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ABSTRACT Edge computing has been widely researched when 5G network and cloud platforms work
together for people’s life. The limitation of energy provided by the battery of the edge device hinders
its application. This paper focuses on task scheduling in edge computing combined with the Energy
harvesting technology (EH) and Energy Internet (EI). The edge node collects green energy by EH. And nodes
exchange energy by EI. Energy Internet obtains green energy from edge nodes. Compared to green energy,
we call energy from the power grid (not from the energy of edge nodes by energy harvesting technology)
brown energy. How to reduce brown energy consumption is one of the most important problem in our paper.
Previous works have not examined the energy attenuation between nodes, neither have they studied the
immigration routes of virtual machines (VMs). This paper analyzes VM scheduling and models the energy
consumption of VM immigrations, offloading tasks, and green energy transfer in edge computing. The
paper proposes a heuristic assumption that there is only one VM in the system, and then presents three
heuristics for the system with multiple VMs. The simulation results show that the proposed - immigrated
VMs with the minimum energy transferring attenuation ratio method (METAR) is effective in reducing
brown energy and total energy consumption, and improving the utilization rate of green energy. Compared
to the Energy-Efficiency problem solution (EE-PRO) and maximize task energy consumption scheduling
(MTS), METAR average reduces by 28.23% and 49.50% in brown energy consumption. At the same time,
METAR average decreases by 5.67% and 11.52% in execution time.

INDEX TERMS Edge computing, green computing, heuristics algorithm, simulation.

I. INTRODUCTION
With the rapid growth of smartphones, wireless technol-
ogy [1], mobile devices, online applications [2], especially
with the emergence of 5G network [3], edge computing is
becoming increasingly important and popular [4] because it
improves the quality of people’s lives in almost all aspects
including work, society [5] and economy [6]. Edge comput-
ing also facilitates research on Internet of things [7], [8], vir-
tualization [9], healthcare systems [10], vehicular networks
[11], and other industries. However, energy limitations and
limited computational ability hinder the application of edge
devices [6].

To cope with the challenges of edge computing, tasks
are offloaded from local nodes to nearby edge nodes [5]
(or remote cloud) connected by cables and reticles to
improve processing ability and battery working time [12].
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Fig. 1 presents a three-layer edge-computing framework.
By using routers, gateways, base stations, and other kinds of
access points, the system improves the computational ability
and prolongs the working time of a mobile edge node by
offloading some tasks from a local edge node to other edge
nodes with more energy and higher processing ability [13].
The majority of studies have focused on where a task should
be offloaded. However, the impact of VM immigration on the
performance of the edge node is uncertain because different
routes between edge nodes and VMs in nodes have different
metrics, such as bandwidth, and energy transferring attenua-
tion ratio (ETAR) [12]. These metrics affect task processing
time and the energy consumption of VM immigration and
task processing. In this paper, we call the energy by Energy
Internet (EI) brown energy.

As shown in Figure 1, there are three layers in the green
edge computing framework. In the first layer, users sub-
mit tasks by mobile devices, pads, smartphones, or other
devices. The second layer not supports communication (or
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FIGURE 1. Three layers of edge computing.

improves processing ability) between edge nodes but also
transfers energy between them with EI technology [14], [15].
The edge node in the third layer obtains energy by energy
harvesting devices, and offloads the workload to the out-
side (other nodes or remote clouds) to the powerful systems
(i.e. in the cloud), to extend the battery lifetime. EI tech-
nology makes it possible to transfer energy between edge
nodes through cable or wireless [14], [15]. The Power over
Ethernet (PoE) switch can transfer both data and energy.
The selection of routes affects green energy loss during
transferring because different routes differ in ETAR. The
location of VM also affects energy consumption. On the one
hand, different VM immigration routes consume different
amounts of energy, and on the other hand, the task transferred
through different routes requires different amounts of energy.
This paper is the first study that combines EI technology,
EH technology and edge computing. We take account of
VMs immigration, energy transferring and task scheduling
together in the paper. Tasks and green energy are scheduled by
two rules: (1) add nodes (scheduling tasks and green energy
on the node) to the VMwith the minimum energy transferring
attenuation ratio (METAR); (2) add nodes (scheduling tasks
and green energy on the node) to the VM with the mini-
mum energy consumption loss (ACL). Scheduling methods
based on rules (1) and (2) are METAR and ACL, respec-
tively. We also can use rule (1) and (2) alternately, called the
method ALT.

The main contributions are listed as follows:
• We combine EI with edge computing to enhance edge
computing in terms of energy consumption;

• We model edge computing with EI technology with
multiple VMs and employ a method based on a global
search to schedule tasks;

• Three heuristics are proposed to minimize the brown
energy consumption based on three rules;

• Comparisons are made to evaluate the performance of
the proposed methods and other methods.

The remainder of the paper is organized as follows.
Section II introduces related work of edge computing and the
EI technology used in edge computing. Section III presents
the model used in this paper on green edge computing.
Section IV provides a global search method to schedule
resources and energy. In Section V, first, we suppose there is
only one VM in the system, and present a heuristic algorithm
to offload tasks and schedule energy; then, we propose three

scheduling heuristics when the system has multiple VMs.
In Section VI, simulations are conducted to verify the perfor-
mance of the proposed method in energy consumption and
other aspects.

II. RELATED WORKS
Section II(A) gives a summary of energy-aware scheduling in
edge computing. Section II(B) gives an introduction of EI and
EH technology used in edge computing. Section II(C) gives
an example to illustrate the motivation of the paper.

A. ENERGY-AWARE EDGE COMPUTING
In edge computing, many factors affect the energy con-
sumption of scheduling tasks. There are mainly four factors,
which are local resources, remote resources, tasks, and the
network [16]. Local resources provide processing power for
tasks located locally. Resources with high energy utilization
(energy power/computing speed) can always reduce the prob-
ability of transferring tasks to other nodes or remote clouds
to reduce energy consumption. The resource determines the
execution location according to the energy consumption in
various places. The routes between local nodes and remote
resources affect energy consumption for transferring input
and output data. The energy consumption is also affected by
the size of data (input and output files) and bandwidth when
executed on nearby nodes or remote clouds. For example,
if tasks with a small value of input and output files are exe-
cuted on remote resources, energy computation may decrease
(if remote resources have higher energy efficiency) [17]. In
contrast, these tasks have high sizes in input and output
files and low execution time, if they are executed in other
nodes, thus increasing energy consumption and prolonging
execution time.

To save energy of edge nodes, many methods have been
utilized in the edge-computing environment. Offloading tasks
may cost more time and local execution may require more
energy in some cases (such as with large output files).
Methods always attempt to make a tradeoff between time
and energy. Zhang et al. [18] presented an energy-aware
offloading scheme that jointly optimizes communication and
computation resource allocation with limited energy and sen-
sitive latency. They proposed an iterative search algorithm
to optimize local computing frequency scheduling, chan-
nel allocation, power allocation, and computation offload-
ing. L. Cui et al. [19] attempted to make a tradeoff between
energy consumption and latency for user demands of var-
ious IoT applications. They formalized the multi-objective
optimization problem (minimizing average energy consump-
tion and average latency time) and applied the NSGA-II
method to solve it. These scheduling methods and other
important metrics are proposed to maximize energy effi-
ciency. H. Sun et al. [20] defined the computation efficiency,
which is the number of calculated data bits divided by the
corresponding energy consumption. The scheduling target
maximizes the sum of the computation efficiency among
users with weighting factors. They solved the problem with
iterative and gradient descent methods. Q. Wang et al. [21]
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proposed a distributed algorithm consisting of four aspects:
clock frequency configuration, transmission power alloca-
tion, channel rate scheduling, and offloading strategy selec-
tion. They employed an offloading selection strategy to
determine where a task should be executed and then opti-
mized the clock frequency for local execution, transmission
power allocation, and queue delay in mobile edge comput-
ing. These methods [18]–[24] always formulated the energy-
aware scheduling problem as a problem of multiple target
scheduling and utilized some methods to solve this problem.
The two most important goals are to minimize execution time
and minimize energy consumption.

In addition to the previously mentioned methods, some
researchers have solved the problem by using other methods.
S. Yang et al. [25] demonstrated how to place cloudlets on
the network and allocate each requested task to cloudlets
and a public cloud with the minimum total energy consump-
tion without violating the delay requirement of each task.
Data transfer consumed a substantial amount of energy for
edge computing. L. Liu et al. [26] et al. utilized a local
area network to collect data from users and conducted data
compression to reduce the energy for data transfer. Besides,
energy consumption is different when sending and receiving
data. J. Zheng et al. [23] considered both downlink and uplink
in communication and computing resource allocation and
proposed an efficient joint downlink and uplink offloading
algorithm for ultradense Het Nets. X. Zhao et al. [27] used
multi-long short term memory (LSTM) based on a prediction
model to predict the traffic for edge devices. Based on the
prediction results, a mobile data offloading strategy based on
cross-entropy is proposed to maximize the system through-
put by determining which users to be offloaded to Wi-Fi
systems. Z. Muhammad et al. [28] suggested game-theoretic
resource management techniques to minimize infrastructure
energy consumption and costs while meeting QoS of users.
B. Ali et al. proposed [29] a Volunteer Supported Fog Com-
puting (VSFC) that tries to explore the interplay of these
two distributed computing domains and targets to reduce
inherent communication delays of cloud computing, energy
consumption, and network usage.

B. ENERGY HARVESTING, ENERGY INTERNET
TECHNOLOGY COMBINED EDGE COMPUTING
Energy harvesting (EH) technology has been extensively
applied in edge computing [16]. EH captures ambient renew-
able energy, including solar radiation, wind, and human
motion energy [18]. EH is controllable, stable, and benefi-
cial to edge devices [30]. Y. Mao [16] investigated a green
MEC system with EH devices and developed the Lyapunov
optimization-based dynamic computation offloading algo-
rithm for the problem. The offloading method takes into
account the execution latency and task failure andmakes deci-
sions on offloading considering the CPU-cycle frequencies
for mobile execution, and the transmit power for computa-
tion offloading. To investigate the tradeoff between energy
consumption and execution delay in an EH-supporting MEC

FIGURE 2. Edge computing supported by EI technology.

system, G. Zhang et al. [31] examined the stability of buffer
queues and battery level as constraints, and formulated the
offloading into an average weighted sum of energy con-
sumption and execution delay minimization of a mobile
device. These methods all use EH technology to obtain green
energy and to ensure some metrics, such as time limit and
energy consumption. In Figure 2, we call the energy from
GH1 ∼GH5 green energy, other energy is brown energy.
EH technology only obtains green energy from outside

and does not consider how to transfer energy from differ-
ent devices. The Energy Internet (EI) transmits flexible and
customizable energy between nodes in a power grid. In edge
computing, some nodes get green energy (such as solar
energy). EI transfers energy between edge devices, especially
to some nodeswith an amount of energy or lower system load.
EI causes a new challenge in task allocation and schedule
energy. Some nodes have much energy, we can transmit them
to other nodes. On the contrary, some nodes need to get
energy from other nodes. A task consumes different energy
when it is offloaded to different nodes. All those bring a chal-
lenge to the new environment. Most works focus on how to
offload tasks from edge devices to remote clouds. In the new
environment, we also need to consider the route of energy
transfer. Our targets are to maximize the utilization of green
energy and reduce brown energy consumption. Different
routes have different energy decay ratios and different energy
losses for energy transfer, route selection influences energy
consumption. To maximize the utilization of green energy
and reduce brown energy consumption, L. Gu et al. [13]
investigated the energy cost minimization by jointly con-
sidering VM immigration, task allocation, and green energy
scheduling, and proposed a heuristic algorithm to solve the
problem of offload tasks and energy transfer. However, they
assumed that only one VM in the system. Most of the
time, multiple VMs exist in the real system. We attempt to
solve the offloading problem with EI technology. This paper
focuses on task scheduling by considering VM immigra-
tion, green energy transfers, and targets to minimize brown
energy.
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C. MOTIVATION
An example is provided in Figure 2. There are five nodes
(n1 ∼ n5) and two VMs (VM1 ∼ VM2) in the edge comput-
ing environment. Every node has a green energy harvesting
device (GH1 ∼ GH5). Every node can harvest green energy
from solar energy. VM1 and VM2 are located on node n1 and
n4. Some nodes have direct links connected with other nodes,
while others are not. For example, n2 and n3 do not have any
links with each other, but they can communicate via n1. ‘‘A’’
and ‘‘C’’ on the links respectively represent the attenuation
ratio of energy transfer and the number of hops between two
nodes.

In Fig. 2, several routes between node n2 and n5, including:
{n2, n5}, {n2, n1, n5}, {n2, n1, n3, n5},{n2, n1, n4, n5} and
{ n2, n1, n3, n4, n5}. The route {n2, n1, n5} has the mini-
mum attenuation ratio (1-0.95∗0.95) of energy transfer. The
selection of routes is very important for VM immigration,
task offloading, and energy transfer. Different routesmay lose
different energy of edge nodes. A bad route increases the
energy consumption for VM immigration and task offloading.
For example, task T1 is submitted from n3, to execute it,
we can immigrate a VM from other nodes (n1, n4), or offload
the task to the node with a VM (n1, n4). If the green energy
collected by edge nodes is not enough for processing all tasks,
we obtain energy from outside of the system, which is also
known as brown energy. The brown energy always is obtained
by the power grid and transferred by cable. How to reduce
brown energy is one of the most important focuses of this
paper.

III. SYSTEM MODEL
In this Section, we give models used in our paper. Table 1
illustrates the parameters used in the paper. Figure 2 provides
an example of the edge-computing environment used in the
paper.

A. NETWORK MODEL
We employ an indirect graph G = (I ,E) to denote the
network of edge computing, which includes the set of nodes
I and the set of network edges E . The system has N nodes
and VMN VMs. The set ei,j (i, j ∈ I ) denotes whether there
is a link between node ni and nj. If ei,j is equal to 1, there is
a link between them; otherwise, no link exists between them.
di,j is the distance between node ni and nj. For the network,
we always use hops between nodes as the distance between
various nodes. We specifically set the distance as 0 when
i = j. vi is a binary variable, which indicates whether node
ni has a VM. eai,j is the attenuation ratio of energy transfer
from node ni to nj. We model the system as multiple slot
times, each slot having the same attenuation value of energy
transfer.

The energy consumption involved in the edge-computing
environment is influenced by the following parameters:
energy transfer attenuation ratio, green energy supply, energy
consumption of task processing, energy consumption of
offloading tasks and VM immigration.

TABLE 1. Notation used in the paper.

B. ENERGY TRANSFERRING ATTENUATION RATIO
BETWEEN TWO DIFFERENT NODES
If green energy in a node is insufficient for supplying the
processing tasks of the VM in the node, we may schedule
green energy from relatively nearby nodes that do not host
a VM. Assume that green energy transfer from node ni to
nj, we select the route which passes through the node-set
NS i = {nli,j|1 ≤ l ≤ L}, where L is the total number of nodes
between node ni and nj. The minimum attenuation ratio of
energy transfer between node ni and nj is as follows (mt i,j):

mt i,j =
∏

(1− mineax,y) (1)

where x = nli,j, y = nli,j + 1, 1 ≤ l ≤ L. Most of the time,
there are several links between node ni and nj, we suppose
that the number of routes is K . For the kth route, the relevant
minimum attenuation ratio of energy transfer is metki,j, then

metar i,j = min(metki,j|1 ≤ k ≤ K ) (2)

For example, in Figure 2, several routes traverse from node
n2 to n5, including:{n2,n5}, {n2, n1, n5}, {n2, n1, n3, n5},
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{n2, n1, n4, n5} and {n2, n1, n3, n4, n5}. The route {n2, n1, n5}
has the minimum attenuation ratio (1-0.95∗0.95) of energy
transfer.
mineax,y is the minimum attenuation ratio of energy trans-

fer from node x to node y. We take eax,y as the distance
between node x and node y, whose values can be obtained
by the method proposed by Dijkstra [32] Floyd method.

C. GREEN ENERGY LOSS
When the system decides to transfer green energy between
different nodes, it always prefers to select the route with the
smallest attenuation ratio of energy transfer. The total green
energy loss when we move energy from node ni to nj during
the sth slot time is:

gel(i, j) = ngi,s ∗ (1− metar i,j) (3)

where ngi,s is the new arriving green energy on node ni during
the sth slot time.

D. ENERGY CONSUMPTION OF PROCESSING TASKS
The energy consumption for processing a task includes two
parts: the energy for processing tasks on a VM and the
energy consumption of moving the task (data and code) from
the submitted node to a VM. For task t , assume that it is
submitted from node i and is moved to node j, the total energy
consumption egt (t, i, j):

egt (t, i, j) = egtp (t, j)+
egtd(t)

1− metar i,j
(4)

where egtp (t, j) is the energy consumption for processing a
task on node j (a VM on the node), and egtd(t) is the energy
consumption for transferring data of task t without energy
transfer attenuation.

E. ENERGY CONSUMPTION OF VM IMMIGRATIONS
For VM v, we assume that it is submitted from node i
and immigrated to node j. The total energy consumption
egv (v, i, j) is:

egv (v, i, j) =
egvd(v)

1− metar i,j
(5)

where egvd (v) is the energy consumption of VM immigra-
tion v from node i to node j without energy transfer attenua-
tion.

F. BROWN ENERGY CONSUMPTION
For node j (with a VM on it), the total energy consumption
tecj is computed as follow:

tecj =
∑
t

egt (t, i, j)+ egv (v, i, j) (6)

ngi,s is the new arriving green energy on node ni during sth
slot time. The provided energy on node j is:

pej =
∑

i
gel(i, j)+ngi,s (7)

The brown energy consumption of node j is:

becj =

{
tecj − pej if pej < tecj
0 if pej ≥ tecj

(8)

G. COMPREHENSIVE ANALYSIS OF SCHEDULING TASKS
AND IMMIGRATING VM
In this subsection, we refer to the energy provided by
any node as the positive energy, which includes the green
energy obtained in the last slot time (lgi,s) and the newly
arrived green energy (ngi,s). We refer to the energy used for
VM immigration as negative energy (evi). Hence,Ei,s denotes
the energy of node i during the slot time s and is expressed as
follows:

Ei,s = lgi,s + ngi,s (9)

If the energy on node i is transferred to node j, the energy
lost Distesi,j is

Distesi,j = Ei,s ∗ metar i,j (10)

If a VM exists on node i, it is immigrated to node j, the
energy consumption is egvd (i) while the attenuation ratio of
energy transfer is zero. The energy consumption Distvsi,j is

Distvsi,j = egvd(i)/(1− metar i,j) (11)

Because the route with the minimum attenuation ratio of
energy transfer, always has the minimum energy loss for the
energy transfer and VM immigration. The energy transferring
and VM immigration may choose the same route to reduce
energy consumption. If no VM exists on node i, Distvsi,j = 0.

If tasks on node i are submitted to node j (A VM on node j),
then the energy consumption of processing tasks Disttsi,j is

Disttsi,j = eegt (s, i, j) (12)

where variable Distsi,j denotes the energy consumption from
node i to node j as follows:

Distsi,j = Distesi,j + Distv
s
i,j + Distt

s
i,j (13)

IV. SYSTEM ANALYSIS
In this section, first, we propose the scheduling method with-
out considering the complexity of the system. We refer to
the method as the offloading method without considering
algorithm complexity (OFFWC). As the VM immigration
always requires some time (1∼5 minutes), we assume that
there is only a chance for VM immigration during one slot
time. The scheduling method consists of two major steps:
(1) finding all possible routes for VM immigration and energy
transfer; and (2) finding all possible task offloading solutions.
We select the solution with the minimum value in brown
energy consumption.

A. FINDING ALL POSSIBLE ROUTES
There are VMN VMs and N edge nodes in the system. The
challenge is to obtain VMN different nodes in N different
edge nodes. The number of possible solutions to immigrate
VMs is:

CVMN
N = NVMN (14)

The set vmp [VMIM ] [N ] is applied to denote the positions
of the VMs after the VM immigrations. One row in vmp
is a policy for VM immigration. In the VM immigrations,
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we always select the route with the minimization energy
transferring attenuation ratio to reduce energy consumption.
According to the method in Section III, the total energy
consumption of VM immigrations is conserved in the set
egmi [VMIM ], and the related green energy consumption
and the brown energy consumption is egmig [VMIM ] and
egmib [VMIM ], respectively. Here ((1 ≤ temp ≤ VMIM )),

egmi [temp] = egmig [temp]+ egmib [temp] (15)

In a time slot, the time is too short to migrate a VM twice,
so, we only take into account one immigration in the
scheduling.

B. FINDING ALL POSSIBLE TASK OFFLOADING
SOLUTIONS
For time slot s, there are Ts tasks and VMN VMs in the
scheduling. The problem is how to assign the Ts tasks
on 2∗VMN VMs. We allocate the tasks by the route with
the attenuation ratio of energy transfer to reduce energy
consumption. The number of possible allocation methods
TAM is:

TAM = (2 ∗ VMN )Ts (16)

Every row is an allocation method, and the total energy
consumption is egt [TAM ]. The related green energy con-
sumption and the brown energy consumption is egtg [TAM ]
and egtb [TAM ]. Here ((1 ≤ temp ≤ TAM )),

egt [temp] = egtg [temp]+ egtb [temp] (17)

From Section IV(A) and IV(B), we obtain all possible
solutions to allocate resources. We have three targets: (1) to
minimize the total energy consumption, (2) to minimize the
brown energy consumption, and (3) to maximize the total
green energy.

tar1 =
∑VMIN

1
egmi [temp]+

∑TAN

1
egt [temp] (18)

tar2 =
∑VMIN

1
egmib [temp]+

∑TAN

1
egtb [temp] (19)

tar3 =
∑VMIN

1
egmig [temp]+

∑TAN

1
egtg [temp] (20)

The three targets have weights: α1, α2 and α3, respectively.
So, target tar is:

Tar = α1 ∗ tar1 + α2 ∗ tar2 − α3 ∗ tar3 (21)

We select the method that has the minimum Tar . The
complexity of the method is:

O (VMIM ∗ TAM) = O(NVMN
∗ VMNTs ) (22)

The complexity of this method is too high. Therefore,
we give three heuristics to decrease the complexity of the
method in the following section.

V. HEURISTICS FOR ENERGY-EFFICIENT TASK
ALLOCATION IN EDGE COMPUTING
In this section, we firstly present a scheduling method when
there is only one VM in the system. And then, we propose
three heuristic scheduling methods when multiple VMs exist.
Finally, we give the complexity of the three proposed heuris-
tics in Section V(C).

Algorithm 1 H-One(v, I ) // v Is The Node Located a VM
1: mintar = +∞, tarn = null;
// mintar is minimizing target value of Tar (Formula 21),
tarn is VM immigration node;
2: For every node (n) in I − v // select node n as the VM
immigration target
3: For every node (m) in I − v− n
4: If Dist tm→v < Dist tm→n
5: Add node m to set A;
6: Else
7: Add node m to set B;
8: EndIF
9: EndFor
10: Tar1 = Schedule(A, v);
11: Tar2 = Schedule(B, n);
12: If mintar > (Tar1 + Tar2)
13: mintar = (Tar1 + Tar2);
14: tarn = n;
15: EndIf
16: EndFor

A. HEURISTICS FOR ONLY ONE VM IN EDGE COMPUTING
Assume that there is only one VM in the system and is
located on node v. There are twomajor problems related to the
scheduling: (1) Which node is selected as the VM immigra-
tion targets? (2) How should tasks and energy be scheduled
to the initial node and the immigration node of a VM? This
is the target of Algorithm 1. In Algorithm 1, we attempt
to check the value of the target function of formula (21) to
determine which node should be the immigration node of
the VM. We assume that every target has the same weight,
α1 = α2 = α3. We select the immigration target node by
selecting the node that has the minimum value for the target
function in Formula (21).

First, we assume that node (n) is selected as the immi-
gration target node of the VM (line 2, Algorithm 1, same
in the following paragraph). According to the energy con-
sumption between two nodes (formula 22), nodes are divided
into two sets: A and B. Nodes with a small value in energy
consumption to node v are set in set A, and the remaining
nodes are set in set B. Line 10 gives the scheduling target
values when tasks in A are executed on node v. Line 11 gives
the scheduling target values when tasks in B are executed on
node n. We select the nodes with minimum target function
(lines 10∼15).

Algorithm 2 gives details of scheduling tasks in set A to
node v. First, we sort nodes in A by the ascending order
of the energy consumption from node i to v (Dist ti→v) (line
1, in Algorithm 2; same in the following paragraph). Then,
we offload tasks from nodes in A to node v (line 2); at the
same time, we transfer green energy from nodes inA to node v
as requested (line 3). We only transfer energy just enough for
processing tasks on node v. During energy transfer, we select
nodes by the ascending order of attenuation ratio of energy
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Algorithm 2 Schedule(X , v) // v Is the Node Located a VM,
and X Is a set of Nodes Whose Tasks Should Be Executed on
Node v; Returns the Target Value of Tar

1: Sort nodes in X in the ascending order ofDistsx,v (x ∈ X)
2: Offloading tasks on nodes in X to node v;
3: Transferring green energy from nodes in X to node v as
request;
4: Obtain brown energy from the system.
5: Calculate the target value of Tar as formula (16).

transfer (formula 2) (line 3). If energy obtained from set A
is not enough for processing all tasks in A, we obtain brown
energy (line 4). Algorithm 2 returns the value of the target
function (line 5).

Algorithm 2 obtains the target value of Tar when the tasks
on nodes in set X are executed on the VM v. We first sort
nodes in X in the ascending order of Distsx,v (x ∈ X) (line 1,
in Algorithm 2; same in the following paragraph), and offload
tasks from nodes in X to node v (line 2). Simultaneously,
we transfer the energy from nodes in X to node v (line 3).
Last, we obtain the brown energy (line 4) and the value of the
target value Tar (line 5).

B. HEURISTICS FOR SEVERAL VMS IN EDGE COMPUTING
Algorithm 1 assumes that there is only one VM in the sys-
tem. However, there are multiple VMs in the system. In this
subsection, we attempt to solve the scheduling problem with
several VMs in the system. Set V denotes the nodes which a
VM is located:

V = {vtemp|temp ∈ [1,VMN } (23)

In Section V(A), we give the scheduling method when
there is only one VM in the system. When there are several
VMs, if we split the system into multiple sets and each set has
oneVM,we can repeatedly use ‘‘H-One(v)’’ to schedule tasks
and transfer energy. Thus, our scheduling target becomes how
to divide nodes into multiple sets.

First of all, we take every node with a VM as the initial
node of a set, and then add the exiting nodes from those
initial nodes to the related sets by two rules: (1) add nodes
to the set with the minimum energy transferring attenuation
ratio (METAR) (Formula 2); (2) add nodes to the set with the
energy consumption loss (ECL) (Formula 23). Algorithm 3
and Algorithm 4 give the heuristic based on rule (1) and
rule (2), respectively.

Algorithm 3 initialize VMN sets (every set has a VM) and
add nodes to every set by adding nodes to the set which has
METAR. In Algorithm 3, lines 1∼3 (Algorithm3, same in the
following paragraph) initialize VMN sets and each set has a
VM. Line 4 obtains exiting nodes (LN ) that do not belong
to any sets. metar ln,vt (line 10) is the minimum attenuation
ratio of energy transfer from node nln to node nvt . For every
S[temp] in S, if a node (has not been allocated to any sets)
has the minimumMETAR (lines 10∼12), we add the node to
S[temp] (lines 14). seln records the node with the minimum

Algorithm 3 METAR(VMNS[temp]) // VMN Is the Number
of VMs

1: For every node vtemp in V
2: Add vtemp into the set S[temp]
3: End
4: LN = I − V ;
5:While LN is not null
6: For every set S[temp] in S
7: vt = vtemp; //vt is the current node that locates a VM
8: minmet = +∞;
9: For every node ln in LN
10: If minmet > metar ln,vt
11: minmet = metar ln,vt , seln = ln;
12: EndIf
13: EndFor
14: Add node seln to S[temp]
15: EndFor
16: EndWhile
17: For every set S[temp] in S
18: H-One(vtemp, S[temp]);
19: End

METAR. We examine each set individually, and each set
gets a new node each time (lines 6∼15). We get all sets and
schedule every set by Algorithm 1 (lines 17∼19).

Algorithm 4 initializes VMN sets (every set has a VM)
and adds nodes to every set by adding nodes to the set
that has the energy consumption loss. In Algorithm 4, lines
1∼3 initial VMN sets and each set initializes with a VM,
which is similar to Algorithm 3. Line 4 obtains the nodes
that do not belong to any sets. minmet denotes the minimum
attenuation ratio of energy transfer and seln is the selected
node. For every S[temp] in S, if a node (has not been allocated
to any sets) has theminimumECL (lines 10∼12), then we add
the node to S[temp] (lines 14). We examine each set individ-
ually, and each set gets a new node each time (lines 6∼15).
We get all sets and schedule every set by using Algorithm 1
(lines 17∼19).

In addition to Algorithm 3 and 4, we can alternately divide
sets by using two rules. We add a node to every set by using
rule 1 (lines 7∼17) and then by using rule 2 (lines 9∼29).
We repeat these steps until all nodes are allocated to sets.
Algorithm 5 gives the details when we alternately use two
rules.

Algorithm 3 initialize VMN sets (every set has a VM) and
add nodes to every set by adding nodes to the set which
has (1) METAR, and (2) the energy consumption loss alter-
nately. In Algorithm 5, we first initialize VMN sets that they
are initialized with a VM (lines 1∼3, Algorithm 5; same
in the following paragraph). LN is a set of nodes without
VMs. Second, for each node in LN , we alternately use the
minimization policy for METAR (lines 7∼17) and minimum
energy transfer attenuation ratio (lines 19∼29). In line 8, vt
denotes the current node where a VM is located. minmet is
the node with the minimum METAR, and seln is the relative
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Algorithm 4 ACL (VMNS[temp]) // VMN Is the Number of
VMs
1: For every node vtemp in V
2: Add vtemp into the set S[temp]
3: End
4: LN = I − V ;
5:While LN is not null
6: For every set S[temp] in S
7: vt = vtemp; //vt is the current node with a VM
8: minmet = +∞;
9: For every node ln in LN
10: If minmet > Dist tln→vt
11: minmet = Dist tln→vt , seln = ln;
12: EndIf
13: EndFor
14: Add node seln to S[temp]
15: EndFor
16: EndWhile
17: For every set S[temp] in S
18: H-One(vtemp, S[temp]);
19: End

node. Last, line 15 adds the selected node to seln to S[temp].
We apply the minimization policy of the attenuation ratio
of energy transfer policy (lines 19∼29). Conversely, minmet
means the minimum energy transferring attenuation ratio.

C. COMPLEXITY ANALYSIS
From Table 1, we know that the number of nodes and the
number of VMs is N and VMN .
For Algorithm 3, the complexity of Lines 1∼3 is O(VMN ),

the complexity of Lines 5, 6 and 9 is O(N ), VMN and O(N ),
respectively. So, the complexity of METAR is:

O (METAR) = O (N )+ O(N ∗ VMN ∗ N )

= O(N ∗ VMN ∗ N )

Same for other methods:

O (ACL) = O(N∗VMN ∗ N )

O (ALT) = O(N∗VMN ∗ N )

VI. SIMULATIONS
In this section, first, we give the detail related to the simu-
lation environment is subsection VI(A). Then, we compare
the proposed method and other methods in subsection VI(B).
Finally, we discuss the reason for different performance in
subsection VI(C).

A. SIMULATION ENVIRONMENT
According to the relevant references [13], [33]–[36], the
parameters used in the paper are listed in Table 2.
‘‘Rand(a, b)’’ returns a random value between a and b. For
example, the attenuation ratio of energy transfer has a range
of [0, 0.25], which means that its maximum and minimum
values are 0 and 0.25, respectively. The average number of
tasks that arrive in every slot is changed from 8 to 20 with

Algorithm 5 ALT (VMNS[temp]) // VMN Is the Number of
VMs

1: For every node vtemp in V
2: Add vtemp into the set S[temp];
3: End
4: LN = I − V ;
5:While LN is not null
6: If check == 0
7: For every set S[temp] in S
8: vt = vtemp; //vt is the current node with a VM
9: minmet = +∞;
10: For every node ln in LN
11: If minmet > metar ln,vt
12: minmet = metar ln,vt , seln = ln;
13: EndIf
14: EndFor
15: Add node seln to S[temp]
16: EndFor
17: check = 0;
18: Else
19: For every set S[temp] in S
20: vt = vtemp; //vt is the current node with a VM
21: minmet = +∞;
22 For every node ln in LN
23: If minmet > Dist tln→vt
24: minmet = Dist tln→vt , seln = ln;
25: EndIf
26: EndFor
27: Add node seln to S[temp]
28: EndFor
29: check = 1;
30: EndIf
31: For every set S[temp] in S
32: H-One(vtemp, S[temp]);
33: End
34: EndWhile

a step of 2. The energy consumption of VM immigration
is a rand in [3, 30]. The power rate of an active VM is
50 W and that of an idle VM is 30 W. In the following
section, the applied simulation parameters are in Table 2
unless otherwise specified.

In the experiments, we consider a network as Figure 3,
as shown in Figure 3. There are 11 nodes in the system.
We evaluate the performance of energy consumption of
VM immigration (ECVMI), energy lost (EL: for offload-
ing tasks and green energy transferring), total energy con-
sumption (TEC), and brown energy (BE) in different cases:
(1) different arrival rate of tasks; (2) different green
energy generation rates; (3) different energy attenuation
ratio (range), and (4) different number of VMs. The most
important metric is BE (brown energy consumption). BE is
the standard to assess the performance of those methods.
Other metrics explain the reasons for the various require-
ments of BE. We will compare the proposed methods with
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TABLE 2. Parameters used in the simulation.

FIGURE 3. The test topology.

FIGURE 4. ECVMI with different AARs.

RAD and NOMOV. RAD randomly selects a note as the
VM immigration target. NOMOV does not immigrate VM in
the scheduling.

B. EXPERIMENTS
1) EFFECT OF THE ARRIVAL RATE
In this section, we evaluate the methods with different
AARs. We attempt to determine the influence of AAR
on different metrics of various scheduling methods. Fig-
ures 4∼7 show the performance of different methods in
ECVMI, EL, TEC, and BE, respectively. The AAR is changed
from 8 to 20 with a step of 2.

Generally, all methods exhibit an increasing trend with an
increase inAAR inEL, TEC, and brown energy and a decreas-
ing trend in ECVMI. The value of RAD always the largest,
followed by that of NOMOV, ACL, ALT, andMETAR.When
the system has a higher AAR, it may offload more tasks to
VMs, which increases the EL (Figure 5), and finally increases
the TEC (Figure 6) and BE (Figure 7). NOMOV and RAD
always have the largest values in EL, TEC, and BG. RAD also
has the largest value in ECVMI. In METAR, ACL, and ALT,
METAR performs best because it always has the smallest

FIGURE 5. EL with different AARs.

FIGURE 6. TEC with different AARs.

FIGURE 7. Brown energy with different AARs.

value in BE (Figure 7). We also discover that all methods
(except ACL) exhibit a slight decrease with the increase in the
ARRs because additional tasks easily identify the route for
offloading tasks and immigrating VMs with a lower ETAR.
ACL always prefers the route with minimumETAR, thus, it is
not substantially different for various AARs. Compared with
BE of ACL, ALT, NOMOV and RAD,METAR is, on average
reduced by 0.16 (e+05), 0.46 (e+05), 1.38 (e+05) and 1.67
(e+05), which is approximately 10.94%, 26.30%, 51.56%
and 56.41 %, respectively.

2) EFFECT OF THE GREEN ENERGY GENERATION RATE
Figures 8∼11 show the performance of different methods in
ECVMI, EL, TEC, and BE with different GEGRs. The GEGR
is changed from [0, 3] to [0, 7].

For EL, TEC, and BG, the order of the scheduling meth-
ods from best to worst is METAR, ACL, and ALT. BE is
the most important metric. To BE of RAD, METAR, ACL,
ALT and NOMOV are reduced, by 6.91 (e+04), 6.26(e+04),
5.14(e+04) and 1.89 (e+04) in BE on average. With the
increase of GEARs, all methods get more green energy, thus
reducing TEC, BE, and enhancing EL.
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FIGURE 8. ECVMI for with different GEGRs.

FIGURE 9. EL for with different GEGRs.

FIGURE 10. TEC for with different GEGRs.

FIGURE 11. Brown energy with different GEGRs.

3) EFFECT OF ENERGY TRANSFERRING ATTENUATION RATIO
Figures 12∼15 are used to investigate the performance of
different methods with various metrics under various ETARs.
The ETAR is changed in the scope of [0, 0.1], [0, 0.15],
[0, 0.2], [0, 0.25], [0, 0.3], [0, 0.35] and [0, 0.4], respectively.

Generally, all methods improve these four indicators by
enhancing ETAR, as higher ETAR results in higher energy
loss during green energy transfer and VMs migration, thus
improving EL and ultimately improving the other three indi-
cators. The decreasing order of ECVMI, EL, and TEC is

FIGURE 12. ECVMI with different ETARs.

FIGURE 13. EL with different ETARs.

FIGURE 14. TEC with different ETARs.

FIGURE 15. Brown energy with different ETARs.

METAR, ACL, ALT, NOMOV, and RAD, respectively. Com-
pared with BE of ACL, ALT, RAD and NOMOV METAR
average reduces by 0.51(e+04), 2.51(e+04), 3.34(e+04),
9.90(e+04) on average.

4) EFFECT OF NUMBERS OF VMS
Figs 16∼19 are used to evaluate the performance of four
methods in ECVMI, EL, TEC, and BE when the number
of VMs is 2, 3, and 4, respectively. Compared with BE of
NOMOV, ECL, and ALT, the METAR is reduced by 0.98
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FIGURE 16. ECVMI with different numbers of VMs.

FIGURE 17. EL with different numbers of VMs.

FIGURE 18. TEC with different numbers of VMs.

FIGURE 19. Brown energy with different numbers of VMs.

(e+05), 0.02 (e+05) and 0.31 (e+05) on average, respec-
tively. METAR performs best because it not only reduces the
energy consumption for immigrating VMs, but also tries to
reduce the energy consumption of task offloading and green
energy transfer.

C. COMPARISON BETWEEN THE PROPOSED METHODS
AND OTHER METHODS
From Section VI(C), we find that METAR always performs
the best in all metrics under various values of AARs, GEARs,

FIGURE 20. Brown energy with different AARs.

FIGURE 21. Brown energy with different GEARs.

FIGURE 22. Brown energy with different ETARs.

ETARs, and the number of VMs. Brown energy is the most
important value in all those metrics. Therefore, we will com-
pare the value of METARwith the most advanced methods in
BE. MTS [13] is an approximate optical heuristics algorithm
that considers VM immigration, task scheduling, and energy
scheduling. But, MTS assumes that there is only one VM,
and we extend it to multiple VMs. We also compare EE-PRO
[36] with our methods.We suppose that the processing ability
of a VM is [0.8, 1.2] standard machines (standard machine:
with 8 Cores, 8G memory, 1T hard disk). The execution time
of a task on a standard machine is about [1, 100] time unit
(seconds).

Figs 20∼23 give the brown energy of METAR, MTS and
EE-PRO under different parameters: AARs. GEARs, ETARs,
and the number of VMs. Generally speaking, METAR per-
forms best under all environments, followed by MTS and
EE-PRO, no matter what kinds of parameters are changed.
Compared to MTS and EE-PRO, METAR average reduces
by 28.23% and 49.50% in brown energy consumption.

Figures 24∼25 give the average waiting time (AWT) and
average execution time (AET) when the AAR is changed
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FIGURE 23. Brown energy with different VMs.

FIGURE 24. Average waiting time.

FIGURE 25. Average execution time.

from 8 to 20 with a step of 2 (for other parameters, the values
of three methods also have the same trends). In the three
scheduling methods, METAR always has the minimum value
in AET and AWT, followed by EE-PRO and MTS. Compare
to the AET of MTS and EE-PRO, METAR average reduces
by 5.67% and 11.52%. Compare to the AWT of MTS and
EE-PRO, METAR average reduces by 9.92% and 11.31%.

D. DISCUSSIONS
From the above simulations, AAR,GEGR, and the number of
VMs affect the performance of those methods. All methods
have an increasing trend with the increase of the AAR in
EL, TEC and brown energy, and METAR always performs
the best regardless of AARs. All methods have a stable per-
formance in ECVMI, and show a slight increase in EL, TEC,
and BE with an enhancement in GEGR. The reason is these
the five methods need to transfer green energy and lose more
energy (Figure 9), thus improving TEC and BE. We also dis-
cover that NOMOV performs better than RAD, because ran-
domly offloading tasks and immigrating VMs wastes more
green energy and requires more VMs immigration energy.
Other methods intelligently select the green energy transfer

route to keep metrics stable in the scheduling. From the view
of GEGR, METAR performs the best in four metrics. All
methods increase in EL, TEC, and BE and decrease in ECVMI
with the increase in the number of VMs, because a larger
number of VMs, as more VMS always ensure the likelihood
of each method to select a transfer route (green energy)
and migration route (for VMs) with lower ETAR, thus
reducing EL.

We also compareMETARwithMTS and EE-PRO.We also
found that METAR consumes the least brown energy under
any condition that we have tested. METAR performs better
because it also focuses on improving the utilization rate of
green energy and selecting the route with smaller ETAR.
We select the route with the smallest value in ETAR for
transferring green energy, immigrating VMs, and offloading
tasks. After getting the VM immigration target, the energy
transferring routes, and the task offloading route, we can
search the possible in a small scope to get the relatively good
scheduling by a heuristic algorithm (Algorithms 1 and 2).

VII. CONCLUSION AND FUTURE WORK
In this paper, we discuss the problem encountered in a mobile
environment with EI technology. We propose three meth-
ods to schedule tasks and immigrate VMs: METAR, ACL
and ALT. Simulations are used to evaluate the methods,
by considering four parameters and four metrics. The four
parameters are (1) different task arrival rates; (2) different
green energy generation rates; (3) different energy attenuation
ratios (ranges), and (4) different number of VMs. We give
comparisons on four metrics: ECVMI, EL, TEC and BE.
The simulation results show that METAR performs better
than other methods in reducing brown energy. So, when we
transmit energy and immigrate VMs, we prefer to select the
route with the smallest ETAR would reduce the total energy
consumption and keep other metrics (such as average waiting
time, average execution time) in a good performance. Fur-
thermore, we compare METAR with MTS and EE-PRO, the
simulation results show that METAR has a good performance
in BE, AWT and AET.

If we can use some meteorological models [37] to forecast
the green energy, it may help the scheduling of edge devices.
The consolidation technique [38] also can be used to reduce
the energy consumption under our environment that would be
a new research of our paper. Edge computing has been widely
applied in many fields, such as meteorological stations, envi-
ronment monitoring devices, and medical healthcare devices.
We also hope to evaluate the methods and conduct more
research in specific areas.

REFERENCES
[1] J. Wang, P. Zhao, S. C. H. Hoi, and R. Jin, ‘‘Online feature selection and its

applications,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 3, pp. 698–710,
Mar. 2014.

[2] B. Zhou, A. V. Dastjerdi, and R. N. Calheiros, ‘‘An online algorithm for
task offloading in heterogeneous mobile clouds,’’ ACM Trans. Internet
Technol., vol. 18, no. 2, p. 23, 2018.

[3] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, ‘‘Mobile edge computing
empowered energy efficient task offloading in 5G,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6398–6409, Jul. 2018.

VOLUME 8, 2020 229063



Q. Zhang et al.: Energy-Aware Scheduling in Edge Computing Based on EI

[4] A. Kiani and N. Ansari, ‘‘Edge computing aware NOMA for 5G
networks,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 1299–1306,
Apr. 2018.

[5] R. Roman, J. Lopez, and M. Mambo, ‘‘Mobile edge computing, fog et al.:
A survey and analysis of security threats and challenges,’’ Future Gener.
Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

[6] M. Dias de Assuncao, A. da Silva Veith, and R. Buyya, ‘‘Distributed
data stream processing and edge computing: A survey on resource elas-
ticity and future directions,’’ J. Netw. Comput. Appl., vol. 103, pp. 1–17,
Feb. 2018.

[7] H. Li, K. Ota, and M. Dong, ‘‘Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,’’ IEEE Netw., vol. 32, no. 1,
pp. 96–101, Jan. 2018.

[8] G. Premsankar, M. Di Francesco, and T. Taleb, ‘‘Edge computing for the
Internet of Things: A case study,’’ IEEE Internet Things J., vol. 5, no. 2,
pp. 1275–1284, Apr. 2018.

[9] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, ‘‘Consolidate
IoT edge computing with lightweight virtualization,’’ IEEE Netw., vol. 32,
no. 1, pp. 102–111, Jan./Feb. 2018.

[10] M. Chen,W. Li, Y. Hao, Y. Qian, and I. Humar, ‘‘Edge cognitive computing
based smart healthcare system,’’ Future Gener. Comput. Syst., vol. 86,
pp. 403–411, Sep. 2018.

[11] K. Wang, H. Yin, W. Quan, and G. Min, ‘‘Enabling collaborative edge
computing for software defined vehicular networks,’’ IEEE Netw., vol. 32,
no. 5, pp. 112–117, Sep./Oct. 2018.

[12] Y. Hao, J. Cao, Q. Wang, and J. Du, ‘‘Energy-aware scheduling in
edge computing with a clustering method,’’ Future Gener. Comput. Syst.,
vol. 117, pp. 259–272, Apr. 2021, doi: 10.1016/j.future.2020.11.029.

[13] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai, ‘‘Energy effi-
cient task allocation and energy scheduling in green energy powered
edge computing,’’ Future Gener. Comput. Syst., vol. 95, pp. 89–99,
Jun. 2019.

[14] C. Zou, ‘‘Energy Internet technology,’’ in New Energy. Singapore:
Springer, 2020, doi: 10.1007/978-981-15-2728-9_5.

[15] W. Su, A. Q. Huang, The Energy Internet. London, U.K.: Woodhead
Publishing, 2019, doi: 10.1016/B978-0-08-102207-8.12001-6.

[16] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, ‘‘Dynamic compu-
tation offloading for mobile-edge computing with energy harvesting
devices,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605,
Dec. 2016.

[17] D. G. Roy, D. De, A. Mukherjee, and R. Buyya, ‘‘Application-aware
cloudlet selection for computation offloading in multi-cloudlet environ-
ment,’’ J. Supercomput., vol. 73, no. 4, pp. 1672–1690, 2017.

[18] J. Zhang, X. Hu, Z. Ning, and E. C. H. Ngai, ‘‘Energy-latency tradeoff
for energy-aware offloading in mobile edge computing networks,’’ IEEE
Internet Things J., vol. 5, no. 4, pp. 2633–2645, Aug. 2018.

[19] L. Cui, C. Xu, S. Yang, J. Z. Huang, J. Li, X. Wang, Z. Ming, and
N. Lu, ‘‘Joint optimization of energy consumption and latency in mobile
edge computing for Internet of Things,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 4791–4803, Jun. 2019.

[20] H. Sun, F. Zhou, and R. Q. Hu, ‘‘Joint offloading and computation energy
efficiencymaximization in amobile edge computing system,’’ IEEE Trans.
Veh. Technol., vol. 68, no. 3, pp. 3052–3056, Mar. 2019.

[21] Q. Wang, S. Guo, J. Liu, and Y. Yang, ‘‘Energy-efficient computa-
tion offloading and resource allocation for delay-sensitive mobile edge
computing,’’ Sustain. Comput., Informat. Syst., vol. 21, pp. 154–164,
Mar. 2019.

[22] M. T. Kabir and C. Masouros, ‘‘A Scalable energy vs. latency trade-off
in full-duplex mobile edge computing systems,’’ IEEE Trans. Commun.,
vol. 67, no. 8, pp. 5848–5861, Aug. 2019.

[23] J. Zheng, L. Gao, H.Wang, X. Li, P. Xu, and L.Wang, ‘‘Joint downlink and
uplink edge computing offloading in ultra-dense HetNets,’’ Mobile Netw.
Appl., vol. 24, pp. 1452–1460, May 2019.

[24] T. Bahreini, H. Badri, and D. Grosu, ‘‘Energy-aware capacity provisioning
and resource allocation in edge computing systems,’’ in Proc. Conf. Edge
Comput. Cham, Switzerland: Springer, 2019, pp. 31–45.

[25] S. Yang, F. Li, M. Shen, X. Chen, and X. Fu, ‘‘Cloudlet placement and
task allocation in mobile edge computing,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 5853–5863, Jun. 2019.

[26] L. Liu, X. Chen, Z. Lu, and L. Wang, ‘‘Mobile-edge computing framework
with data compression for wireless network in energy Internet,’’ Tsinghua
Sci. Technol., vol. 24, no. 3, pp. 271–280, Jun. 2019.

[27] X. Zhao, K. Yang, Q. Chen, D. Peng, H. Jiang, X. Xu, and X. Shuang,
‘‘Deep learning based mobile data offloading in mobile edge computing
systems,’’ Future Gener. Comput. Syst., vol. 99, pp. 346–355, Oct. 2019.

[28] M. Zakarya, L. Gillam, H. Ali, I. Rahman, K. Salah, R. Khan,
O. Rana, and R. Buyya, ‘‘EpcAware: A game-based, energy, performance
and cost efficient resource management technique for multi-access edge
computing,’’ IEEE Trans. Services Comput., early access, Jun. 26, 2020,
doi: 10.1109/TSC.2020.3005347.

[29] B. Ali, M. A. Pasha, S. U. Islam, H. Song, and R. Buyya, ‘‘A vol-
unteer supported fog computing environment for delay-sensitive IoT
applications,’’ IEEE Internet Things J., early access, Sep. 21, 2020,
doi: 10.1109/JIOT.2020.3024823.

[30] B. Li, Z. Fei, J. Shen, X. Jiang, and X. Zhong, ‘‘Dynamic offloading for
energy harvesting mobile edge computing: Architecture, case studies, and
future directions,’’ IEEE Access, vol. 7, pp. 79877–79886, 2019.

[31] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, ‘‘Energy-delay
tradeoff for dynamic offloading in mobile-edge computing system with
energy harvesting devices,’’ IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4642–4655, Oct. 2018.

[32] E. W. Djikstra, ‘‘A note on two problems in connection with graphs,’’
Numer. Math., vol. 1, pp. 269–271, 1959.

[33] X. Xu, Y. Li, T. Huang, Y. Xue, K. Peng, L. Qi, and W. Dou,
‘‘An energy-aware computation offloading method for smart edge com-
puting in wireless metropolitan area networks,’’ J. Netw. Comput. Appl.,
vol. 133, pp. 75–85, May 2019.

[34] L. Chen, X. Li, H. Ji, and V. C. M. Leung, ‘‘Computation offloading
balance in small cell networks with mobile edge computing,’’ Wireless
Netw., vol. 25, pp. 4133–4145, May 2018.

[35] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi,
‘‘A computation offloading method over big data for IoT-enabled cloud-
edge computing,’’ Future Gener. Comput. Syst. , vol. 95, pp. 522–533,
Jun. 2019.

[36] H. Feng, S. Guo, A. Zhu, Q. Wang, and D. Liu, ‘‘Energy-efficient user
selection and resource allocation in mobile edge computing,’’ Ad Hoc
Netw., vol. 107, Oct. 2020, Art. no. 102202.

[37] Y. Hao, J. Cao, T. Ma, and S. Ji, ‘‘Adaptive energy-aware scheduling
method in a meteorological cloud,’’ Future Gener. Comput. Syst., vol. 101,
pp. 1142–1157, Dec. 2019.

[38] A. A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, and O. Rana, ‘‘An
energy and performance aware consolidation technique for containerized
datacenters,’’ IEEE Trans. Cloud Comput., early access, Jun. 5, 2019,
doi: 10.1109/TCC.2019.2920914.

QING ZHANG received the M.E. degree from
the Wuhan University of Science and Technol-
ogy, in 2001. She is currently an Instructor with
the Computer Engineering College, Jimei Univer-
sity, and an Associate Editor of blue book Annual
Report on Future Media in China (2018). She has
presided over the industry-university cooperative
education project of the Ministry of Education
‘‘Construction of Interactive Design Courses for
Software Engineering Majors,’’ participated in a

number of major and key projects in the Fujian Province Social Sciences,
Nation Radio, and Television Administration. Her main research interests
include data science, mobile computing, and human–computer interaction.

XIAOYONG LIN is currently a Professor with
the Xiamen University of Technology, the Direc-
tor of the Future Media Development Research
Center, Fujian University of Arts and Social Sci-
ences Research Base, and an Editor of blue book
Annual Report on Future Media in China. He has
presided over a number of major and key projects
in Fujian Province Social Sciences, Nation Radio,
and Television Administration. He has published
three monographs and more than 30 academic arti-

cles. His main research interests include future media, Internet, and new
media.

229064 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.future.2020.11.029
http://dx.doi.org/10.1007/978-981-15-2728-9_5
http://dx.doi.org/10.1016/B978-0-08-102207-8.12001-6
http://dx.doi.org/10.1109/TSC.2020.3005347
http://dx.doi.org/10.1109/JIOT.2020.3024823
http://dx.doi.org/10.1109/TCC.2019.2920914


Q. Zhang et al.: Energy-Aware Scheduling in Edge Computing Based on EI

YONGSHENG HAO received the M.S. degree in
engineering from Qingdao University, in 2008.
He is currently a Senior Engineer with the Net-
work Center, Nanjing University of Information
Science and Technology. He has published more
than 30 papers in international conferences and
journals. His current research interests include dis-
tributed and parallel computing, mobile comput-
ing, grid computing, web service, particle swarm
optimization algorithm, and genetic algorithm.

JIE CAO received the Ph.D. degree in computer
science from Northeastern University, in 2001. He
is currently a Professor with the Xuzhou Univer-
sity of Technology. His current research interests
include distributed and parallel computing and
decision systems.

VOLUME 8, 2020 229065


