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ABSTRACT With the development of blockchain technology, participants need to have huge storage
volumes to deal with the growing blockchain ledger size over time. This requirement leads to the conditional
participation and verification of participants, thus weakening the decentralization of a blockchain system.
Several compression schemes have been proposed to mitigate this storage problem by compressing a
blockchain ledger based on redundancy, modular functions, and hash functions. However, these schemes
have the limitation of accumulating the compression results to validate the retained blocks. The accumulation
gradually reduces the storage volume for the blockchain ledger within the storage volume of nodes with
limited resources, thus reducing the verification capability of the nodes. In this paper, a selective compression
scheme using a checkpoint-chain is proposed to prevent the accumulation of compression results. The
checkpoint-chain is a second blockchain that stores the checkpoints compressing existing blocks through
a block Merkle tree. An update process is also proposed to prevent the accumulation of checkpoints by
combining them. As numerous blocks can be verified with only a few updated checkpoints, blockchain nodes
with limited resources can reduce the storage volume for the blockchain ledger and achieve high verification
capabilities. Finally, compared with the existing compression schemes, the proposed scheme can achieve an
average reduction in the storage overhead and an average increase in the verification capability of 76.02%
and 13.90%, respectively. Moreover, the corresponding performance improvements are 86.14% and 15.44%
when the update process is performed, respectively.

INDEX TERMS Blockchain, block Merkle tree, second blockchain, storage efficiency.

I. INTRODUCTION
Blockchain technology has emerged as a major approach for
implementing distributed systems [1]. It has been applied to
various systems, such as logistics [2], [3], distribution [4], [5],
notarial [6], [7], and medical [8], [9] systems. A blockchain
is a shared ledger that allows all the participants in a dis-
tributed system to maintain the same states of data based on
cryptography and consensus algorithms. It consists of a set
of serial blocks, and each block has a set of serial transac-
tions. Blocks and transactions are the historical records of
the creation and change of data in a blockchain system. They
are robust against falsification because both cryptography
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and consensus algorithms are used to ensure the integrity
and consistency of blockchain. Moreover, blockchain can
guarantee various advantages, such as decentralization, anti-
forgery, and traceability. Therefore, blockchain technology
has become essential for implementing traditional centralized
models into distributed systems.

The blockchain technology has a typical storage problem
owing to the growing interest in its application to various
systems [10]–[12]. The volume of a blockchain increases
over time owing to the continuous addition of new blocks
when participants generate new data in a system. For exam-
ple, the cryptocurrency systems with initial blockchains,
Bitcoin and Ethereum, have grown to require huge storage
volumes of 260 GB and 120 GB by early 2020, respec-
tively [13]. As the blockchain technology expands to other

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 225613

https://orcid.org/0000-0001-9902-9097
https://orcid.org/0000-0001-7370-7849
https://orcid.org/0000-0003-0121-3588
https://orcid.org/0000-0002-1847-6088
https://orcid.org/0000-0003-2483-6980


T. Kim et al.: SELCOM: Selective Compression Scheme for Lightweight Nodes in Blockchain System

systems, the blockchain data have become not only simple
bank account data but also real-world data, such as electronic
health records [14], industrial data [15], and video data [16].
These real-world data, which are larger than transaction data,
form a blockchain that requires a larger storage volume.
This requirement of a huge storage volume is a major bot-
tleneck for operating the blockchain technology on devices
with limited resources, such as sensors and Internet-of-things
devices [17]. Furthermore, this requirement undermines the
free participation and verification of a blockchain system,
which weakens the decentralization of the system.

Various schemes have been proposed to solve the stor-
age problem that can be classified into summarization and
compression schemes. Some summarization schemes have
been proposed using a recursive summarization tree [18],
account tree [19], and snapshot with unspent transactions
outputs (UTXOs) [20]. These schemes can solve the stor-
age problem by replacing blockchain data with a summary.
However, existing summarization schemes cannot be used to
real-world data because they only focused on bank account
data in cryptocurrency systems, such as balances and empty
addresses [18], [19]. In contrast, compression schemes can
be used in various systems with real-world data, as they can
be applied strings and structures of blockchain [21], [22].
Various compression schemes have been proposed based
on string redundancy [21], [22], the residue number system
(RNS) [23], and hash functions [20], [24]. The key aspect
of compression schemes is that smaller-sized compression
results can replace blockchain data, and the results are used to
recover or validate the data. Moreover, they not only address
the storage problem but also enable independent verification
of each block or transaction.

However, existing compression schemes have the limita-
tion of accumulating compression results or the necessary
proofs for verification as a blockchain grows. For example,
a scheme using a compressible blockchain [20] generates a
snapshot and stores it in a second blockchain. However, snap-
shots accumulate as the number of blocks increases over time.
A drawback of the compression schemes is that the com-
pression results cannot be used as actual blockchain data and
are used to perform the verification of the data. Verification
of the original data requires performing a recovery (decom-
pression) process or maintaining the copied original data
separately. Thus, accumulating compression results reduces
the verification capability of blockchain nodes with limited
resources. If only some blockchain nodes have verification
capabilities, the decentralization of the blockchain system can
be weakened. Therefore, as all the blockchain nodes must
be able to achieve their maximum verification capabilities,
the long-term accumulation of compression results must be
prevented.

We propose a selective compression (SELCOM) scheme
using a blockMerkle tree (BMT) to solve the storage problem
and achieve a higher verification capability without accumu-
lations. The BMT is an extended version of the Merkle tree
proposed in our previous study that stores blocks instead of

transactions [25]. In SELCOM, the blocks in a blockchain are
compressed into a checkpoint. Subsequently, the checkpoints
are used to construct a checkpoint-chain, which is a second
blockchain. Then, the compressed blocks can be selectively
erased or maintained based on the individual decisions of the
blockchain nodes.Moreover, we propose an update process in
SELCOM to avoid the accumulation of a second blockchain
and resolve the drawback of our previous study where an
unbalanced BMT was created. The update process combines
accumulated checkpoints into fewer checkpoints. In conclu-
sion, we analyze the proposed and existing schemes and show
that our proposed scheme achieves a lower storage overhead
and higher verification capabilities under the same storage
limits as compared with the existing schemes.

The main contributions of this paper are as follows:
1) We propose a selective compression scheme, called

SELCOM, to solve the storage problem for blockchain
nodes with limited resources. The proposed scheme
offers efficient storage volume management by allow-
ing each node to maintain blocks selectively through
the proposed checkpoint-chain, which is a second
blockchain.

2) We design an update process in SELCOM to mitigate
the limitation of reduced verification capability due
to the accumulation of compression results in existing
compression schemes. The update process combines
checkpoints in a checkpoint-chain. Under the same
storage limits, blockchain nodes can achieve higher
verification capabilities because a small number of
checkpoints can be used to validate numerous blocks.

3) We compare the numerical results of the proposed and
existing compression schemes. In particular, we cal-
culate the storage overhead required for independent
verification guaranteed by each compression scheme.
Compared with the existing schemes [20], [26],
SELCOM can achieve an average reduction in the
storage overhead and an average increase in the verifi-
cation capability of 76.02% and 13.90%, respectively.
Moreover, the corresponding performance improve-
ments are 86.14% and 15.44% when an update process
is performed, respectively.

The rest of this paper is organized as follows. Section II
provides a review of existing compression schemes and
Section III provides preliminaries. Section IV provides a
detailed description of our proposed scheme. Section V
presents the numerical results of the analysis of the pro-
posed and existing schemes. Finally, Section VI presents the
conclusions.

II. RELATED WORKS
In this section, we review the existing compression schemes
that can be divided into redundancy-based, modular-based,
and hash-based compression schemes. Those schemes com-
monly compress data strings to reduce the storage volume.
In detail, redundancy-based compression eliminates redun-
dant strings among data to replace them with numbers or
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smaller strings. Modular-based compression reduces bits of
data using a modular function to replace the data with smaller
values. Those two types of compression can recover the
original data by refilling or re-calculation, however, their
compression efficiency is affected by redundancy and mod-
ulo of strings. Hash-based compression uses hash functions
(e.g. SHA256) that compress data strings as a result of a fixed
size. Although the one-way property of the hash functions
does not allow the results to be recovered to the original data,
the results can be used to verify the original. Moreover, hash-
based compression can achieve a higher fixed compression
efficiency because it generates results in a fixed size.

A. REDUNDANCY-BASED COMPRESSION
Traditionally, compression schemes that reduce the volume
of data by eliminating and replacing the redundancy within
the data strings have been used to solve the storage prob-
lem of traditional cryptocurrency systems. A compression
scheme was proposed in [21] using the traditional com-
pression techniques, LZ77 and Huffman tree, to achieve a
higher storage efficiency. In this scheme, these techniques
were used to compress a summary block proposed in [18]
for the Bitcoin blockchain, and their smaller-sized results
replaced the historical blocks. Thus, the scheme can achieve a
higher storage efficiency than that of the previously proposed
summarization scheme. In [27], a compression algorithm
was proposed to reduce the size of a blockchain so that the
nodes participating in a blockchain system could download
the blockchain quickly. The algorithm compresses the sizes
of transactions in the Bitcoin blockchain by replacing the
existing hash pointers with index pointers of smaller sizes.
Thus, the algorithm can reduce the transmission bandwidth
for downloading the blockchain by creating a smaller-sized
blockchain from which the original blockchain can be recov-
ered. Moreover, a compression scheme was proposed to
solve the storage problem of smart contracts in the Ethereum
blockchain [22]. This scheme contains a new pseudo-opcode
and a method to process the replacement of strings in new
smart contracts. To reduce the storage volume of smart con-
tracts, the scheme finds potential pointers that can connect
from a newly generated contract to the existing deployed
contracts using the proposed pseudo-opcode.

Redundancy-based compression schemes have the advan-
tage of self-recovery by refilling the erased strings while
achieving a reduction in storage volume. However, the exist-
ing schemes are not suitable for blockchain nodes with lim-
ited resources. These schemes have a limitation in that they
cannot provide a fixed-size compression result because they
depend on the redundancy of the data strings. Furthermore,
they require a continuous recovery process to find and refill
erased strings each time the original data are verified.

B. MODULAR-BASED COMPRESSION
A scheme for optimizing the storage mechanism based on the
RNS was proposed in [23]. Based on the Chinese remainder
theorem (CRT), which enables the RNS, a certain integer

can be replaced by a smaller and recoverable integer through
modular operations. In this scheme, each node randomly
selects a modulo from a predefined modulo set when it
participates in a blockchain system. The node only needs to
maintain a smaller-sized remainder of the account informa-
tion calculated by the selected modulo. The original can be
recovered by collecting other remainders and modulos from
other nodes. Moreover, the scheme can identify and recover
intentional errors from devil nodes with low complexity of
both the computation and communication, using redundant
RNS and the new CRT. Thus, this scheme can effectively
reduce the storage volume and also ensure security by detect-
ing errors in the recovery process.

The scheme was originally designed to replace account
information, which can be summarized and has a certain
number of bits, with smaller remainder values. However,
if the scheme is expanded to be applied to blockchain data
instead of account information, the verification capabilities
of nodes are hindered and the recovery process becomes inef-
ficient. The compression results generated by applying the
scheme to each blockchain datum eventually accumulate as
the blockchain grows. Furthermore, even if the original copy
exists, each of these remainders requires communication dur-
ing the recovery process because they cannot be recovered
without modulos from the other nodes. Although this scheme
can achieve a consistently high storage efficiency compared
with redundancy-based schemes, the data-dependent problem
remains to be addressed to expand to the blockchain data.

C. HASH-BASED COMPRESSION
In [26], an efficient public blockchain client (EPBC) scheme
was proposed to ensure not only the reduction of storage
volume but also the verifiability of nodes in public blockchain
systems. The scheme generates a summary of constant size
by compressing the existing blockchain using a cryptography
accumulator. A cryptography accumulator accumulates hash
functions, and it is used to verify that each block exists
inside the blockchain. In this scheme, nodes with limited
resources receive and maintain the most up-to-date summary
from the other nodes that are updated every time new blocks
are generated. The nodes can perform their own verification
by receiving the necessary proofs from the other nodes to
verify which blocks belong to the blockchain. The inclusion
of blocks is confirmed by performing a hash function and
power calculations with the blocks and proofs. Although this
scheme can achieve a high storage efficiency with verifiabil-
ity, it has some limitations in terms of communication and
verification. The nodes using this scheme must periodically
receive and update the latest summary and receive proofs for
each block every time the verification is performed. Further-
more, the proofs for the verification correspond to each block,
hence, the number of proofs required is proportional to the
number of blocks. The accumulation of proofs for verification
can prevent dependent verification and frequent communi-
cation. However, the accumulation of proofs degrades the
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verification capabilities of the nodes, so a way to prevent the
accumulation should be considered.

Bitcoin includes a simplified payment verification (SPV)
scheme for nodes with limited resources simply to engage
in transactions [24]. For the nodes, it is difficult to perform
the proof-of-work (PoW) consensus algorithm and maintain
a blockchain completely. The SPV scheme allows the nodes
to generate transactions and verify that the transactions have
been processed. A block of the Bitcoin blockchain is divided
into a block header and block body. The block header contains
the root of the Merkle tree, called the Merkle root, which
is obtained using the transactions contained in the block
body. Nodes with limited resources only need to store a
set of block headers from the longest Bitcoin blockchain.
Then, the verification regarding whether a block contains
a transaction requires the transaction, the Merkle root in
the block header, and the Merkle paths to the Merkle root.
The verification is performed by calculating the Merkle root
through the transaction and Merkle paths and verifying that
the calculated Merkle root is the same as the Merkle root in
the block header that has been stored. Therefore, the SPV
scheme can be used to solve the storage problem of nodes
with limited resources in the Bitcoin blockchain. In addition,
a compressible blockchain scheme was proposed by creating
a second blockchain to compress the existing blockchain [20].
A second blockchain, called a snapshot chain, stores snap-
shots that have the same role as the blocks of the blockchain.
A snapshot is generated every time a certain number of blocks
are accumulated, and it contains the current UTXO set. The
current UTXO set is constructed using the UTXO set in the
previous snapshot and the transactions in the summarized
blocks. The snapshots contain the summaries of transactions,
so that the summarized blocks within the existing blocks can
be erased. Thus, this scheme can be used to solve the storage
problem because periodically created snapshots can replace
the summarized blocks. In fact, the scheme was originally
designed as a summarization scheme because aUTXO set can
be constructed from the causality of a series of transactions.
However, as mentioned in this scheme, saving a set of block
headers instead of UTXO sets can function like the SPV
scheme. This extended scheme can be considered to be a
compression scheme that can provide a performance similar
to that of the SPV scheme in that it uses a set of block headers.

However, a hash-based compression scheme using a tra-
ditionally used set of block headers has the disadvantage
of accumulating compression results. In the SPV scheme,
a block header is smaller than an entire block. However,
the block headers are eventually accumulated proportionally
to the number of blocks. Similarly, the snapshots are accumu-
lated proportionally to the number of blocks in a compressible
blockchain scheme. Therefore, both schemes still do not
achieve a higher verification capability of nodes with limited
resources due to the accumulation of compression results.
The proposed SELCOM adopts the advantage of the existing
hash-based compression schemes as it extends our previ-
ous research. In SELCOM, periodic checkpoint generation

containing a block Merkle root (BMR) and update process
can reduce the storage overhead while preventing the accu-
mulation of compression results to achieve a higher verifi-
cation capability on each node with limited resources. The
proposed scheme belongs to hash-based compression as it
uses a hash function to compress the cumulative blocks.

FIGURE 1. Workflow of traditional linear blockchain.

III. BACKGROUND
A. STORAGE FOR LINEAR BLOCKCHAIN
A linear blockchain is a type of blockchain with a ledger
structure consisting of a series of blocks. It stores the blocks
that have been processed sequentially through consensus
algorithms. Traditional blockchain systems use the linear
blockchain to deal with account information and balances,
rather than real-world data. Figure 1 shows the workflow of
the traditional linear blockchain. The workflow is described
in detail as follows:

1) A new transaction is generated between blockchain
nodes, and the node that receives the transaction broad-
casts it to the blockchain network.

2) The received transaction is locally validated on each
node. Then, the valid transactions are accumulated until
they are sufficient to create a block.

3) A new block containing the accumulated transactions
is created from a certain node (e.g. a miner or leader),
and the node broadcasts it to the blockchain network.

4) During the consensus algorithm, the other nodes verify
that the block is legitimate. In particular, the tradi-
tionally used PoW includes the preceding process of
creating a block.

5) Based on the consensus algorithm, each node decides
to accept the block when it is verified that the block is
legitimate.

6) Finally, the block is appended to the blockchain stored
locally on each node; consequently, the nodes are syn-
chronized with the latest blockchain.

In a blockchain system, there are full or lightweight nodes
depending on their capabilities, such as computation pow-
ers, batteries, and storage volumes. Full nodes are capable
of handling a complete blockchain. In contrast, lightweight
nodes are not sufficiently capable of handling the complete
blockchain. Each node generates and verifies the transactions
and blocks through a consensus algorithm to maintain the
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linear blockchain. The blocks in the linear blockchain consist
of finalized blocks and up-to-date blocks waiting for con-
firmation. If the nodes using the linear blockchain are syn-
chronized, they have the same state of the distributed ledger
by the finalized blocks. If the size of each block is S bytes
and the total number of finalized blocks is n, the total size of
the complete blockchain stored by each node is calculated as
n×S bytes. If the storage volume threshold that a lightweight
node can allow maintaining a blockchain is τ , the lightweight
node suffers from the storage problem when nS ≥ τ . Then,
the lightweight node can only perform verification on a series
of n′ blocks without the other nodes, where n′ ≤ b τS c.

FIGURE 2. An example of Merkle tree by compressing 8 transactions.

B. MERKLE TREE
Merkle tree is a type of hash tree used to achieve efficient
integrity verification in Bitcoin blockchain [24]. Figure 2
shows an example of aMerkle tree with integrity verification.
Hxy is the hash result of the concatenated x and y entered.
For example, Hab = H (Ha||Hb), where H (·) is a hash
function used to compress an input. Several transactions are
compressed into a single Merkle root through a series of
repetitive hash functions. The calculated Merkle root is used
to verify the compressed transactions with several Merkle
paths. Suppose, as shown in the example, only a transaction a
among the compressed transactions remains. The transactions
a can still be verified by calculating the Merkle root with
the Merkle paths, i.e., Hb, Hcd , and Hefgh. If the calculated
Merkle root is the same as the Merkle root stored separately,
the integrity of the transaction is ensured. Thus, the integrity
of the compressed transactions can be independently verified
through the Merkle tree, even if some transactions are erased.

IV. PROPOSED SCHEME
A. OVERALL PROCESSES
SELCOM is performed to reduce a storage volume for
the blockchain, leaving only what is needed on each node
for verification. It consists of four processes: compression,
checkpoint, update, and selection. Unlike other processes,
the update process is an additional process performed when

FIGURE 3. Sequential diagram of the proposed SELCOM.

the checkpoints are sufficiently accumulated to constitute the
updated checkpoint.

Figure 3 shows a sequential diagram of the proposed
SELCOM. In the compression process, newly accumulated
nc blocks are compressed into a new BMT. The BMT is used
to generate a checkpoint in the checkpoint process. When
checkpoints are sufficiently accumulated, the update process
is performed to reduce the accumulation of checkpoints by
combining them. Lastly, each node selects blocks to be left
for independent verification and erases the rest to reduce the
storage volume in the selection process. Note that we define
the original linear blockchain as the main-chain and the pro-
posed chain that stores checkpoints as the checkpoint-chain.
In the overall processes, the main-chain and checkpoint-chain
are described in detail as follows:
• B = {B1,B2, · · · ,Bn}; the main-chain set B contains
finalized blocks Bi, where i is the block number. B does
not contain a few up-to-date blocks waiting for confir-
mation. B0 is the genesis block, but it is not compressed
and is not included in B.

• C = {C1,C2, · · · ,Cm}; the checkpoint-chain set C
contains checkpoints Ci, where i is the checkpoint num-
ber. If an update process has never been performed,
m =

⌊
n
nc

⌋
, as a checkpoint is newly generated with new

nc blocks in B.
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• C∗ = {C∗1 ,C
∗

2 , · · · ,C
∗
m∗}; the updated checkpoint-

chain set C∗ contains updated checkpoints C∗i , where
i is the updated checkpoint number. The update pro-
cess combines the accumulated checkpoints into fewer
checkpoints, hence, m∗ ≤ m.

B. SELECTIVE COMPRESSION SCHEME (SELCOM)
1) COMPRESSION
After the end of a consensus algorithm, n can be recalcu-
lated by updating the finalized blocks in the main-chain.
A compression process is performed when nc|n with the
recently accumulated nc blocks, except for some of the latest
blocks waiting for confirmation and historical blocks that
have already been compressed into checkpoints. In the com-
pression process, a BMT is used to compress the latest nc
blocks. The BMT is an extended version of the Merkle tree
to compress several blocks in a blockchain instead of trans-
actions. Thus, the compressed blocks can be independently
verified with the BMR and BMPs. The index range idxm+1 of
nc uncompressed blocks at the rear end of B can be expressed
as follows:

idxm+1 = [sm+1, dm+1] = [n− nc + 1, n] (1)

nc blocks are compressed into a new BMT, hence, sm+1 and
dm+1 are the block numbers of the leftmost and rightmost
blocks in the BMT, respectively. Then, a new BMR rootm+1
is obtained as follows:

rootm+1 = BMT (Bsm+1 , · · · ,Bdm+1 ) (2)

where BMT (·) is a function for building a BMT with input
blocks, which returns the calculated BMR.

2) CHECKPOINT
In the checkpoint process, a new checkpoint is generated
and stored in a checkpoint-chain. Checkpoints serve as com-
pression results instead of historical blocks stored in a BMT
and are connected to the checkpoint-chain, such as blocks
in the main-chain. Figure 4 shows the overall structure of
the proposed scheme, including the detailed structure of the
blocks and checkpoints in the main-chain and checkpoint-
chain, respectively. The blocks in the main-chain have the
same structure as that of the traditional linear blockchain.
In contrast, checkpoints contain various types of information
to ensure the previous checkpoint and compressed blocks.
Thus, with the accumulation of checkpoints, the main-chain
in which the compressed blocks are stored can be more freely
managed.

A new checkpoint Cm+1 is generated and appended at the
rear end of the latest checkpoint Cm. Note that if a checkpoint
is first generated in a checkpoint-chain, the genesis block is
regarded as the latest checkpoint that can be expressed as
C0 = B0, but is not counted in C . A new checkpoint Cm+1
contains the following information:

Cm+1 = {hashesm+1, rootm+1, idxm+1} (3)

FIGURE 4. Overall structure of the proposed SELCOM scheme.

where hashesm+1 = {H (Cm),H (Bsm+1 ),H (Bdm+1 )} =
{H1

m+1,H
2
m+1,H

3
m+1} is a set of previous hashes. The previ-

ous hashes contain the hash results of the previous check-
point, and the leftmost and rightmost blocks among nc
compressed blocks. This information is used to check the
scope of the compressed blocks and perform their veri-
fication. Thus, the checkpoint-chain is connected to the
main-chain.

After the generation of Cm+1, the new checkpoint is
appended at the rear end of the checkpoint-chain, which
would have a length of m + 1. The integrity of compressed
blocks can be verified using stored checkpoints. In summary,
a checkpoint with a fixed size is efficient in terms of storage
volume because it can replace nc blocks. However, as with the
existing schemes previously, the continuous accumulation of
compression results may eventually be inefficient over time.
Therefore, the checkpoint-chain is checked to perform the
update process before proceeding to the selection process.

3) UPDATE
The update process combines the stored checkpoints in the
checkpoint-chain to prevent their accumulation while pre-
serving the purpose of the checkpoints. The update process
is performed using Algorithm 1. Note that (·)∗ is the updated
information to be stored in an updated checkpoint. For an
efficient verification through checkpoints, the property of a
BMT, the balanced binary tree, should be preserved. The
heights of the left and right subtrees of a balanced binary
tree must be the same to increase its height. Thus, when
the heights of the two latest subsequent checkpoints Cm−1
and Cm are the same, an update process is performed. The
heights can be obtained using idxm−1 and idxm, respectively.
In the update process, these checkpoints are combined into a
single updated checkpoint. A new BMR root∗ is calculated
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Algorithm 1UPDATE: Update Process of Checkpoint-Chain
Input: C of length m
Output: C∗ of length m∗

1: if m ≥ 2 and dm − sm == dm−1 − sm−1 then
2: root∗ = H (rootm−1||rootm);
3: idx∗ = [sm−1, dm];
4: hashes∗ = {H (Cm−2),H (Bsm−1 ),H (Bdm )};
5: C∗m∗ = {hashes

∗, root∗, idx∗};
6: C∗ = {C1, . . . ,Cm−2,C∗m∗}
7: return UPDATE(C∗)
8: else
9: return C ;
10: end if

Algorithm 2 FIRST-UPDATE: The First Update Process for
a Checkpoint-Chain That Has Never Been Updated
Input: C of length m
Output: C∗ of length m∗

1: i = 2;
2: Ctemp = {C1};
3: while i ≤ m do
4: Ctemp = Ctemp ∪ {Ci};
5: Ctemp = UPDATE(Ctemp) by Algorithm 1;
6: i = i+ 1;
7: end while
8: C∗ = Ctemp;
9: return C∗;

from the BMRs, rootm−1 and rootm, stored at each check-
point. Furthermore, idx and hashes in these checkpoints are
updated. Then, a newly updated checkpoint containing new
information replaces the two checkpoints. This update pro-
cess is repeated as much as possible on all the checkpoints
from the rear end of the checkpoint-chain.

The update process may not be performed on each node
because of its sufficient capabilities. The previous check-
points may vary depending on whether an update process is
performed. If the update process is performed once, the previ-
ous checkpoint would be the updated checkpoint. Then,H1

m+1
in a new checkpoint Cm+1 can be different, hence, the recent
blocks compressed into Cm+1 are not confirmed. The newly
generated checkpoint with its compressed blocks is con-
firmed if the next checkpoint is appended. Consequently,
the checkpoint-chain with m checkpoints in the nodes can be
synchronized if the next checkpoint Cm+1 is appended or the
update process is performed on its own. Algorithm 2 is used
to perform an update process if a node that accumulates
checkpoints without performing an update process wants
to perform the process. Algorithm 1 is executed repeatedly
from the initial to the latest generation of checkpoints. Then,
a node can maintain the latest updated checkpoint-chain if
Algorithm 2 is performed once.

As the update process preserves the property of a BMT,
it may occur frequently in the early stages, but it shrinks

over time. Consequently, this update process prevents the
accumulation of compression results over time because it
can compress numerous blocks with fewer checkpoints. We
present the number of blocks that only a few updated check-
points can cover with the update process in Section V.

4) SELECTION
In the selection process, the compressed blocks among the
finalized blocks can be erased or retained based on the
promise of the selectability of compressed blocks through
checkpoints. Compressed blocks are divided into potential
and useless blocks via the individual determination of each
node. When each node decides to use some blocks later,
the blocks are potential blocks within the node. The rest of
the blocks are considered useless and would be erased. For
example, a potential block contains data from other nodes that
the node frequently communicates or trades with. In contrast,
a useless block contains data that the node is not interested in.
Each node calculates and maintains the BMPs to verify the
integrity of the chosen potential blocks and then erases the
useless blocks.

FIGURE 5. Example of SELCOM results in nodes after appending a new
checkpoint, where nc = 4.

Figure 5 shows an example of SELCOM in full and
lightweight nodes after appending a new checkpoint. In the
example, a checkpoint is generated every time nc = 4 blocks
are accumulated. Full nodes with sufficient capabilities gen-
erate checkpoints periodically but do not need to divide the
blocks in the main-chain into potential and useless blocks.
In contrast, lightweight nodes divide the blocks compressed
in the previous checkpoints into potential and useless blocks
as a new checkpoint is appended. Moreover, lightweight
nodes proceed with the update process to prevent the accumu-
lation of checkpoints. The lightweight node below has fewer
checkpoints because it performed an update process when
appending the previous checkpoint. Then, useless blocks Bu
can be erased, where Bu ⊂ {B1, . . . ,Bn−nc}. The historical
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blocks compressed into the previous checkpoints, but not
the recent checkpoint, can be useless blocks. Through the
selection process, there is an update of the main-chain
B = B − Bu inside the node with only potential blocks
remaining.

SELCOM ensures flexible data (block) management from
the selectability of compressed blocks in the main-chain and
solves the storage problem. The smaller the number of poten-
tial blocks that remain, the lower is the storage volume of the
main-chain. In contrast, each node can flexibly determine to
remain the maximum number of potential blocks based on its
own capabilities to achieve a higher verification capability.
In particular, while the existing schemes accumulate com-
pression results, SELCOM can prevent accumulation through
the update process. Thus, SELCOM also ensures a higher
verification capability under the same storage volume of any
node because the prevention reduces the storage overhead.
Meanwhile, SELCOM should manage BMPs for verifica-
tion of potential blocks instead of accumulating compression
results. Nevertheless, it is confirmed in the following section
that SELCOM achieves a higher storage efficiency compared
with the existing schemes.

V. MATHEMATICAL ANALYSIS AND RESULTS
In this section, the proposed and existing schemes are com-
pared in terms of storage efficiency and verification capa-
bility by the numerical results based on the analyses. The
notations and their descriptions used in this section are listed
in Table 1.

TABLE 1. Notations with descriptions for analysis.

Note that nc = 2x , where x ≥ 1 and x ∈ N, to construct a
BMT that is a balanced binary tree. By default, x is a constant
value, however, it can be adjusted through the consensus
algorithm for the blockchain system for a higher reduction in
storage. The update process combines checkpoints with the
same x height. Then, the updated checkpoints have different
heights that are larger than x, and the latest checkpoint has
the lowest height. Thus, x can be adjusted to a value less
than or equal to the lowest height to still preserve the property
of a balanced binary tree.

In SELCOM, nodes leave r potential blocks based on
the selectability of blocks in the main-chain. The residual
r blocks improve the verification capabilities of the nodes,
although they increase the storage volume. The nodes should
store additional BMPs for the internal verification of the

r blocks. Thus, r blocks dispersed across m checkpoints can
be expressed as follows:

r =
m∑
i=1

ri (4)

where 0 ≤ ri ≤ n and ri is the number of potential
blocks compressed into a checkpoint Ci. Then, the number of
BMPs bmp depends on ri from the BMT of each checkpoint.
If these r blocks are dispersed at only a few checkpoints,
bmp becomes smaller because these blocks can be used to
calculate the BMPs. Furthermore, if the potential blocks are
concentrated to the left or right at the BMT of a single
checkpoint, bmp becomes smaller because the height of the
opposite subtree can increase. Thus, we consider the worst-
case scenario in which r blocks are equally dispersed not only
across all the BMTs but also within each BMT, to check the
performance of SELCOM in the worst case.

A. MATHEMATICAL ANALYSIS
The original size of a complete blockchain with finalized
blocks can be expressed as nS bytes. The required storage
volume of each scheme depends on the compressed results
represented as follows:

1) EPBC scheme [26]: Lightweight nodes should receive
and store the up-to-date summary from the other nodes
to verify blocks. The summary is a hash result obtained
using a hash accumulator, hence, it has a fixed size. The
summary Sn is expressed as follows:

Sn = g
∏n
i=1 H (blki,i) mod N (5)

where g is a random value, blki is a block with the
number i, and N is the modulus for the RSA accumu-
lator system. Then, Sn is the compression result of a
complete blockchain in this scheme. In the verification
of this scheme, the proof from other nodes is required

for each block. The received proof pi = (p(1)i , p
(2)
i ) for

a block blki is expressed as follows:

pi =

{
p(1)i = H (blki, i),

p(2)i = g
∏n
k=1 H (blkk ,k)/H (blki,i) mod N .

(6)

where p(1)i is a hash result from blki and p
(2)
i is a hash

accumulator calculated excluding p(1)i . Even in this
scheme, blocks can be left as potential blocks to achieve
the high verification capability of lightweight blocks.
If blki is a potential block, p(1)i can be calculated.
On the other hand, p(2) is required for each potential
block. Note that N is the product of two large prime
numbers that are sufficiently large to be not easily
found to ensure the security of this scheme based on
RSA. Thus, the storage volume of the EPBC scheme
VEPBC with r potential blocks can be expressed as
follows:

VEPBC = |Sn| + r(S + |p(2)|) (7)
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where |Sn| and |p(2)| are the byte sizes of Sn and p(2),
respectively. Note that Sn and p(2) are calculated as hash
accumulators, and they are always smaller than N by a
modular operation. We assume that these two values
are N

2 on average, with the assumption that the result
of H (·) used is uniformly random.

2) Snapshot scheme [20]: This scheme was originally
designed to store a UTXO set in a snapshot which is a
block of the second blockchain. Instead of a UTXO set,
a set of headers can be stored in a snapshot to verify the
compressed blocks by guaranteeing the selectability of
the blocks. Thus, the compressed blocks can be poten-
tial blocks, hence, the storage volume of this scheme
VSNAPSHOT can be expressed as follows:

VSNAPSHOT = m(2× Shash + nc × Sheader )+ r × S

(8)

Note that m and nc can be re-used in this scheme
because the scheme also generates snapshots period-
ically with several blocks. A snapshot contains two
hashes corresponding to the previous block in the orig-
inal chain and the previous snapshot in the second
blockchain.

3) SELCOM: The storage volume of the proposed scheme
VSELCOM that remains checkpoints, potential blocks,
and BMPs for the verification of the blocks can be
expressed as follows:

VSELCOM = m(4× Shash + 2× I )

+

m∑
i=1

(ri × S + bmpx,ri × Shash) (9)

where I is the integer size for the index range idx,
and bmpx,ri is the number of BMPs for ri blocks
among nc = 2x compressed blocks in a checkpoint Ci.
If ri = 0 within Ci, then bmpx,ri = 0 because no
BMPs are required. Moreover, if one potential block
remains within one BMT (ri = 1), then bmpx,ri = x
with a BMR already stored in a checkpoint. In contrast,
if multiple blocks remain within one BMT, the BMPs
can overlap for each block. Then, it is better to store the
hash results of sibling blocks (useless blocks) instead of
the BMPs. Thus, bmpx,ri is the number of BMPs from
each potential block to the root of the subtree with each
height of the BMTs, and it is expressed as follows:

bmpx,ri =


0, if ri = 0;

ri(x − ki − 1)+ 2ki , if ri ≤
nc
2
;

nc − ri, otherwise.

(10)

where ki =
⌈
log2 ri

⌉
. If more potential blocks than half

of the compressed nc blocks remain in a BMT, storing
the hash results of sibling blocks is efficient in terms of
storage volume.

4) SELCOM (updated): An update process combines as
many checkpoints as possible to reduce the number

of checkpoints. The update process is repeated until
all the updated checkpoints have BMTs with different
heights. Then, the checkpoints are no longer updated
until the next checkpoint is appended. The storage
volume of SELCOMwith an update process VSELCOM∗
can be expressed based on (9) as follows:

VSELCOM∗ = m∗(4× Shash + 2× I )

+

w∑
j=1

(r∗j × S + bmpyj,r∗j × Shash) (11)

The updated checkpoints have different heights of the
BMTs. Moreover, as BMTs are combined in the update
process, the older updated checkpoint has a BMT with
a greater height. Thus, the updated checkpoints can be
generated depending on whether a BMT with a certain
height can be generated. Then, the number of updated
checkpoints m∗ can be obtained as follows:

m∗ =
w∑
i=j

bj (12)

where bj is a binary value that indicates the existence of
an updated checkpoint that can be constructed as best
as possible fromm checkpoints, and w is the maximum
height of a BMT that can be constructed by m. Then,
w =

⌊
log2 m

⌋
+ 1 and 1 ≤ j ≤ w. Intuitively, if a

BMT with height j− 1 can be constructed, an updated
checkpoint exists with bj = 1. Thus, a set of bj is
obtained by satisfying

∑w
j=1 bj × 2j−1 = m, where

bj ∈ {0, 1} (In fact, the set of bj is the same as the
result of reversing the binary number of nc). Finally,
bmpyj,r∗j is the number of BMPs for r∗j potential blocks
among 2yj compressed blocks, where yj = x + j − 1.
r∗j is the total number of potential blocks in an updated
checkpoint if it exists. Then, depending on the range
of the combined checkpoints, r∗j can be expressed as
follows:

r∗j =

0, if bj = 0;∑dj

i=sj
ri, otherwise.

(13)

where sj = m −
∑j

l=1 bl × 2l−1 + 1 and dj = m −∑j
l=1 bl×2l−1+bj×2j−1. The range [sj, dj] indicates

the number range of existing checkpoints combined in
an updated checkpoint. Moreover, the number of com-
pressed blocks is nc × 2j−1 in an updated checkpoint
with bj = 1, hence, r∗j has the range of 0 ≤ r∗j ≤
n× 2j−1. Consequently, bmpyj,r∗j based on (10) can be
obtained as follows:

bmpyj,r∗j =


0, if r∗j = 0;

r∗j (yj − k
∗
j − 1)+ 2k

∗
j , if r∗j ≤

2yj

2
;

2yj − r∗j , otherwise.

(14)
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where k∗j =
⌈
log2 r

∗
j

⌉
. In conclusion, we obtain the

storage volume of the compressed results necessary
to calculate the storage efficiency of the existing and
proposed schemes.

The following is an example of calculating the storage
volume of the compression results in the proposed scheme.
Assume that there are 320 blocks in a main-chain n = 320,
and a checkpoint is newly generated every 16 blocks nc = 16.
Then, there are m = 20 checkpoints stored in a checkpoint-
chain without any update process. After an update pro-
cess, the checkpoints are replaced with only two updated
checkpoints calculated by 20 = 0 · 20 + 0 · 21 + 1 ·
22 + 0 · 23 + 1 · 24 = 10100(2) with w = 5. Then,
b = {b1, b2, b3, b4, b5} = {0, 0, 1, 0, 1}. The two updated
checkpoints are constructed using 4 checkpoints (b3 = 1)
and 16 checkpoints (b5 = 1), respectively. In the worst case,
the potential blocks are equally dispersed in each checkpoint.
Assume that r = 140 among n = 320; then, ri = r

m =
140
20 = 7. By (13), r∗3 =

∑d3
s3 ri =

∑20
17 7 = 28 and r∗5 =∑d5

s5 ri =
∑16

1 7 = 112. Finally, bmpy3,r∗3 + bmpy5,r∗5 = 160
hashes are required to verify 140 potential blocks as BMPs
with updated checkpoints.

Over time, the existing and proposed schemes accumulate
compression results or proofs for verification. These accumu-
lations increase the storage volume on each node, thus hin-
dering the verification capability of each node. However, the
proposed scheme with an update process can achieve a higher
verification capability because m∗ updated checkpoints can
cover numerous blocks through the structural characteristics
of BMTs. If all bj calculated from m are 1, m∗ = w, which
is the largest value, given m, according to (12). Among m∗

updated checkpoints, the oldest has the BMT compressing
nc × 2w−1 blocks, and sequentially, the most recent one has
the BMT compressing nc blocks. Then, the total number of
blocks covered by m∗ updated checkpoints can be calculated
as
∑m∗

i=1 nc × 2i−1 = nc(2m
∗

− 1). In contrast, m snapshots
can cover m× nc blocks in the snapshot scheme because the
scheme generates a snapshot every nc blocks. For example,
assume that there are 2,096,128 blocks, which is three times
the number of blocks in the current Bitcoin blockchain. These
blocks are compressed into 2047 checkpoints (or snapshots)
if nc = 1024. After an update process, these 2047 check-
points are replaced with only 11 updated checkpoints. Thus,
in terms of storage efficiency, the proposed scheme is more
efficient than the existing schemes, because it can be used to
verify numerous blocks with fewer compression results.

B. NUMERICAL RESULTS
Numerical results were obtained by calculating the stor-
age volumes of the analyzed schemes using the parame-
ters in Table 2. The storage overheads of the schemes were
calculated to show that the proposed scheme prevents the
accumulation of compression results. Moreover, the number
of blocks that can be maintained to achieve a higher verifi-
cation capability under the same storage volume of a node

TABLE 2. Parameters for numerical comparisons.

was calculated. In conclusion, the proposed scheme shows
that verification through potential blocks can be ensured
without the accumulation of compression results. Note that
the proposed and snapshot schemes construct a second
blockchain, in contrast to the EPBC scheme.

Figure 6 shows the storage overhead comparison of the
analyzed schemes. The x-axis is the number of finalized
blocks n stored in a complete blockchain, and the y-axis
is the number of potential blocks r proportional to n. The
storage overhead, which is the z-axis, is the calculated result
from the compression results for a given n and r , excluding
the storage volume to maintain the stored blocks. Each sub-
figure represents the result according to x calculated from nc,
the number of compressed blocks. As the z-axis is the storage
overhead, the lower the surface, the more efficient the scheme
is, in terms of storage. In general, as n and r increase, the com-
pression results accumulate, resulting in a higher storage
overhead. In summary, the existing schemes with cumulative
compression results require a higher storage overhead, as the
number of blocks to be verified increases over time with
the growth of the blockchain. The compression results in the
EPBC scheme are not affected by n, but the storage overhead
increases linearly as r increases. Moreover, the compression
results are not affected by x because this scheme does not
use a second blockchain. Here, r is proportional to n, hence,
the storage overhead of this scheme increases as n and r
increase. In contrast, the compression results in the snapshot
scheme are affected by n and x. As the snapshot, which are
the compression results, store a set of headers, their storage
overhead increases as n increases. Although this scheme may
reduce the increasing rate of storage overhead as x increases
through the snapshot blockchain, the storage overhead still
increases linearly proportional to n.
Unlike in the existing schemes, the storage overhead

of the proposed scheme increases by a low margin as n
increases, moreover, if both n and r increase, the storage over-
head decreases. The proposed scheme constructs a second
blockchain, similar to the snapshot scheme. The checkpoints
compress blocks through BMTs, and they store the BMRs
calculated from the BMTs, hence, they are less affected by
n than the snapshots. However, maintaining the proposed
scheme requires BMPs, which affect the storage overhead.
Nevertheless, because of the binary property of the tree
structure of BMTs, the number of required BMPs decreases
as r increases by more than half in the BMPs. Further-
more, the proposed scheme with an update process combines
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FIGURE 6. Storage overhead comparison by number of blocks (n) and potential blocks (r ).

several accumulated checkpoints. When x increases, m
becomes smaller for a given n, hence, the efficiency of the
update process decreases. Nevertheless, an update process
can be used efficiently to reduce the accumulated checkpoints
because blocks continue to be created over time.

In conclusion, the proposed scheme is efficient in terms
of storage because it can achieve a low level of storage
overhead despite the increase in n and r . Specifically, in the
comparison for x = 4, the proposed scheme achieved average
reductions of 37.05% and 76.02% in the storage overhead
comparedwith the EPBC and snapshot schemes, respectively.

Furthermore, it achieved average reductions of 63.61% and
86.14%, respectively, in the storage overhead when accom-
panied by an update process.

Figure 7 shows the verification capability of the analyzed
schemes under the same storage volume of a node. The x-axis
is the storage volume allowed by each node for maintaining
blocks, and the y-axis is the number of potential blocks r
that can be maintained by each scheme with compression
results. Each sub-figure is represented by the number of
blocks n in a given blockchain. r indicates the number of
tolerable blocks because it is the number of blocks remaining.

VOLUME 8, 2020 225623



T. Kim et al.: SELCOM: Selective Compression Scheme for Lightweight Nodes in Blockchain System

FIGURE 7. Number of potential blocks (r ) that can be maintained in a given blockchain by the tolerable size of storage volume (τ ) in a node.

The nodes can achieve a higher verification capability
because the more blocks they can maintain, the more blocks
they can verify. The traditional linear blockchain can verify
a series of blocks, however, extracting arbitrary blocks is
difficult. In contrast, the existing and proposed schemes can
be used to maintain and validate blocks selectively.

It is apparent that r increases as the allowed storage vol-
ume increases. The EPBC scheme and proposed schemes
achieve verification capabilities proportional to the toler-
able storage volumes. While the EPBC scheme is not
affected by n, the proposed scheme is slightly affected by n.
Nevertheless, the proposed scheme achieves a similar level of
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verification capabilities as the EPBC scheme when an update
process is used. In particular, as these schemes can maintain
blocks selectively proportional to the storage volumes as
potential blocks, the storage overhead of these schemes is
relatively low. Although higher verification capabilities are
achieved, the EPBC scheme has a limitation in that it must
update the compression results for each addition of a new
block. The proofs for verification of potential blocks should
be updated according to the latest summary received from
the other nodes. In contrast, the proposed scheme maintains
the checkpoint-chain but does not require checkpoints to be
changed every time a new block is appended.

The snapshot scheme is affected by n because it constructs
a second blockchain, similar to the proposed scheme. Then,
as n increases, the storage overhead of the scheme increases,
which decreases the verification capabilities of the scheme.
The main difference between the snapshot and proposed
schemes is the update process. As both schemes construct
a second blockchain, the compression results inevitably accu-
mulate in proportion to n, even if their cumulative sizes
are different. However, the proposed scheme with an update
process can reduce the accumulated compression results,
hence, it can achieve a higher verification capability. As an
example in figure 7b, when x = 4 in the proposed and
snapshot schemes, the proposed scheme achieved an average
increase of 13.90% in verification capability compared with
the snapshot scheme. The corresponding average increase
was 15.44% when using an update process. In conclusion,
the proposed scheme can efficiently achieve higher verifi-
cation capability under the same storage volume through a
lower storage overhead.

VI. CONCLUSION
We proposed the SELCOM scheme to solve the storage
problem without accumulations. The proposed scheme con-
structs the checkpoint-chain, which is a second blockchain,
by extending our previous study with the concept of a
BMT. A checkpoint is generated by compressed blocks in a
blockchain. Checkpoints can be accumulated but this accu-
mulation is resolved through the proposed update process.
We mathematically analyzed the existing compression
schemes and the proposed method. Moreover, we presented
the numerical results calculated using the analysis and the
parameters used in the traditional linear blockchain. In con-
clusion, the proposed scheme achieved higher storage effi-
ciency and verification capabilities compared with the exist-
ing schemes. In particular, the proposed scheme can be
expected to be more efficient as the size of a complete
blockchain and the number of maintained blocks increase
over time.

Nevertheless, the proposed scheme maintains compression
results in the form of a second blockchain, requiring commu-
nication to perform real-time synchronization between nodes.
In future works, the proposed scheme will be improved for an
efficient sharing of compression results for checkpoint-chain

synchronization and block verification when nodes with
diverse resources organize systems hierarchically.
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