra-
tion and reinforcement learning.

MINJONG YOO received the B.S. degree in
mathematics and computer science and engi-
neering from Sungkyunkwan University, Suwon,
in 2020, where he is currently pursuing the Ph.D.
degree in computer science and engineering. His
research interests include reinforcement learning,
deep learning, and networked cyber-physical sys-
tems.

IKJUN YEOM received the B.S. degree in elec-
tronic engineering from Yonsei University, Seoul,
South Korea, in February 1995, and the M.S. and
Ph.D. degrees in computer engineering from Texas
A&M University, in August 1998 and May 2001,
respectively. He worked with Dacom, Inc., from
1995 to 1996, and Nortel Networks Corporation,
in 2000. He had been an Associate Professor with
the Department of Computer Science, KAIST,
from 2002 to 2008. He is currently a Full Professor

with the Department of Computer Science and Engineering, Sungkyunkwan
University, Suwon, South Korea. His research interests include AQM, con-
gestion control, TCP, wireless networks, and future Internet architecture.

HONGUK WOO (Member, IEEE) received the
B.S. degree in computer science from Korea Uni-
versity, Seoul, in 1995, and the M.S. and Ph.D.
degrees in computer sciences from The University
of Texas at Austin, Austin TX, USA, in 2002 and
2008, respectively. From 2008 to 2018, he worked
for Samsung Research of Samsung Electronics as
a Principal Engineer and the Vice President. Since
2018, he has been an Assistant Professor with the
Department of Computer Science and Engineer-

ing, Sungkyunkwan University, Suwon, South Korea. His research interests
include intelligent application, analytic monitoring, cloud computing, and
networked cyberphysical systems.

VOLUME 8, 2020 225383

