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ABSTRACT Automatic lung cancer diagnosis from computer tomography (CT) images requires the
detection of nodule location aswell as nodulemalignancy prediction. This article proposes a joint lung nodule
detection and classification network for simultaneous lung nodule detection, segmentation and classification
subject to possible label uncertainty in the training set. It operates in an end-to-end manner and provides
detection and classification of nodules simultaneously together with a segmentation of the detected nodules.
Both the nodule detection and classification subnetworks of the proposed joint network adopt a 3-D encoder-
decoder architecture for better exploration of the 3-D data. Moreover, the classification subnetwork utilizes
the features extracted from the detection subnetwork and multiscale nodule-specific features for boosting
the classification performance. The former serves as valuable prior information for optimizing the more
complicated 3D classification network directly to better distinguish suspicious nodules from other tissues
compared with direct backpropagation from the decoder. Experimental results show that this co-training
yields better performance on both tasks. The framework is validated on the LUNA16 and LIDC-IDRI datasets
and a pseudo-label approach is proposed for addressing the label uncertainty problem due to inconsistent
annotations/labels. Experimental results show that the proposed nodule detector outperforms the state-of-
the-art algorithms and yields comparable performance as state-of-the-art nodule classification algorithms
when classification alone is considered. Since our joint detection/recognition approach can directly detect
nodules and classify its malignancy instead of performing the tasks separately, our approach is more practical
for automatic cancer and nodules detection.

INDEX TERMS Deep learning, multi-task learning, nodule detection, nodule malignancy classification,
label noise.

I. INTRODUCTION
Lung cancer is the primary cause of cancer deaths worldwide.
The 2018 Global Cancer Statistics [1] shows that there are
approximately 1.8 million deaths and 2.1 million new can-
cer cases caused by lung cancer, ranking first among other
cancers. Early diagnosis of a small tumor can prevent metas-
tasis of cancer and substantially improves the prognosis and
survival rate [2]. Therefore, the development of an intelligent
computer-aided diagnosis system (CADS) can be beneficial
to the early treatment of lung cancer.

The volumetric thoracic computed tomography (CT) is the
most commonly used imaging technique for lung scan [3],
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which can be used to detect lesions in the lung called pul-
monary nodules. Such nodules can be benign or malignant,
and the detection of the latter is of great importance. One
difficulty in detecting the nodules from these CT scans is
that the nodules absorb the same level of X-ray as normal
body tissues. Thus, there is no apparent intensity discrepancy.
The distinctive features of pulmonary nodules are primarily
related to shape and location. Figure 1 shows an example
2D slice from such as volumetric or 3D- CT scan. It can
be seen from Figure 1 (c) that the tiny pulmonary nodule
has no distinctive feature compared with vessels in the 2-D
image. However, the vessels have a continuous structure,
while nodules are isolated. This motivates us to develop a
network for detecting nodule and malignancy using 3-D vol-
umetric data instead of fusing results frommultiple 2D slices.
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FIGURE 1. Four 2D slices from a CT scan of lung from the bottom to top:
(a) is scanned on the bottom of lung and (d) is on the top. A red bounding
box has been included in (c) to highlight the nodule. To better reveal the
nodules and other tissue structure, the grey-scale image has been color
mapped to improve visualization.

On the other hand, humans are more proficient in extracting
information from 2-D images than 3-D volumetric images.
Therefore, it is expected that a thorough analysis of CT scans
by clinicians can take much time, increasing the cost of such
check. Compared with checking by doctors, CADS has the
potential advantage of taking the three-dimension image data
into account and output potential nodule candidates for ref-
erence or confirmation quickly. More importantly, the CADS
approach can even learn and accumulate the experience from
radiologists via continuous training. Hence, theymay provide
very stable prediction comparable or even outperforming a
single experienced radiologist [4]. Hence, it is helpful to
develop an efficient CADS for the diagnosis of lung cancer
from CT images.

In the literature, such automatic diagnosis usually consists
of two steps: nodule detection and nodule classification [5].
With the success of deep learning in natural image processing,
most recent studies on these two tasks are based on the con-
volution neural network (CNN) [6]–[9]. Methods for nodule
detection usually rely on networks for object detection prob-
lems, including faster R-CNN [10] and YOLO [11], which
outputs region proposals of the target objects. The nodule
classification problem, on the other hand, is usually regarded
as a 3-D image1 recognition problem using the data at the
detected regions as inputs. 3-D extensions of well-known
image classification networks such as ResNet [12] are widely
used.

Despite these advances, a fully automatic CADS for lung
nodules detection and cancer classification still present sev-
eral major challenges. First of all, separating the detection

1The phrase 3D images, 3D volumetric images, and 3D CT scans will be
used interchangeably in the paper with the same meaning, while a slice of
such volume is referred to as a 2D slice image or 2D slice.

with classification tasks usually reduce the overall classifi-
cation rate as considerable amounts of detected nodules are,
in fact, false positives. By introducing a simple classification
stage to refine the detected nodules after the detection task
can considerably reduce the false-positive results [13], which,
otherwise, will mislead the classification task later. There-
fore, it is desirable to develop a methodology for joint nodule
detection and malignancy classification.

Secondly, most pulmonary nodules are small and isolated
in the raw CT scans. The shape of the nodule thus serves
as an informative feature for distinguishing it from other
body tissues. Therefore, it is desirable to exploit the 3D
nature of the data for better classification. However, due to
significantly increased parameters of 3D neural networks,
most conventional approaches are still based on multiple 2D
networks [14]–[16]. The primary obstacle of applying the
3-D model in nodule classification is the overfitting prob-
lem arising from the increased number of parameters and
the limited number of training samples. For instance, while
ImageNet [17] uses millions of images for training, there are
only 1018 scans in the LIDC-IDRI [18]–[20] lung cancer CT
dataset.

Finally, for some cases, the labels of the radiologists may
not be consistent or missing (say the nodules may be labelled
by 1 or 2, but not all the radiologists). This arises because
labeling nodules as benign or malignant using CT images
depends mostly on the experience of radiologists and the
limitations in the data collection process. Unless a single
consistent label can be agreed on (as in some dataset), such
uncertain labels, which we shall also refer to as marginal
labels, will arise for some nodules. In fact, it is commonly
found in the LIDC-IDRI dataset. If the network is forced
to fit these marginal samples, the performance usually dete-
riorates as reported in [15], [16]. This problem is usually
referred to as the label uncertainty problem. Though a pre-
cise probabilistic model to describe such variations can be
difficult to obtain, it is desirable that such adverse effect
on the overall performance of the network can be miti-
gated. All these motivate us to develop a joint detection and
recognition approach to lung cancer diagnosis and segmen-
tation from CT images with possibly marginal or uncertain
labels.

An important advantage of the proposed joint detec-
tion/recognition approach is that it can directly detect nodules
and classify its malignancy instead of performing the two
tasks separately. Therefore, our approach is more practical
as it can be applied in an end-to-end manner to automatic
cancer and nodules detection. Moreover, the proposed joint
nodule segmentation/recognition (JNSC) network is capable
of exploring the semantic segmentation information [21] to
yield a more detailed segmentation of the nodules and their
malignancy instead of conventional simple regional proposal.
It is known that nodule malignancy is highly related to
its morphology. The segmentation information offered by
our proposed joint nodule segmentation/recognition (JNSC)
network can provide valuable morphology description of
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FIGURE 2. System overview of the proposed framework. The detection phase outputs multiple potential nodules. The recognition phase uses
features of detection phase to build an additional classifier to discriminate them into three classes: benign, cancer and non-nodule. Only the
benign and cancer nodules are then evaluated for nodule detection task and classification task. Importantly, in the classification task,
the undetected nodules are directly labeled as benign to report the result. The architecture of the joint nodule detection and classification network
is shown in Figure 3.

the detected nodules, which can be useful in differentiating
malignant tumors from scars or other complications.

From the neural network training point of view,
the encoded features and initial segmentation obtained in our
nodule detection network serve as valuable prior information
for the subsequent classification process. This not only helps
to the classification network to extract more discriminative
features but also makes possible the training of our 3D neural
network for classification and further refinement of the seg-
mentation map without suffering from excessive overfitting.

Figure 2 shows the system overview of the proposed
network, where the input CT image is passed through the
proposed joint nodule detection and recognition network to
provide a segmentationmap of the nodule as well as its malig-
nancy prediction. Our JNSC network is a 3D network and
it adopts the encoder-decoder architecture with multiscale
features extraction, which has the advantages to encode the
desired location information as well as shape information
of the nodules. Moreover, instead of simply cascading the
detection and classification networks, a path for extracting
discriminative features from the output of the encoder of
the nodule detection module to the classification network is
proposed. These features are jointly trained from the two
networks and provide valuable additional information for
improving the classification performance.

Thanks to this additional information provided by the
nodule detection network, the proposed 3D JNSC can be
trained from scratch despite the limited number of training
samples. Moreover, the encoder in our JNSC is trained on
the whole CT image, which can also distinguish other body
tissues for nodule detection. Experiment results to be pre-
sented later show that the joint detection and classification
framework is superior to the sole classification approach
with an improvement of 1.25% in terms of accuracy. This is
in accordance with previous studies in scene geometry and
semantics research [22], [23] where it has been demonstrated
that multi-task learning can effectively boost the overall
performance.

Finally, to address the label uncertainty problem, we treat
the problem as a training problem with label noise2 [24]
where the noisy label will be corrected during the training
phase. In the lung nodule diagnosis problem, samples with
inconsistent or missing annotations are commonly encoun-
tered and they may be less reliably annotated. Here, we intro-
duce the concept of pseudo-label to alleviate the adverse
effect of these possible less reliable annotations. More pre-
cisely, the unreliable annotations are detected and their labels
are re-estimated as ‘‘pseudo-labels’’ by minimizing a vari-
ant of the cross-entropy loss function, which is capable of
seeking a better tradeoff between network prediction and
fitting errors. While the true model of these less reliable
labels is different to obtain in practice, the use of the more
robust cross-entropy loss function effectively prevents the
network from overfitting those less reliable marginal sam-
ples.3 Experimental results show that training with the pro-
posed pseudo-labels can improve the accuracy by 2.44%
compared with the hard-label assignment and by 1.31% com-
pared with the soft-label assignment.4

The proposed approach has been evaluated and com-
pared with state-of-state algorithms on the publicly avail-
able LIDC-IDRI dataset. In particular, the nodule detection
phase is validated on the LUNA 16 [13] competition, which
is a subset of LIDC-IDRI. The result shows that our pro-
posed nodule detection network outperforms state-of-the-art
algorithms while achieving comparable results with state-
of-art nodule classification algorithms. Since our joint detec-
tion/recognition approach can directly detect nodules and
classify its malignancy in an end-to-end manner instead of
performing the two tasks separately,5 our approach is more

2Or simply the label noise problem.
3This is similar to the use of robust loss functions, instead of the true

probability function of the measurement noise, in robust statistics.
4Note, we do not change the original labels of the samples in the evaluation

of the accuracy. Instead, we adopt a more robust loss function to measure the
error between the predicted and the given labels so as to reduce the sensitivity
of the network trained. Thus, the overall accuracy can still be improved.

5This may reduce the overall classification rate.
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TABLE 1. Summary of nodule detection approaches (CPM: Competition
Performance Metric. AUC: Area Under Curve).

practical for automatic cancer and nodules detection. More-
over, the segmentation map of the nodules and its malignancy
are available from the network output, which provides valu-
able information on the morphology of the tumor.6

The rest of the paper is organized as follows. Section II
briefly reviews the literature of related works. The infor-
mation of the dataset under study is given in Section III.
The proposed network architecture, feature extraction, and
joint optimization methods are presented in Section IV.
The experimental results, analysis, and comparisons are
presented in Section V. Section VI summarizes the major
findings/contributions and possible limitations of the work.
Finally, conclusions are drawn in Section VII.

II. RELATED WORKS
A. NODULE DETECTION
Nodule detection from CT images usually involves two steps:
i) nodule candidate proposal and ii) false-positive reduc-
tion [30]. The goal of nodule detection is to identify potential
nodule candidates from the remaining lung tissues, whereas
the false positive reduction aims to suppress potential false
positive due to interference from tissues such as blood ves-
sels, etc. TABLE 1 summarizes some recent works on nodule
detection and their performance.7

Traditional detection methods usually rely on hand-craft
features and classic image segmentation methods [31].
Recently, a more extensive dataset LIDC-IDRI is made
publicly available. Hence, more sophisticated deep learning-
based methods can be applied and significantly better perfor-
mance over traditional approaches in the larger dataset has
been demonstrated [13], [32].

In Ding et al. [33], a 2-D region proposal network, which is
transferred from the general image detection framework [10],
was proposed and an impressive sensitivity of 94.6% under
15 candidates per scan is achieved. Though a 2-D net-
work generally has fewer parameters than a 3-D network,
it cannot fully utilize the 3-D shape information simultane-
ously. Therefore, more recent studies [9], [34], [35] tend to
adopt 3-D CNN to solve the problem directly. For instance,

6This information can be used in say studying the relationship between
the CT image features with genomic features in radiomics.

7It should be noted that some of these works may not be directly compared
due to differences in modalities, etc. They are listed to give the reader an
impressive of the state-of-the-art performance in nodule detection.

Khosravan and Bagci [35] propose a 3-D densely connected
region proposal network to acquire the region proposals.
This densely connected network connects every two layers
in the network, while the typical network only connects two
successive layers. Therefore, it usually improves the overall
performance over normal layer-by-layer connected network,
while requiring much fewer parameters than many conven-
tional 3-D networks. Besides the region proposal network,
Pezeshk et al. [8] proposed to segment the nodules from the
CT scans directly. Similar pixel-wise segmentation has been
widely applied to biomedical-related applications, in which
the 3-D U-net [36] and V-Net [37] are prevalent network
architectures. While segmentation can provide more accurate
information than detection only, it is also more involved as
more detailed annotation will be required. Since LIDC-IDRI
has released the pixel-wise segmentation label recently, train-
ing deep networks for nodule segmentation is now feasible,
and it can potentially provide more information to the joint
detection (segmentation) and classification of lung nodules.

The false-positive reduction is another essential step after
nodule detection to eliminate false positive candidates, and
3-D CNN is usually preferred [4], [8], [32], [33] because
of their excellent performance. The network usually under-
takes a classical classification task, i.e., classifying nodule
with non-nodule. Furthermore, there is no need to develop
an independent network as features can be simply trans-
ferred from the detection stage for performing classifica-
tion. In Qin et al. [4], the feature from the nodule detection
network is directly cropped. As the LUNA 16 competition
provides an additional false-positive reduction (FPR) task
which labels many possible false-positive nodules, better
performance is achieved if a FPR network is trained to refine
the detection result. Moreover, it is observed that even if
the false positive samples in the detection task are collected
without additional labels from FPR task, training their own
FPR networks can also improve the result [25], [35].

B. NODULE CLASSIFICATION
Currently, nodule classification is performed either on
the patient-level or nodule level. On the patient-level, only
the binary label for each patient is available regardless of the
number of nodules of the patient. Liao et al. [34] proposed an
end-to-end CADS and won the competition for patient-level
lung cancer classification. The nodule-level evaluation is
popular because it has an accurate label for each nodule
and avoids the variance raising from the multiple instance
problem. Indeed, the framework of both levels is quite similar,
except for the training strategy.

Some classical image processing descriptors, including
Local Binary Pattern (LBP) [38], Histogram of Oriented
Gradients (HOG) [39], and Fourier shape descriptor [40],
are firstly exploited in nodule classification. Nevertheless,
deep learning-based approaches usually outperform these
hand-craft features [15]. Zhao et al. [41] propose a hybrid
approach using well-known AlexNet and LeNet to classify
the nodule slice, the performance is superior to single model
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methods. Moreover, in order to alleviate the overfitting prob-
lem, the 3-D nodules can be decomposed into multi-views
[32] therefore the 3-D network is simplified to multiple 2-D
networks. Recently, Xie et al. [16] adopt, in total, 27 ResNet
for classifying the 3-D nodules from 9 viewpoints. Similarly,
Hussein et al. [42] adopt a slice-by-slice approach by fusing
the results from all the slices. Althoughmany studies [9], [15]
have focused on 3-D architecture, the performance is usually
inferior to these 2-D ensemble methods Liao et al. [34] firstly
incorporate the nodule classification into the nodule detection
network and train the detection and classification network
alternatively. Zhang et al. [43] fine tune the classification
network from the detection network and shows that classi-
fication performance can be benefited from information of
the detection stage. Moreover, Xie et al. [44] show that joint
training can boost segmentation and classification in skin
lesion. While the choice of 2-D or 3-D networks in nodule
classification remains controversial, we shall focus on 3-D
network as it is more promising in exploring the morphology
information of pulmonary nodules. Notably, we extended the
co-training method in [34] for training our 3-D network to be
described in Section IV.

C. LABEL NOISE
Estimating the malignancy level of nodules from morphol-
ogy depends mainly on the experience of the clinicians and
there are inevitably variations and perhaps errors for difficult
cases. Therefore, labels may not always be consistent, espe-
cially when only a few annotations are available. Although
up to 4 radiologists will label the data in the LIDC-IDRI
database [18]–[20], many samples are only labeled by only
one radiologist. Such uncertainty in the labels are usually
referred to as label noise. Frenay and Verleysen [45] give a
comprehensive review on tackling label noise. Manwani and
Sastry [46] studied the noise tolerance performance of various
loss function and found that the 0-1 loss has the best noise
toleration ability. Zhang et al. [47] developed a probabilistic
model to deal with potential misclassification where the noise
label is used as prior information for updating the posterior
probability. These algorithms mainly focus on loss function
and label correction. Other improvements proposed include
data cleansing [48], [49] andmodel-basedmethods [50], [51].

Since training a neural network is time-consuming, it is
hard to train a neural network several times until the noise
correction converges. Patrini et al. [52] recently proposed
a two-stage training method which adapts the loss function
at the first stage and re-trains the network at the second
stage. Adjusting the loss function is preferred on the neural
network-based model because it can be easily integrated into
the current framework if the loss function is differentiable.

III. DATASET
In this study, the LIDC-IDRI [18]–[20] dataset from The
Cancer Imaging Archive (TCIA) is used to evaluate the per-
formance of our proposed network. There are 1018 scans
obtained from seven institutions in the dataset, and four

experienced thoracic radiologists annotate each scan with
detailed nodule location as well as malignancy level. How-
ever, the radiologists sometimes cannot reach a consensus for
some lesions, and therefore, some nodules are annotated by
one to three radiologists.

The diameter of nodules ranges from 3 mm to 30 mm, and
the malignancy level is evaluated in a 5-point scale where
1 represents ‘Highly unlikely’ nodule, 3 represents ‘Inde-
terminate’ and 5 represents ‘Highly suspicious’. Following
the settings in the previous studies [15], [16], [53], we cal-
culate the malignancy score (MS) by taking the median of
the malignancy levels from different annotations and label
the nodules whose MS<3 as benign, MS=3 as uncertain,
and MS>3 as malignant. Note that uncertain nodules are
excluded in the testing phase. Moreover, we observe that a
considerable number of nodules are marginally classified as
benign or malignant, and some nodules are only annotated by
one radiologist, which may introduce label uncertainty. Thus,
we further categorize the benign and malignant nodules as
certain and marginal nodules. Marginal nodules are defined
as the nodules which are labelled by only one or two radiol-
ogists, and the median malignancy levels are between 2 and
4, including 2 and 4. We list the precise number of nodules in
each class in TABLE 2.

TABLE 2. Number of nodules in LIDC-IDRI dataset.

For nodule detection, we adopt the Lung Nodule Analysis
2016 (LUNA16) [13] to evaluate the performance of the
nodule detection algorithms. The LUNA16 dataset is a subset
of the previous LIDC-IDRI dataset. To better evaluate the
nodule detection algorithms, the scans with a slice thick-
ness greater than 2.5 mm are excluded from the LIDC-IDRI
dataset. LUNA16 only consists of nodules whose diame-
ters are larger than 3 mm and annotated by at least three
radiologists. Therefore, there are in total of 888 scans with
1186 nodules in the challenge. Due to the large image size,
most works tend to train the detection and classification
network on a small size voxel8 like 64× 64× 64, randomly
sampled from the entire image. Afterward, to obtain the final
detection/classification for a particular subject, one needs
to apply the network to the many sub-voxels of the entire
image and aggregate the respective outputs. For instance,
in the LUNA challenge, the results obtained by applying the
detection to 64× 64× 64 voxels with a shift of multiples
of 32 voxels in any of the three directions are averaged to
form the performance metric.

8The choice of a size of ‘‘64×64×64’’ is to avoid possible memory limita-
tion in GPUs, which is a commonly usedmethod.Moreover, the performance
degradation is found to be minimal.
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FIGURE 3. The basic structures for (a) encoder block ‘‘E’’ and (b) decoder block ‘‘D’’ used in the proposed joint network. (c) Block diagram of the
proposed joint nodule segmentation and classification network. The red line represents the data flow of nodule classification network and the blue line
represents the nodule detection network. The cubes in the figure represent 4-D tensor and the number on the top of the cube is the dimension for width,
height and length while the channel dimension is not plotted. The voxel-based feature extraction layer Vi is shown in Figure 4. The parameters of the
convolution layers are shown in TABLE 3.

In this study, we use the official 10-fold split in LUNA16 to
report the detection performance by randomly splitting the
scans in LIDC-IDRI to 10-fold for five times to report the
nodule classification performance.

IV. PROPOSED METHOD
We now present our joint nodule segmentation and recogni-
tion network (JNSC) and its construction, which consists of
the following step: 1) data pre-processing and data augmenta-
tion (DPA), 2) multiscale voxel-based feature-extraction and
nodule size estimation (MVFNSE), 3) pseudo-label assign-
ment for marginal samples (PSA), and 4) jointly-optimized
nodule segmentation and classification (JNSC). In the DPA
step, the training samples are generated from the CT scans
data after standard processing procedure. Moreover, addi-
tional training samples are generated using data augmentation
technique to improve the robustness of the neural networks
against various variations such as rotation of the input, etc.
The input voxel is assumed to be a voxel cube with size
64× 64× 64. Next, we shall introduce the network architec-
ture and the details of the above four steps will be presented.

A. NETWORK ARCHITECTURE
The proposed joint nodule segmentation and recognition
network (JNSC) is shown in Figure 3. It adopts the V-Net
[37] as the backbone as the V-Net adopts a multiscale
encoder-decoder architecture, and it can perform pixel-
wise segmentation. The upper and lower branches form the
encoder and decoder in a V-Net architecture where the input
voxels are segmented to yield the segmented output at the
left lower corner. The encoder and decoder are arranged in
a multiscale manner where features are extracted at each
scale via the voxel-based feature extraction layer (see also
Figure 4). The multiscale features and the nodule size are also
estimated in the MVFNSE step which are then concatenated
(denoted by the block CC in Figure 3) for predicting whether
the current block is a nodule, and whether they are benign or
malignant (the middle path in Figure 3).

In the MVFNSE step of the nodule detection subnetwork,
the possible locations of the nodule at each scale are estimated
from the initial segmentation outputs to form the nodule
location map (NLM), which consists of bounding boxes con-
taining potential nodules (as is shown in Figure 4).
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FIGURE 4. Illustration of the proposed multi-scale voxel-based feature extraction. Our implementation is in 3-D while a 2-D slice of the 3D
volumetric image is shown here for sake of presentation. The nodule specific region (NSR) is obtained by applying a threshold to the nodule
segmentation map. The nodule location map (NLM) is generated as 3D bounding boxes encapsulating the NSR, which is introduced to tolerate the
irregular shape of the potential nodules. Nodule specific features are extracted at the location of NLM and are fed into the voxel-based feature
extraction layer. Finally, the flatted feature vectors from multiple scales as defined in Figure 3 are concatenated (block CC in Figure 3) for
classification using the soft-max criterion. Note, the in the above example, it is assumed that three possible nodules are detected, each with a
multiscale feature vector. Each of these candidate nodules will pass through the linear layer and the softmax unit as shown in the middle of
Figure 3 to yield the classification output for all these nodules candidates. The number of nodules detected (i.e. the number of NLM) can be
variable from each input of voxels.

For classification, the multiscale features of each nodule
candidate in each NLM and the nodule size will be fed to the
linear layer and softmax layer for classification as shown in
the middle path of Figure 3.9 The PSA step will adjust the
label for the marginal nodules to avoid possible overfitting
of the marginal samples. The feature vector, together with
the segmentation outputs, enables us to jointly optimize the
segmentation and classification in a single network at the
JNSC step. Training and other details of the above operations
will now be discussed.

B. DATA PRE-PROCESSING AND AUGMENTATION (DPA)
The LIDC-IDRI dataset consists of CT scans from seven
institutions. Therefore, the pixel spacing and slice thickness
may vary on different scans. To reduce the variation from
inconsistent resolution, we simply normalize all scans into
a resolution of 1.0 mm × 1.0 mm× 1.0 mm by spline
interpolation. Besides, the raw CT images are clipped to
between −1000 and 400 Hounsfield unit (HU), which can
reduce the effect of air and bone in the images. The last
step is normalizing the CT images to zero mean and unit
variance as commonly used in training neural networks.
n each epoch, we extract two voxels from each scan. One of
the voxels consists of a nodule, and if a scan has multiple

9 It should be noted that there may be more than one nodule candidate (or
none) detected inside each voxel volume, eachwith its ownmultiscale feature
vector and each of these feature vectors will pass through the linear layer
and the softmax unit to yield the classification output for all these nodules
candidates (please refer to Figure 4 for more details) inside the voxel volume.

nodules, we randomly pick one of the nodules every time.
The other voxel is extracted from the normal region, which
does not include any nodule. The motivation for sampling
voxels from nodules is to increase the occurrence of the
nodule in the training data while sampling other position is
to encourage the network to distinguish other body tissues
better.

Different from many studies [15], [16], which mainly con-
sider nodule classification, we do not require the nodules to be
located in the center of the voxels. To reduce overfitting and
improve the generalization ability of the network, we further
adopt data augmentation by random rotating the extracted
voxels. The rotation is done in one of the x-y plane, x-z plane,
and y-z plane with equal probability at each time. To avoid
the blank region caused by rotation, we only rotate the image
with one of the following angles [0◦, 90◦, 180◦, 270◦] with
equal probability.

C. MULTISCALE VOXEL-BASED FEATURE EXTRACTION
AND NODULE SIZE ESTIMATION (MVFNSE)
As mentioned, we choose the V-Net [37] as the backbone of
our JNSC as the V-Net adopts a multiscale encoder-decoder
architecture as it can perform pixel-wise segmentation. The
multiscale voxel-based feature extraction has three steps: i)
generation of the nodule location map (NLM), ii) extraction
of the multiscale features, and iii) concatenation of the nodule
size information to the feature vector. We summarize these
procedures in Figure 4.
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FIGURE 5. Examples of nodule segmentation results. (a)-(e) show five examples of nodule segmentation results along the x-y, y-z and x-z planes,
of which (a) and (b) are benign nodules and (c), (d) and (e) are malignant nodules. The yellow contours denote the ground truth nodule boundary
annotated by at least three radiologists. The final segmentation result is a binary map obtained by threshold the network output having a value
from 0 to 1. Thus, the segmentation map will depend on the applied threshold. In the above illustration, a conservative threshold of 0.4 is used. For the
best performance, it can be further optimized via cross validation. It should be noted that the CT images (nodules) are 3D volumetric images and the 2D
images (nodules) shown above are their x-y, y-z and x-z cross sections.

To generate the nodule location map, the network is trained
on the pixel-wise segmentation from radiologists. There-
fore, we can acquire the corresponding nodule probability
map from the output of the detection network. The nod-
ule probability map contains the probability of each pixel
being classified as nodules. Note that the dimension of the
map is identical to the input voxel, which is 64× 64× 64.
Afterward, we empirically use a detection threshold of 0.4
(40%) to include more suspicious regions for detection. The
probability map is then transformed into a binary segmenta-
tion map, where 1 represents nodules, and 0 represents non-
nodules. Because the shape of the detected nodule is irregular
at this stage, as shown in Figure 5, we propose to draw a
bounding box10 encapsulating each nodule to tolerate the
irregular shape and reduce the variance in extracting nodule
specific features. Then the region inside the box is called a
nodule-specific region (NSR). The NSR is found based on
its voxel connectivity in the binary map [54]. It should be
noted that the segmentation results at this stage may contain
errors, say a single or small patch of voxels may be detected,
which are likely to be false positives. Therefore, the NSR
extracted may be false positives. Fortunately, these false
positives are not that many, and their labels are available.
Therefore, they are also extracted and will be labelled as
non-nodule against benign and malignant nodules, and this
preliminary decision information can then be corrected at the
classification stage. To this end, we pre-train the detection
network at initialization so as to simplify its joint training
with the classification network.

Compared with pixel-wise NSR, using the NSR for feature
extraction the following benefits. Firstly, accurate morphol-
ogy information is prone to segmentation errors. Secondly,
it allows information/features surrounding the nodules to be

10Note, the bounding box is used for feature extraction. The final segmen-
tation output will be derived from these features as shown in the lower branch
of the joint network in Figure 3

TABLE 3. Convolution layer parameter.

extracted for performing the classification at the final stage.
Finally, even if the segmentation is extremely accurate, it may
be smeared by the subsequent convolution layers. Therefore,
more emphasis should be paid on the features of the nodule
voxels as well as its neighborhood. Hence, the final nodule
location map (NLM) is then generated based on NSR to
tolerate the mentioned effect.

For the extraction of the multiscale feature, the size of the
input voxel is 64× 64× 64, which will be down-sampled
4 times in the encoder network. Therefore, we have feature
maps of size 64, 32,16,8,4 as shown in Figure 3. The NLM is
also down-sampled to the same size of each feature maps,
as shown in Figure 4. For each feature map, we crop the
feature from the corresponding location in NLM. Follow-
ing the feature cropping, we further add 1× 1 convolution
layers to aggregate inter-channel information. An adaptive
max-pooling operation on the features is then performed
where the features from the first two voxel-based feature
extraction layers V1,V2 are pooled into a uniform spatial
size of 2 while those at the third to fifth layers V3,V4,V5
are pooled into a spatial size of 1. Because of the adaptive
max-pooling layer, the length of the final feature vector is
invariant to the size of the NSR, and it can be flattened and
concatenated among different scales.

The last step of the MVFNSE step is to concatenate the
nodule size information on the feature vector. It is widely rec-
ognized that nodule size is highly related to the malignancy
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level, and larger size usually increases with the probability of
being malignant. The pooling operation in step 2 is invariant
to nodule size, and therefore, we can directly add the informa-
tion to the concatenated features. The nodule size is estimated
as:

V =
1
10

3√P (1)

where V is the estimated nodule size and P is the number of
pixels for the given nodule in the NSR. The nodule diameters
vary from 3 mm to 30 mm and the resolution of segmentation
result is 1.0 mm × 1.0 mm × 1.0 mm. Since large values
in the features may dominate the classification performance,
the estimated size is scaled by a factor of 0.1, which is
determined empirically. It was found that the performance
is relatively insensitive to the choice. The final feature used
for classification consists of concatenated multiscale features
from step 2 and a dimension of estimated nodule size. Each
vector will pass through the linear layer and the softmax unit
to yield the classification output for all the nodules candidates
detected inside the voxel volume (please refer to Figure 4 for
more details).

D. PSEUDO-LABEL ASSIGNMENT FOR MARGINAL
SAMPLES (PLA)
In nodule classification, some nodules are labelled by 1 or
2 radiologists. However, radiologists are likely to be incon-
sistent on the malignancy level, especially all with a marginal
level of malignancy. To address this issue in training our net-
work, we propose a pseudo-label approach for those marginal
nodules to alleviate the effect caused by label uncertainty.
More precisely, the cross-entropy loss we based for training
is given by:

Lce = −
1
N

N∑
i

Tilog(pi)+ (1− Ti) log (1− pi) (2)

where Ti and pi are the malignancy score and the predicted
probability by the network respectively. Here, the labels
‘‘0’’ and ‘‘1’’ represent the benign and malignant nodules
respectively. However, due to label uncertainty, Ti is usually
not chosen as either 0 or 1 and the following soft-label is
preferred:

Ti = 0.25(Mi − 1) (3)

whereMi is the MS for the i-th nodule.
Here, we re-estimate the underlying label called the

pseudo-label p̂i for addressing those marginal nodule samples
and continuously adapting them based on the network predic-
tion obtained as well as the MS. Specifically, by initializing
the initial value of the pseudo-label with the soft-label in (3),
the resultant loss function using the pseudo-label is given by

L̃ce = −
∑
i

p̂ilog(pi)+
(
1− p̂i

)
log (1−pi)−α

(
p̂i − Ti

)2
(4)

where α is a regularization parameter that balances the influ-
ence of MS and network prediction on the pseudo-label. If α
is large, the pseudo-label will mainly depend on MS and L̃ce
will approach the cross-entropy loss. On the contrary, if α is
small, the pseudo-label is dominated by the network output,
which is not desirable because the training information Ti
cannot guide the learning process. The influence of alpha
on the classification result will be further studied in the
experiment section. By introducing the regularization in L̃ce,
the pseudo-label becomes adjustable. The gradient of L̃ce,
which is required for performing the optimization, is given
by:

∂L̃ce
∂pi
=

1− p̂i
1− pi

−
p̂i
pi

(5)

∂L̃ce
∂ p̂i
= log

(
1− pi
pi

)
+ 2α

(
p̂i − Ti

)
. (6)

We now briefly explain the advantage of the proposed
pseudo-label approach. Firstly, if the network prediction
result is consistent with the MS, the first term in (6) will
increase the certainty of the pseudo-label, which will implic-
itly increase the weight on this sample. For example, if the
network prediction value pi is 0.7, the first term in (6) is
negative and the corresponding p̂i will become larger during
optimization. This larger p̂i will increase the absolute value
of the gradient in (5), which in turn will encourage learning
from the sample. On the other hand, if the network prediction
is contradicting the MS, forcing the network to fit the sample
may lose the generalization ability of the network due to
the MS noise. Thus, for such samples, the first term in (6)
will drive the p̂i towards pi, which will implicitly lower the
weights of learning from such samples. Besides, the second
term in (6) is used to penalize the pseudo-label for large devi-
ation from Ti, which avoids large fluctuation in the pseudo-
variable. Thus, the pseudo-label can be regarded a weight
reflecting our confidence on the marginal label given the
original annotation as well as the current network knowledge.

The pseudo-label can be updated using gradient descent:

p̂t+1i = p̂ti − r2
∂L̃ce
∂ p̂i

(7)

where r2 is the learning rate for the pseudo-labels. Since
the pseudo-label represents the probability of malignancy,
it should be bounded between 0 and 1. Therefore, the update
in (7) is further projected on these bound constraints as:

p̂t+1i =


0, if p̂t+1i < 0
p̂t+1i , otherwise
1, if p̂t+1i > 1.

(8)

E. JOINTLY-OPTIMIZED OF NODULE SEGMENTATION
AND CLASSIFICATION (JNSC)
The proposed JNSC network comprises of a nodule detection
module and a nodule classification module with a shared
structure for information exchange. The features for nodule
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classification can be extracted from the encoder of the nodule
detection module, which provides additional information for
feature extraction. For training this joint network, we first
train the nodule classification network for 100 epochs using
the pixel-wise cross-entropy loss:

Lseg = −
∑
i

Silog(pi)+ (1− Si) log (1− pi) , (9)

where Si denotes the probability of the pixel belonging to
the nodule. After the initialization of the nodule segmen-
tation network, the output segmentation may still gener-
ate many false-positive nodules. To overcome this problem,
we extract not only features for true positive nodules, but
also those false positive nodules for classification. Moreover,
the false-positive nodules are labelled as non-nodule with
probability 1.

The network is then trained jointly. For the following 100
epochs, we do not update the pseudo-label because the net-
work prediction is unstable at these early stages. Finally, the
segmentation and classification modules are properly initial-
ized, and the network can be optimized using the following
cost function:

L = Lseg +
(
Lce + L̃ce

)
. (10)

Different from [34] where the segmentation and classi-
fication networks are trained iteratively, the parameters in
both the detection and classification modules of the proposed
JNSC can be updated simultaneously.

Additionally, because the parameters in our network are
differentiable, the parameters can be optimized by efficient
optimizer like Adam. In each epoch, which consists of a
number of iterations, the network parameters are updated at
each iteration. Since the parameters are likely to sufficient
training after each epoch, each pseudo-label will be updated
after each epoch. To reduce the effect of previous gradient,
the pseudo-labels are directly updated by gradient descent
without momentum.

F. IMPLEMENTATION DETAILS
Our proposed network mainly consists of three convolution
layers, and the parameters of the convolution layers are
listed in TABLE 3. Each convolution layer is followed by
an instance normalization [55] layer and a ReLU layer. The
Adam optimizer optimizes the parameters in our network
with default settings in PyTorch. The initial learning rate is
0.001, and it is decreased every 250 epochs with a factor
of 0.2. The maximum training epoch is set to 1000 and the
batch size is 12. The spatial dropout strategy is applied to
the 3-D convolutions with a dropout rate of 0.1. We also
employ gradient clipping during the optimization by clipping
the gradient to 1 if the L2 norm of the gradient is larger than
1 for the sake of stability.

Since the number of benign nodules is almost 2 times that
of the cancer nodules, class-imbalance problem will occur.

Specifically, the non-nodule pixels in Lseg and benign nod-
ules in Lce will dominate the training phase if no balancing
mechanism is used. To leverage this problem, we, therefore,
adopt different weights in the cross-entropy loss. Specifically,
in the nodule detection module, they are chosen as 0.01 and
0.99 for nodule and non-nodule pixels, respectively. On the
nodule classification module, the weights for the malignant,
benign, and non-nodule classes are set to 0.35, 055 and 0.1,
respectively. In principle, the weights are chosen as the ratio
of samples in the two classes. Of course, one can increase
the weight to allow the network to focus more on the cancer
samples. The weights in the nodule segmentation also adopt
a similar criterion, where the weight of non-nodule pixels is
about 100 times that of the nodule pixels. The performance
does not depend critically on these weights as long as they
can reflect the difference in the sample number between
classes.

V. EXPERIMENT RESULTS
A. NODULE DETECTION
We first evaluate the performance of the nodule detec-
tion performance of our JNSC and other state-of-the-art
algorithms on the LUNA16 dataset. The standard ten-fold
cross-validation of LUNA16 competition is adopted and
the standard evaluation script is used to compute the
Free-response Receiver Operating Characteristic FROC
curve.

To extract the nodule candidate from the 3-D nodule detec-
tion probability maps, we first set the detection threshold
to 0.4 and label the connected regions in the segmentation
map based on their voxel connectivity [54]. Then, the region
proposals can be extracted from the labelled map, and the
center is calculated by the centre of mass of the proposed
regions. Lastly, we use non-maximum suppression [56] on the
proposed regions and exclude those with diameter less than
3 mm. Figure 5 shows five examples of our nodule detection
results with a wide range of nodule diameters. To visualize
the 3-D segmentation result in a 2D figure, we present the
cross sections of the nodules as well as the corresponding
segmentation maps along the x-y, y-z and x-z planes. It can
be seen from Figure 5 that the detected regions are relatively
larger than the ground truth.

Moreover, as shown in Figure 5 (b), our network can detect
tiny nodules while distinguishing the small nodule from other
body tissues like vessels. The resolution of CT scans in the
z-axis is much lower than the resolution in the x- and y-axis.
For instance, the resolution in the x- and y-axis is usually
0.7 mm per pixel, but the resolution in the z-axis can vary
from 1.25 to 3 mm per pixel. To ensure similar accuracy in
the three dimensions, we employ interpolation to convert the
resolution along the three dimensions to 1 mm per pixel. The
result shows that our network can tolerate the problem of
different resolutions and achieve similar performance on the
three dimensions.
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FIGURE 6. FROC of nodule detection of our JNSC. The orange line is the
result by joint optimization of detection and classification. The blue line
shows the result of JNSC without classification where the detection
outputs are regarded as final result.

1) PERFORMANCE OF JOINTLY OPTIMIZED NODULE
DETECTION
To verify the effectiveness of the structure, we compare the
performance of our proposed approach on nodule detection
under standard settings with and without the classification
phase.11 The FROC under the two settings is
shown in Figure 6. As shown in Figure 6, the jointly-

optimized approach significantly outperforms the detection
only case. More specifically, the sensitivity of JNSC with
classification at 0.125 false positives per scan is 0.776, while
that of the classification only case is 0.630. Because the
undetected nodules at low false-positive levels are primarily
small ones, the joint optimization approach is capable of
significantly improving the detection performance on such
tiny nodules, which is essential to the early detection of the
disease.

The detection module of the JNSC is trained using the
pixel-wise cross-entropy cost function. Since large nodules
have more pixels, they will dominate the performance at the
training phase as the gradients are mainly backpropagated
from these large nodules. Consequently, the small but impor-
tant nodules can easily be neglected. Moreover, despite the
shortcut path, the gradient backpropagated from the decoder
may be less sensitive to the small nodules. On the other
hand, the direct path of our JNSC to every encoder helps to
propagate the gradient from the classification network to train
the encoder so that undetected small nodules can be distin-
guished from the non-nodule region during the training phase.

11In the detection without classification case, the outputs from the detec-
tion phase are directly evaluated using standard evaluation script. The joint
training case will further classify the outputs as non-nodule, benign and
malignant. Afterwards, benign and malignant nodules in the final result are
evaluated. The result shows the classification stage can significantly reduce
false positive nodules.

It can facilitate the detection of those small nodule regions
which are not detected by the detection network alone. It is
also observed that the information backpropagated from the
direct path is much more direct and effective than those back-
propagating from the gradient of the classification network,
due to the large separation between the classification output
and the detection encoder. Moreover, the classification phase
performs the simultaneously false-positive reduction, which
further improves the detection rate.

Additionally, from Figure 6, the proposed JNSC with
and without classification achieves respectively an impres-
sive sensitivity of 0.953 and 0.942 at 8 false positives per
scan, which further demonstrates the effectiveness of joint
optimization.

2) COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
ON NODULE-DETECTION
We adopt the standard train-test split in the LUNA16 com-
petition for a fair comparison. The competition performance
metric (CPM) is defined as the average sensitivity at 0.125,
0.25, 0.5, 1, 2, 4, 8 false positives per scan. The result is shown
in TABLE 4.

TABLE 4. Comparison of Competition Performance Metric (CPM) with the
State-of-the-Art Algorithms on LUNA16 Dataset.

ZNET [13] and Aidence [13] are the participants of the
competition and win the first and second places. ZNET uses
a 2-D U-Net [36] architecture and computes the nodule prob-
ability map slice by slice. Though the 2-D network cannot
fully utilize the 3-D structure of the nodules, the parameters
to be trained are much less than the 3-D network. The ZNET
achieves a CPM of 0.811 and a sensitivity of 0.915 at 8 false
positives per scan. The detailedmethod of Aidence is unavail-
able because of commercial confidentiality. The Aidence also
achieves a CPM of 0.807 on the competition.

Despite the advantage of having fewer parameters in 2-D
networks, 3-D neural networks are preferred recently due
to its ability to detect 3-D patterns and the increased avail-
ability of computational power. DeepMed [8] was extended
to a 3-D architecture, but the network is relatively shal-
low. Also, an independent false-positive network is trained
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to distinguish the detected candidates. Our JNSC is deeper
than [8], which can capture more complicated structures and
the false-positive reduction stage is implicitly incorporated
into the JNSC. SDFPR [4] and DeepLung [9] adopt faster
R-CNN structure which performs the regression of nodule
location as well as probability but not pixel-wise segmenta-
tion as in our JNSC. Their encoder-decoder architecture is
similar to our network, but our network has an additional
shortcut path to the encoder. Hence our network can be more
sensitive at a low false-positive level. For example, our JNSC
obtains 0.776 sensitivity at 0.125 false positives per scan,
while SDFPR [4] is approximately 0.62.

The 3D-CNN in [25] uses a combination of 2-D and
3-D networks where the 2-D network is used for candidate
detection while the 3-D network is used to classify false
positives. The candidate detection network can benefit from
the pre-trained VGG network while the 3-D network can
only be trained from scratch. The conditional non-maximum
suppression in [25] is superior to normal NMS. However,
the two networks are still independent of each other while
our network adopts a joint optimization approach. The result
shows that the CPM of our JNSC outperforms [25] by 2.4%.

The S4ND [35] employs a single end-to-end network and
replace convolution blocks with densely connected convo-
lution blocks. The results from [35] show that densely con-
nected block outperforms regular residual connection.

However, S4ND does not perform false positive reduction
after detection, while a considerable number of tiny nodules
are, in fact, body tissues. Our JNSC jointly achieves false
positive reduction with the help of the classification network
and outperforms state-of-the-art algorithms.

B. NODULE CLASSIFICATION
We now evaluate the nodule classification performance using
the LIDC-IDRI dataset. As described in section VI, the uncer-
tain nodules are excluded from evaluation.12 We randomly
split the 1018 scans into ten subsets and adopt 10- fold
cross-validation to report the result. Additionally, each fold
is trained five times to reduce the effect of network initial-
ization. Note that the uncertain nodules in the testing set are
excluded from calculating the accuracy.

The classification network in our proposed JNSC requires
the segmentation result from the nodule detection network to
perform multiscale voxel-based feature extraction. In order
to compare with other classification only algorithms, those
undetected nodules are directly labelled as benign. We have
also neglected the false positives in the nodule detection
process.

1) COMPARISON WITH THE STATE-OF-THE-ART
ALGORITHMS ON NODULE CLASSIFICATION
To our knowledge, few studies report the end-to-end result,
and therefore, the comparisons can hardly be absolutely fair.

12We follow the common practice that nodules withMS = 3 are excluded,
as such these nodules are uncertain as to benign or cancer.

TABLE 5. Lung Nodule Classification Results of the State-of-the-Art and
The Proposed Algorithms on LIDC-IDRI Dataset.

Therefore, we report algorithms using the same MS and CT
scans as ours. It should be noted that our system is end-
to-end, which is more challenging than just classification
of the nodules as nodules detection process may itself be
error-phone. On the other hand, our framework is closer to
a realistic operating environment.

The accuracy, sensitivity, and specificity of the proposed
approach on nodule classification is reported and compared
with state-of-the-art algorithms. Moreover, as there are more
negative samples than positive samples in the dataset, the
network is likely to perform better on the negative samples
(thus, the specificity is usually higher than the sensitivity).
Hence, the negative samples will have more influence on
the accuracy. To illustrate the overall performance of the
algorithms despite these effects, we also report the balanced
accuracy to better reveal and compare the performance. More
precisely, the definition of the balanced accuracy is

BalancedACC =
Sensitivity+ Specificity

2
(11)

Furthermore, to verify the effectiveness of the segmenta-
tion information in the proposed joint-optimization approach,
the NSR is replaced by the ground truth region and the JNSC
is trained without segmentation, i.e. it is operated in classifi-
cation only mode. Particularly, we do not backpropagate the
gradient from the segmentation module so that the encoder is
trained only by the classification network. The results show
that the joint training performs better than the classification
only mode.

As shown in TABLE 5, our proposed JNSC achieves the
highest balanced accuracy and sensitivity among the algo-
rithms. Although the 2D-MV-KBC [16] has the best accu-
racy, the higher accuracy results from the imbalanced classes
where specificity can contribute more to the overall accuracy.
Moreover, 2D-MV-KBC only considers the classification on
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the extracted nodule patches while our algorithm does not
require the nodule location to be known in the training phase.
Although the 2-D U-Net is adopted for labelling the nodule
from the patch, training the network on the extracted patches
is still much easier than for the entire CT scans because the
extracted regions will be free from the interference of many
other body tissues. Moreover, it is required to train 27 inde-
pendent networks in 2D-MV-KBC so that their results can
be aggregated. Its complexity will be significantly increased.
In [16], a three-dimension network with 3 independent net-
works based on ResNet-50 is also proposed. Experimental
results show the 2-D network outperforms the 3-D network,
which is likely due to the fact that the 2-D network can benefit
from the pre-trained ResNet-50 network.

On the other hand, the proposed 3D JNSC can be trained
from scratch since the nodule detection network can pro-
vide additional information in the form of regularization
to alleviate the overfitting problem caused by insufficient
training samples. Moreover, the encoder in our JNSC is
trained on the whole CT image which can also distin-
guish other body tissues for nodule detection. The experi-
ment results show that the joint detection and classification
framework is superior to the classification only approach
with an improvement of 1.25% accuracy. Overall, our
approach is more practical for automatic cancer and nodules
detection.

The MC-CNN [15] is the first to introduce the approach
of cropping nodule-specific feature, which is similar to our
multiscale feature extractionmethod. However, our algorithm
differs from [15] in that: i) our extraction is based on the
nodule detection while MC-CNN uniformly extracts multi-
scale feature by using successive max-pooling on each fea-
ture, ii) MC-CNN requires nodule-centric inputs (i.e. the first
identification of the location of the nodules to be classified
by the network) while our JNSC is more flexible in that
the nodule can occur anywhere in the voxels and our fea-
ture extraction is invariant to the nodule location. Moreover,
MC-CNN employs 2-D convolution given the 3-D inputs (i.e.
as multiple 2D channels), and hence the information among
slices may not be efficiently exploited.

In conclusion, our JNSC is at least comparable to the state-
of-the-art nodule classification algorithms with respect to
accuracy, sensitivity, and specificity for classification alone
task. On the other, the JNSC is fully automatic and does not
require pre-selected inputs of the detected nodules. Actually,
it can be operated in an end-to-end manner.

2) ANALYSIS OF THE EFFECT OF PSEUDO-LABEL
To examine the effect of labels on the classification perfor-
mance of our approach, experiments are performed on the
following three cases: 1) assigning hard label to nodules,
by which each nodule is labelled either ‘‘0’’ or ‘‘1’’; 2) substi-
tuting the hard label by soft label, by which nodule is labelled
based on MS in (3); and 3) replacing the soft label by our
pseudo-label for the marginal nodules. The results are shown
in TABLE 6.

TABLE 6. Evaluation of the Nodule Classification Performance over
Regularization Parameter on L2

ce.

Apparently, the performance of using the hard label is the
worst among the three methods. This phenomenon reveals
that classification in the biomedical area is different from nat-
ural image recognition because ground truth is not absolutely
correct. Inconsistent labels may arise in the biomedical area
due to human errors. It is noted that we are not proposing a
physical model to accurately model the probability that the
label is uncertain. Instead, we empirically estimate the reli-
ability of the marginal samples and its associated labels via
the cross-entropy loss function so as to prevent the network
from overfitting these less reliable samples, which affect the
overall performance. Consequently, assigning soft-label in
classification can significantly improve classification accu-
racy. However, soft label requires the estimation of proba-
bility, which may also introduce additional noise when only
a few annotations are available. In this study, we assume
that the nodules annotated by at least three radiologists are
reliable, while nodules annotated by less than three radiolo-
gists and not highly confident are marginal. We then estimate
and update a soft label in the form of pseudo-labels for
the marginal nodules based on the annotation and network
prediction to reduce the noise mentioned above.

To visualize and validate the effectiveness of the pro-
posed pseudo-label during the training phase, the histograms
of pseudo-labels before and after training under differ-
ent regularization parameter α are shown in Figure 7.
Figure 7 (a) plots the initial distributions of pseudo-labels.
Note that the data is acquired on a randomly selected fold.
We then examine the effect of α on pseudo-labels. As shown
in Figure 7 (b), lower α pushes the pseudo-label towards
the boundary, where pseudo-labels are similar to hard labels
on the marginal samples. This can be explained by the fact
that the network prediction results dominate the pseudo-label
update. However, this is undesired because little information
can be learned from the marginal nodules. The result shows
that the network tends to fit the benign nodules, and the
highest specificity is achieved and the overall performance
is inferior to the soft label. When α grows larger, we observe
from Figure 7 (d) that α still forces the pseudo-label towards
the boundary, but the changes are less severe than before.

Moreover, the network increases the malignancy proba-
bility of some benign nodules, revealing that the network
treats such nodules as malignant. The network is not trained
to mine the marginal samples. Instead, it relies more on the
certain data for classification as themarginal samplesmay not
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FIGURE 7. Visualization of pseudo-label before and after optimization on a random selected fold. The nodules with
malignancy probability less than 0.5 are regarded as benign nodule. The probability deviation is calculated by subtracting
the pseudo-label after training to its initial value. (a) is the histogram of initial pseudo-labels. The four figures on the left
column are the histograms of pseudo-labels after the optimization under different regularization power. The four figures on
the right are the deviation of pseudo labels after the optimization.

be absolutely correct due to label uncertainty. The problem
is commonly encountered in biomedical applications where

ground truthmay not be precisely gauged from limited human
labels. This is in great contrast to natural image classification
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and language understanding where such labels are usually
correct, except for occasion human errors. In summary, the
pseudo-label approach addresses the label uncertainty by
incorporating the network prediction results or knowledge in
addition to the label provided.

Next, we observe that the regularization power does not
grow linearly with increasing α. Figure 7 (h) shows that
α = 20 performs similarly as 10. When α is set to 10,
the majority of pseudo-labels only vary in a small range as is
shown in Figure 7 (g). It is reasonable that the network predic-
tion and ground truth annotation are balanced under α = 10,
thus achieving the best overall performance. Theoretically,
when α grows to infinity, the annotation should govern the
pseudo-label, which is identical to soft label. We do not
explore larger α and 10 is selected as the default value in this
study.

3) ANALYSIS ON MULTISCALE FEATURE EXTRACTION
Our proposed JNSC relies on the features from several
encoders to perform nodule classification. Hence, it is impor-
tant to evaluate the effect of the number of the multiscale
features on the classification performance. The experiment
is designed to observe the classification performance over
concatenating features from first encoder V1 to the deepest
level V5. Note that the nodule size is still concatenated to the
feature.

As shown in TABLE 7, the classification performance
generally improves as deeper features are added. Although
discarding the feature up to V4 yields higher accuracy and
specificity, the performance is comparable to that of concate-
nating all features after considering the balanced accuracy
and sensitivity. Therefore, to maintain the consistency of the
structure, we do not discard the feature from V5.

TABLE 7. Performance of nodule classification with multi-scale features.

The reason for such a behaviour can be explained as fol-
lowed. As features of different scales are extracted from the
corresponding location in multiscale feature map, the con-
volution operation can expand the reception field, which
means that the extracted features usually represent a larger
region in the input CT images. For the features from V1 and
V2, the effect is negligible. For the feature from V5, such
effect can somewhat affect the classification, especially on
small nodules because it may encode the information of other
body tissues. Meanwhile, the small nodules are likely benign
nodules and thus the specificity decreases after adding V5
features.

VI. DISCUSSION AND FUTURE WORK
A deep-learning based approach for joint detection, seg-
mentation and classification of nodules from 3-D CT scans
has been proposed. Moreover, the concept of pseudo-label
has been proposed to tackle the problem of label uncer-
tainty, which is commonly encountered in biomedical data.
While most algorithms proposed focus on either detection
or classification, the proposed algorithm operates in an
end-to-end manner, which provides detection and classifi-
cation of nodules simultaneously together with a segmen-
tation of the detected nodules. Experimental results show
that it outperforms the state-of-the-art nodule detection algo-
rithm, and yields comparable performance as state-of-the-art
nodule classification algorithm while classification alone is
considered.

While natural images are often in two-dimension, biomed-
ical images, such as CT and MRI, are often in three-
dimension. Since it is usually difficult for human to efficiently
visualize these three-dimension data for detection, detail seg-
mentation and classification of region of interest, the pro-
posed algorithm offers a promising approach in developing
similar computer-aided diagnosis systems.

In this work, we have employed a multi-task framework,
which combines the detection and classification in a single
network. Such an integrated approach allows essential infor-
mation to be exchanged between individual subnetworks and
lead to higher performance in both tasks. Moreover, in many
practical applications, it is required to be able to provide
users with the detailed location or morphology of the objects
of interest, in addition to the final decision. In this work,
we further extend the nodule detection to pixel-wise nodule
segmentation, where a more accurate shape or morphology
description of nodules can be obtained. Therefore, the present
framework may also be useful in related applications.

Some limitations do exist in our study. Firstly, the
patient-level prediction is not studied in this work. Secondly,
the slice thickness of various CT scans can vary dramati-
cally. The nodule detection competition (LUNA16) manu-
ally excludes the scans whose slice thicknesses are larger
than 2.5 mm. The diameter of the small nodules is around
3 mm, which is very close to the slice thickness. Therefore,
the low and variant resolution on the z-axis is another dif-
ficulty in nodule detection, especially for the small nodules.
Many studies [57-60] have adopted the deep-learning-based
super-resolution approaches to address the problem in CT
and MRI images. It is interesting to incorporate the super-
resolution into the proposed nodule detection and classifica-
tion framework.

VII. CONCLUSION
A joint lung nodule detection and classification network for
end-to-end lung nodule detection, segmentation and classi-
fication subject to possible label uncertainty in the training
set has been presented. It operates in an end-to-end man-
ner, which provides detection and classification of nodules
simultaneously together with a segmentation of the detected

VOLUME 8, 2020 228919



L. Chenyang , S.-C. Chan: Joint Detection and Recognition Approach to Lung Cancer Diagnosis From CT Images

nodules. A 3D encoder-decoder architecture is adopted for
better exploration of the 3D nature of the data. The nodule
classification subnetwork of the joint network utilizes the
features from the encoder output of the detection subnetwork
and the multiscale nodule-specific features for boosting the
classification performance. This valuable prior information
also allows the more complicated 3D nodule classification
encoder network to be optimized directly with improved per-
formance on both tasks. Evaluation using the LUNA16 and
LIDC-IDRI datasets shows that the proposed nodule detector
outperforms the state-of-the-art algorithms and yields com-
parable performance as state-of-the-art nodule classification
algorithms when classification alone is considered. Finally,
since our joint detection/recognition approach can directly
detect nodules and classify its malignancy instead of perform-
ing the tasks separately, our approach is more practical for
automatic cancer and nodules detection.
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