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ABSTRACT Medium-voltage (MV)multilevel converters are considered a promising solution for large scale
photovoltaic (PV) systems to meet the rapid energy demand. This article focuses on reviewing the different
structures and the technical challenges of modular multilevel topologies and their submodule circuit design
for PV applications. The unique structure of the converter’s submodule provides modularity, independent
control of maximum power point tracking (MPPT), galvanic isolation, etc. Different submodule circuits and
MPPT methods to efficiently extract the PV power are reviewed. The integration of the multilevel converters
to PV systems suffers unbalanced power generation during partial PV shading conditions. Several balancing
strategies to solve this problem are presented and compared to give a better understanding of the balancing
ranges and capabilities of each strategy. In addition, the paper discusses recent research advancements, and
possible future directions of MV converters-based large-scale PV systems for grid integration.

INDEX TERMS Multilevel converters, PV systems, modularity, balancing strategies, grid.

I. INTRODUCTION
Among different distributed energy resources (DER)s, solar
photovoltaic (PV) energy production is gaining an increasing
share in the electricity market. Further growth is planned
by many countries in an aim to achieve 100% renewable
grid [1], [2]. These developments result in creation of new
markets, installation of more GW power plants, and PV
modules price decline [3], [4]. Global solar PV capacity has
reached 627 GW driven by a growing number of residential
and commercial installations, as well as utility scale projects
[3]. New opportunities rise from hybrid solar PV-hydropower
systems with floating solar PV modules where land area is
limited [3].
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The common structure of large-scale PV power plant con-
sists of solar PV modules, dc-dc converters, PV inverters,
line filters, and a medium-voltage (MV) transformer. The PV
inverter is considered the heart of the solar PV plant as it
manages the power flow through the system and connection
to the grid. Centralized PV inverter technologies have been
commercially used in constructing large-scale PV plants for
decades [5], [6]. However, they suffer from the low volt-
age/power ratings, and efficiency loss because of the cen-
tralized maximum power point tracking (MPPT) control [6].
Fig. 1 shows the common structure of the traditional large-
scale PV power plant. The MV transformer is an essential
part of the plant and its objective is to provide both galvanic
isolation for the PV system and connection to the MV grid.
Nevertheless, the use of bulky and heavy power transformers
significantly increases the system cost, weight, and volume.
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FIGURE 1. Typical structure of a large-scale PV power plant.

In an effort to achieve more voltage and power lev-
els, multilevel inverters have been selected to replace the
two-level inverter inside the PV plants. Three-level neutral
point clamp (NPC) inverters are introduced for PV applica-
tions due to design simplicity and availability in the mar-
ket. However, NPC topology requires a common DC link
which reduces its modularity and efficiency ofMPPT control.
Moreover, the excessive number of clamping diodes with
increasing the number of levels would be a main drawback
for the MV grid applications [4], [6]–[8].

Hence, new modular structures of high-performance PV
inverters are required to achieve modularity, higher effi-
ciency, power density and voltage/power levels. As superior
candidates, two main topologies of multilevel converters,
namely Cascaded H-bridge (CHB) Converter and Modular
Multilevel Converter (MMC), show outstanding performance
by combining all the requirements of the new PV inverter
structure. Both converters feature independent MPPT con-
trol, modular structure, can be directly connected to medium
voltage grids, and higher efficiency compared to other mul-
tilevel topologies [4], [9], [10]. An essential part in these
topologies is the submodule (SM) circuit in which the power
flows from the PV modules to the inverter ac terminals. The
design of the SM circuit should provide grounding of the PV
arrays, efficient MPPT control, and high power density [11].
Despite the unique features of CHB and MMC, the power
mismatch among the converter legs and cells during severe
undistributed PV power generation is considered the major
challenge for these topologies. The need to introduce a bal-
ancing strategy to alleviate this power mismatch and control
the power flow of the converter has been of interest to the
research community [12], [13]. While modular topologies are
gaining more interest in research studies, their use is limited
in industrial applications for large-scale solar PV systems.

This article focuses on reviewing recent advancements
of PV-MV converters, their technical challenges and design
requirements. Different multilevel converter configurations,
SM circuit topologies, and MPPT control are investigated.
The work also presents a comparative study on the dif-
ferent control methods and power balancing strategies.

FIGURE 2. The structure of the Cascade H-bridge Multilevel Converter
(Star configuration).

In Sections II and III, an overview of both the CHB andMMC
topologies is provided. Then, an overview of different SM
circuits and MPPT controls for the integrated PV arrays are
explored in Section IV. In Section V, a comparative analysis
on the performance of the balancing strategies applied for
CHB and MMC topologies is conducted. Then, the paper
discusses the recent advances and future trends related to the
MV-PV plants in Section VI.

II. THREE-PHASE CHB CONVERTER BASED PV SYSTEMS
The CHB converter topology is considered one of the most
promising topologies among the multilevel converters family
due to its unique structure [7], [14]. The CHB topology
consists of several cascaded connected H-bridge cells with
isolated dc power supplies as their input. The CHB topology
is used for motor drives, static synchronous compensator
(STATCOM), active power filter (APF), and battery storage
applications [15]–[20]. The limitations of the CHB topology
due to the need of multiple isolated power supplies, are
an advantage for PV applications due to the ability of PV
arrays to work as separate dc sources. The CHB converter
offersmodularity, scalability, and independentMPPT control.
It has been proposed for various PV applications like low
voltage grid-connected rooftops and MV large scale plants.
The single-phase CHB converter is likely to be used for low
voltage grid connections as proposed in [21]–[23], while the
three-phase configuration is used for large scale PV systems
as described in Fig. 2. The use of the CHB topology for PV
applications was presented in three different configurations:
separated PV modules, common magnetic link, and common
dc link [24]–[35].

A large-scale grid-connected PV system with cascaded
H-bridge cells connected to PV modules through isolated
current fed dual active bridge (CF-DAB) dc-dc converters
was proposed in [24], [25]. The CF-DAB converter was
used to provide galvanic isolation and grounding of the PV
arrays with more control degree-of-freedom. In addition,
the authors proposed the use of film capacitors to reduce
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large low-frequency dc voltage ripples coming from the PV
converters. A three-phaseMV Star-connected CHB converter
using SiC-based isolated unidirectional cells for PV integra-
tion was presented in [26]. The use of a forward solid-state
transformer (SST) based forward-DAB (F-DAB) eliminates
the use of line-frequency transformer (LFT) and provides
galvanic isolation to the PV arrays. Moreover, it is considered
as a better solution compared to DAB converters since bidi-
rectional power flow is not required for PV applications. The
proposed F-DAB has superior characteristics (e.g., higher
power density, lower costs) compared to other unidirectional
converters [11].

In [27], [28], a three-phase CHB converter designed for PV
integration to the grid was proposed. As shown in Fig. 2, the
converter consists of nine H-bridge cells to generate a 7-level
output voltage waveform. Each cell consists of PV modules
connected to a unidirectional single active bridge (SAB) with
a high-frequency transformer (HFT) to provide both insu-
lation for PV arrays and higher voltage gain of the dc-dc
converter. The converter was designed to work under unbal-
anced PV power generation. An alternative configuration for
PV systems based on a Delta connection for the same CHB
converter, presented in [29], expands the power balancing
capabilities of the system compared to the Star connection
converter. It also provides smaller voltage and current over-
rating to allow the operation of the converter under low irra-
diance conditions. In this sequence, [30] presented a modular
MV single Delta bridge cell (SDBC) converter with low
grid voltage ride-through capabilities for PV applications.
The structure of the grid-connected PVDelta-connected clus-
ters is depicted in Fig. 3. For each cluster, several cas-
caded H-bridge cells combined with isolated dc-dc converters
directly transmit power from PV arrays to the grid terminals
without the need for an LFT. The use of isolated dc-dc
converters is to ensure the distributed MPPT control and
grounding of the PV arrays. A further assessment of the
system performance and balancing capabilities was discussed
in [13], [31]. The voltage overrating in the Star configuration
and the current overrating in the Delta configuration are the
challenges faced by these systems.

The use of high-frequency magnetic links has been pre-
sented in [32], [33], [36]. However, the design and selection
of the core are major concerns because of the high switching
frequencies up to hundreds of kHz. In other words, core
materials with high saturation flux density and low core loss
is highly recommended. The development of amorphous and
nanocrystalline magnetic materials has gained more inter-
est in high power, high-frequency applications due to their
enhanced electromagnetic characteristics [37]–[39]. In [32],
a MV-CHB topology using a common high-frequency mag-
netic link for direct integration of PV sources was proposed.
Several PV arrays are connected to the common HF link,
which feeds the H-bridge cells of the converter using isolated
dc sources. The proposed system can solve the problems
of insulation of PV arrays, MPPT and voltage imbalances.
However, it suffers from lower reliability and higher cost due

FIGURE 3. The structure of the Cascade H-bridge Multilevel Converter
(Delta configuration).

FIGURE 4. MV converter-based HF magnetic link for grid-connected PV
plants.

to the non-modular structure and multiple power conversion
stages. Moreover, the power ratings of the HF links are lim-
ited due to large leakage inductance. Instead of a high power
magnetic link, the use of multiple low power HF magnetic
links was proposed in [33] to solve the aforementioned prob-
lems. Fig. 4 shows the structure of a five-level, three-phase
CHB topology for integration toMV grids. The H-bridges are
connected with several high-frequency magnetic links that
consist of one primary winding connected to the common dc
source, i.e. PV arrays, and three secondary windings for the
three-phase connection. The main challenge remains for the
design and cost of the magnetic core.

Amulti-string PV configurationwith a common dc-link for
large scale PV systems was proposed in [34] and experimen-
tally validated in [35]. The system structure contains several
PV strings along with their dc-dc converters connected to a
common dc bus. Then, the common dc bus is used to energize
the H-bridge cells of the grid-tied inverters through isolated
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fly-back dc-dc converters. The system achieves galvanic iso-
lation and independent MPPT but with comparatively lower
system efficiency and higher cost due to the increased number
of conversion stages. Moreover, compared to other isolated
topologies, although fly-back converters are known by their
economic and simple design, it suffers discontinuous output
currents, which increase generated harmonics, and reduce the
efficiency of the converter.

III. THREE-PHASE MMC BASED PV SYSTEMS
The MMC, firstly proposed in [40], has been suggested as
an alternative to other multilevel converters in many indus-
trial applications like High voltage direct current (HVDC)
transmission [41]–[43], industrial motor drives [44]–[46],
and STATCOM [47], [48]. The MMC features modularity,
scalability, fault-tolerant ride-through, and enhanced capabil-
ity to deal with unbalanced conditions, compared to CHB
topologies. The MMC topology consists of two arms per
phase. Each arm has several SMs connected in series. Each
SM typically consists of half bridge or full bridge cells.
The MMC topology is considered as the evolution of CHB
topology. Themain difference in structure betweenMMCand
CHB topologies is the existence of the common dc link and
arm inductors [49].

The use of MMC for solar PV applications is currently
investigated and yet to be an established technology com-
pared to other applications. Research studies can be classified
into projects which used MMC with a common dc-link and
others that used it with separate PV arrays connected to their
SMs. A single-phase MMC with a common dc link was
presented in [50]. This article introduced a new capacitor
balance control based on the concept of the virtual submod-
ule (VSM) using the so-called selective virtual loop mapping
control. This control allows voltage balancing for many SMs
without an additional computational burden. This method is
based on a continuous loop mapping change between the
VSMs and the real SMs to equalize the capacitor voltages
even with asymmetrical SMs. However, due to the usage of
a centralized PV structure, the power generated under partial
shading severely reduces because of Central MPPT and lower
voltage ratings.

Reference [51] introduced a new circuit topology of the
MMC for integrating PV distributed generation systems.
Unlike conventionalMMCs, arm inductors are replaced by an
open-end transformer to reduce the electrical stresses on the
MMC. By splitting the arm inductors into two windings,
the proposed circuit can reduce each of the voltage rating of
the power devices, the SM’s capacitor size, and the required
dc bus voltage from the PV plant. This modification reduces
the complexity and dimensions of the converter. Yet, it uses
the PV system as the dc-link of the MMC. The system still
suffers from the central MPPT problem which affects the
efficient use of all the power generated from the PV system.

Amulti-string PV configuration using high gain dc/dc con-
verters connected in parallel to construct a common dc-link as
an input to the MMC was implemented in [52]. This system

FIGURE 5. The structure of Modular Multilevel Converter with distributed
PV arrays and FB submodules.

structure guarantees distributed MPPT among all PV strings
and allows the application of conventional MMC topology
and control. However, the shaded PV strings are enforced
to work near MPP power as dc-link voltage should be kept
constant. Furthermore, the use of boost converters does not
provide galvanic isolation to the PV system which requires
an LFT. The use of the transformer increases the cost and
losses for the whole system. Also, the parallel connection of
PV strings will limit the use of high dc-link voltages and adds
more concerns about the use ofMMC for such an application.

MMCs with solar PV integrated SMs have been proposed
recently [53]–[55]. The MMC is becoming a potential can-
didate for the future of MV-PV plants due to its unique
capabilities such as independent MPPT for PV modules,
enhanced power quality, modularity, and scalability. Besides,
it permits direct connection of the PV arrays to MV grids by
adding more SMs connected in series, so the LFT is no longer
needed. This topologymay improve the efficiency and reduce
the cost of the whole system [56], [57].

A three-phase MMC topology based on PV multi-strings
connected directly to the SMs of MMC was presented in
[53]. This multi-string configuration was used to achieve
the advantages of MMC. The main challenge of this system
is to mitigate power imbalance under any solar irradiance
conditions. Fig. 5 shows the system structure of the MV-PV
converter. For one SM, an isolated fly-back converter with
PV power input is connected to the H-bridge cell to transmit
PV power to the grid through the converter legs. However,
the H-bridge cell is usually used for bi-directional power
flow and dc fault ride through operations [57], which is not
required for this configuration as PV power is unidirectional,
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FIGURE 6. Modular multilevel converter for direct integration of PV arrays
without dc-dc converter stage.

and the system has no common dc-link. The system provides
distributed MPPT and galvanic isolation for the PV modules.

In [54], a new topology of MMCwith PV arrays integrated
into the SM was proposed. Fig. 6 shows the system structure
which allows the independentMPPT control without the need
of dc/dc stage which reduces the cost and losses of the system
at the expense of galvanic isolation. The topology structure
consists of several power modules (PM)s which are directly
connected to the PV arrays. An extra redundant module (RM)
was added to each arm to compensate for the SM voltage loss
due to partial shading. The corresponding control canmanage
the multi-peak optimization problem of MPPT under partial
shading conditions. The proposed structure may offer power
balancing among the converter arms during partial shading
conditions. Reference [55] proposed a MV-MMC for a PV
system with power balancing capabilities. In the SM circuit,
the authors used an isolated DAB dc-dc converter as a link
between the PV modules and the half-bridge cell to ensure
grounding of the PVmodules and independentMPPT control.
The use of DAB is not necessary for such a system due to the
unidirectional power flow of the PV modules. Fig. 7 shows
the circuit diagram of the proposed system. To summarize the
above discussions, a comparison between different topologies
to discuss their features is provided in Table 1.

IV. SUBMODULE TOPOLOGIES AND CONTROL
A. SUBMODULE CIRCUIT TOPOLOGY
An essential part of MV-PV multilevel converters is the
submodule (cell) circuit. They are necessary to provide the
galvanic isolation and distributed MPPT control to optimize
the power transferred to the multiple converter cells. Thus,
optimizing the circuit structure according to Solar PVmodule

FIGURE 7. The structure of the PV modular MV converter with the
isolated DAB.

TABLE 1. Comparison between Different MV Multilevel Converters for PV
Systems.

requirements is a major concern for such systems. Due to
the necessity of galvanic isolation as a main requirement for
MV-PV plants, the use of an LFT was introduced despite its
disadvantages [12]. Instead of using LFTs, HFTs were pro-
posed to provide galvanic isolation. Recently, the advance-
ment of silicon carbide (SiC) technology introduces the use
of HFTs due to the superior performance of SiC switches
in high switching frequency applications [58].MV-PV plants
use the isolated dc-dc converters with HFTs to provide both
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FIGURE 8. Different topologies of PV submodule (cell) circuits based modular MV converters.

TABLE 2. Comparison between Different SM Circuits.

galvanic isolation and unidirectional power flow as major
requirements. The performance of these circuits can be eval-
uated by many aspects such as power density, part count,
simplicity of control, power loss, and cost. Table 2 provides
a comparative analysis of the different SM circuits used in
PV-MV converters.

The fly-back converter is known for its simplicity and cost-
effective structure and can be used for designing the PV

cells to provide both isolation and unidirectional power flow.
However, it suffers from the large leakage inductance and
discontinuous current operation which may deteriorate the
conversion efficiency [59]. Reference [35] used the fly-back
converter with a boost converter due to its simple control and
less cost. The fly-back converter provides galvanic isolation
while the boost converter is for MPPT cell control as shown
in Fig. 8(a). The performance of the converter with multilevel
converter cells has not been further explored in the literature.
However, interleaved, high power, fly-back topologies have
been proposed for PV grid-tied inverters which promotes
their use in multilevel topologies [60], [61].

One of the popular topologies used in MV grid scale
applications, where relatively high current and high power are
required, are DABs. They are utilized as an interface between
the PV arrays and the converter cell and feature high power
density and simplicity of control with the ability of achieving
zero voltage switching (ZVS) and high switching frequencies
up to 1 MHz [62]. However, they have a comparatively large
number of switches which contributes to higher cost and
power loss. In addition, they provide a bidirectional power
flow control which is not necessary in PV applications [12],
[27]. A complete electrical and mechanical design of SiC
voltage fed (VF)-DAB cell based PV-CHB converter (see
Fig. 8(b)) was implemented in [63]. The proposed prototype
uses the propylene film capacitors as a replacement of con-
ventional electrolytic capacitors due to their comparatively
long life time and adequacy to high frequencies (>10 kHz)
[64], [65]. Nevertheless, the proposed control for VF-DAB in
[63] requires a large transformer current which leads to more
stress on the switches and saturation of the magnetic cores.

Reference [66] introduced a CF-DAB converter cell to
limit the transformer current using a cascade control for
both the CF-DAB and the full bridge inverter. The CF-DAB
used an advanced phase-shift control to regulate the input
PV voltage while the full bridge inverter controlled the
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TABLE 3. Comparison between State-of-the-Art Modular MV Converters.

output dc link voltage. The topology uses film capacitors and
features inherent ZVS characteristics and minimized ripple
effect. An optimized operation of the proposed topology was
discussed in [67]. The unidirectional power flow nature of
PV arrays leads the development of VF/CF-DABs. In this
sequence, the research introduced SABs, Semi-DABs and
Forward (F)-DABs, see Fig. 8(c), (d), (e), to be used in PV
applications [11], [68]–[70]. These topologies permit the use
of lower switch counts and reduce the cost of the converter
cell compared to DABs. However, a compromise between
power quality, efficiency, and costs should drive the topology
selection. For instance, SAB is known as a simple and robust
topology with a four-diode rectifier at the secondary side
however it allowsmore harmonic content in the output current
spectrum due to the absence of control at the converter sec-
ondary side. The efficiency of the converter is subsequently
reduced.

In order to solve these problems, [69] proposed a semi-
DAB to provide full controllability with only two active
switches in the secondary side compared to DAB as shown
in Fig. 8(d). However, the proposed topology was not deeply

studied or experimentally validated. A full analysis and
design along with experiments for the semi-DAB was con-
ducted in [70]. Compared to DAB, the semi-DAB offers
extended ZVS range for output voltages with a lower number
of active switches. On the other hand, a prototype of F-DAB
as a part of the PV-CHB cell was designed in [11]. Compared
to [63], The mechanical design volume of the converter
cell is reduced by 50% which allows more compact design
and reduces cost. Hence, the proposed F-DAB could realize
an industrial prototype of the converter cell with remark-
ably high power density compared to other unidirectional
topologies while maintaining the same control for classical
DAB converters. From the above, it can be concluded that
Semi-DAB and F-DAB topologies are suitable candidates for
unidirectional power flow applications. However, a compar-
ative study to evaluate the performance of each topology for
the integration of PV arrays would be of interest.

Table 3 shows a comparative description between
state-of-the-art modular MV converters including the cell
capacitor characteristics. A useful and effective parameter in
correlating capacitance value with its dc voltage is the unit
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capacitance constant (H). Typically, H ranges from 1-20 ms,
however higher values can be accepted depending on the type
of application [71].

B. MPPT CONTROL
The SM circuit for MV converters is utilized to perform the
independent tracking control for PV arrays. The application
of MPPT control can be performed through the dc-dc con-
verter [24], [27], [29], [53], [55], or directly to the ac SM of
the converter [54], [72]–[74]. Performing the MPPT control
through isolated dc-dc converters provides both galvanic iso-
lation and unidirectional power flow for the PV arrays [11].
Alternatively, the direct connection of PV arrays to the ac SM
introduces the use of LFTs to isolate the PV array from the ac
side and provide the connection to MV network. It eliminates
the use of dc-dc converter which simplifies the circuit and
control design. However, the use of bulky and heavy power
transformers significantly increases the system cost, weight,
and volume [12].

Different MPPT algorithms were applied to both MMC
and CHB topologies such as Perturb and Observe (P&O)
[35], [55], Incremental Conductance (InC) [75], and Ripple
Correlation Control (RCC)[73], [76], etc. The P&O and InC
algorithms are simple, robust, and well known in practi-
cal applications and have a good steady state performance.
However, the tracking performance of both algorithms is
affected with fast changes in environmental conditions which
gives more delay in response to reach the steady state con-
dition [77]. The use of RCC algorithm is also considered a
suitable solution for modular multilevel applications due to
its high dynamic performance, efficiency, and convergence
speed to reach the MPP of the PV array [73], [76], [78].
For simplicity, typically all SMs utilize a common algo-
rithm, although there might be opportunities in exploring
whether combinations of differentMPPT algorithms or track-
ing parameters may give improved performance, especially in
hybrid applications.

In the typical SM circuit, the use of voltage and current sen-
sors is required to perform both voltage balancing and inde-
pendent MPPT control. However, increasing the level of the
converter would introduce many sensors which significantly
increases the cost and volume of the system, complicates
the hardware with huge I/O interface controller ports, and
decreases its reliability. To solve the problem, a simple P&O
algorithm for CHB converter-based PV system for fast MPP
tracking without the need for additional sensors or compo-
nents was proposed in [79]. TheMPP tracking was performed
using the current measurements of the voltage and power
of each SM which reduces the tracking errors during fast
changes and extends the system scalability.

An optimized sensor-less predictive MPPT algorithm
based on optimal model predictive control for MMC
based-PV system was proposed in[80]. The algorithm is
designed to deal with different shading conditions which
allows for fast response to solar irradiance changes with high
tracking efficiency compared to P&O and RCC algorithms.

FIGURE 9. Commonly used balancing control strategies for modular MV
converters-based PV systems.

Based on CHB converter-based PV system, a novel scheme of
a sensor-less dc side control by estimating the SM capacitor
voltages using the ac output voltage was proposed in [22].
TheMPPT control was performed replacing all the individual
voltage and current sensors at the dc side with a single voltage
sensor at the ac side. This significant improvement features
reduced cost, simple hardware, and higher reliability of the
system.

V. BALANCING CONTROL STRATEGIES
The operation of the MV converters-based PV distributed
generation is highly dependent on the PV arrays contribu-
tion in different solar conditions. To explain this statement,
these converters can guarantee a stable operation in balanced
conditions where all the PV arrays share the same irradi-
ance and output power. However, an unbalanced outflow of
power can occur if different irradiances are subjected to the
PV arrays, which can be observed in the unbalanced and
distorted three phase grid currents. Hence, the MMC and
CHB topologies share the same ultimate control objective
to deliver the aggregate power from all PV arrays to the
grid in a balanced way regardless of different power of the
PV arrays. An energy balancing strategy should be activated
when there are mismatches in the power delivered by the PV
arrays to the converter ac side terminals through its SMs. The
balancing strategy maintains the regulation between the input
and output power flows through each SM to ensure a stable
operation of all SM capacitors. The term of power imbalance
in CHB converters can be classified into two categories:
1) The inter-bridge power imbalance, which occurs among
the SMs in the same phase leg. 2) The inter-phase power
imbalance, which occurs among the converter legs. On the
other hand, The MMC structure adds a third category called
the inter-arm power imbalance, which occurs among the arms
of the converter leg. Fig. 9 presents the power balancing
strategies used for MV converters-based PV systems.

A. POWER BALANCING STRATEGIES USING CHB
TOPOLOGY
In grid connected PV systems using CHB topology, the power
imbalance problem has gained a major interest in literature.
The power fluctuations caused by this problem may affect
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the grid stability. To solve the inter-bridge power imbalance
in CHB topology, different control strategies were proposed
to achieve power balancing between cells, independent MPP
trackers of dc link voltages for each cell, high efficiency
and system stability for all the PV arrays operating condi-
tions [21], [81], [82]. In addition to the advances in control
strategies, improving modulation techniques provides cell-
mismatch capabilities by creating various routes for power
flow among converter cells [83], [84]. In fact, better mod-
ulation techniques may add extra features to the converter
like fault isolation capability, reduced harmonics and higher
degree of freedom for control and operation [85]–[87].

Moreover, Multiport dc-dc converters have been reported
to solve the inter-bridge power imbalance for CHB PV sys-
tems [66], [88]. An interleaved-boost full-bridge dc-dc con-
verter with a common low-voltage dc link was proposed to
solve both the inter-bridge and the interphase power imbal-
ances [88]. Alternatively, hybrid cells were integrated to the
CHB topology using batteries or super capacitors to allevi-
ate the power mismatch between CHB cells [89]. However,
the hybrid integration requires advanced control techniques
to coordinate between hybrid cells.

For the inter-phase power imbalance, zero sequence volt-
age (ZSV) injection methods have been developed for
Star-connected CHB converter while Delta-connected CHB
converter uses the zero-sequence current (ZSC) injection
method. A variety of ZVS injection methods to maximize
the balancing capabilities under severe power imbalance
conditions were proposed. They can be classified as follows:

1) Fundamental frequency zero sequence injection
(FF-ZSI) method, originally proposed in [90].

2) Weighted min max (WMM) zero sequence injection
method [91], [92].

3) Third harmonic square wave injection [13].
4) Double 1/6 third harmonic injection (DTHI), Reduced

third harmonic injection (RTHI), and Double min–max
(DMM) zero-sequence injection methods [27].

5) Optimal zero-sequence injection (OZSI) and
Simplified-OZSI (S-OZSI) [28].

Despite several attempts to widen the power balancing
capability of Star-connected CHB converter, the degree of
power balancing for these methods are limited to the avail-
able dc link voltage in each phase. For the best scenarios
(i.e. OZSI), the balancing capability cannot exceed 20% of
power imbalance [93]. Moreover, the balancing process of
the grid current affects the converter voltage spectrum which
leads to more grid interactions [55]. During severe power
imbalance, the converter voltage exceeds the dc voltage limits
(i.e. over-modulation) and the grid currents are distorted [13].

The Delta-connected converter is then proposed in [29].
The Delta configuration offers high power balancing capabil-
ities compared with the Star configuration. A ZSC injection
method is used to rebalance the grid current during power
imbalance conditions. The injected zero sequence current
vector contributes to the power transfer between the phases.
The only limiting factor is the maximum current rating that

flows through each cell of the connected H-bridges. Any
increase in the power imbalance results in an increase of
injected ZSC required to rebalance the line current [13]. It is
recommended to provide 15% overcurrent rating in each cell
while designing the converter.

B. POWER BALANCING STRATEGIES USING MMC
TOPOLOGY
The power balancing strategies inMMCutilize the distinctive
feature which is the internal power flow of the converter.
Unlike the conventionalMMC, the integration of PV arrays to
the SMs of the converter, see Fig. 5, eliminates the existence
of DC-link which raises the need to advance the control
strategies of the converter. The MMC topology experiences
three categories of power imbalance (i.e. inter-bridge, inter-
phase, inter-arm). A voltage compensation method, based on
the modified min-max ZSI method proposed in [91], to solve
the inter-phase power imbalance by injecting a ZSV into the
phase voltage references of the MMC was discussed in [53].
However, the system suffers from voltage over-modulation
when the generated power is heavily unbalanced. Moreover,
it can only mitigate the inter-phase power imbalance but fails
to eliminate the inter-arm power imbalance.

Reference [55] achieved the power balancing through
introducing a power mismatch elimination strategy which
ensures that one third of the whole PV power generation
should flow through each phase of the converter. Moreover,
the average power which leaves the ac-side terminals of each
SM should be equal to the aggregate power delivered by the
PV arrays integrated to that SM. The dc component of cir-
culating current (i∗dc) is responsible for regulating the power
mismatches between legs by keeping their energy equal to
ensure that one third of the power is flowing in each leg.
The ac fundamental frequency component of circulating cur-
rent (i∗ac) is responsible for regulating the power mismatches
between arms of the same leg by minimizing the energy
difference between them. To alleviate the inter-bridge power
imbalance, the sorting algorithm based on voltage and cur-
rent measurements was implemented in [55]. Alternatively,
it is remarked that the same balancing methods applied for
CHB converter can be used for MMC due to the similarities
between their SM structures [53], [94].

C. POWER BALANCING CAPABILITY FOR THE
INTER-PHASE POWER IMBALANCE
In Star-connected CHB topology, The ZSV injection meth-
ods cause a change in the reference voltages of each phase.
Thus, under severe power imbalance, the voltage references
should not exceed the maximum allowable dc link voltage for
each cell. On the other hand, Delta-connected CHB converter
examines a change in the phase current while applying a ZSC
injection during power imbalance. These changes may cause
a voltage over-modulation (in case of ZSVmethods) or a cur-
rent over-rating (in case of ZSC method) which consequently
affects the balancing process. The ability of the ZSI method
to deal with the power imbalance defines the power balancing
capability.
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TABLE 4. Comparison between different injection methods.

A three-dimensional (3-D) figure, called a power balance
space (PBS), represents the utilized portion of the three-
phase power based on the nominal power of the converter[95],
[96] during the power imbalance conditions. The power
balancing capability can be identified using only one fac-
tor called a power balance factor (PBF) as a function of
the three-phase power ratios. Another method to compare
the power balancing capabilities of ZSI methods with both
qualitative and quantitative metrics was proposed in [13].
A two-dimensional (2-D) energy balancing diagram (EBD)
represents the increase of the maximum voltage reference of
any phase because of the power imbalance (qualitative met-
ric). The quantitative metric calculates the area coverage of
power imbalance in percentage as a function of the available
dc link in one phase. However, this metric does not provide a
direct measure of all the possible power imbalance cases [93].

Using the same definitions, the energy balancing capability
for the Delta-connected CHB converter can be calculated
[13], [29]. An added factor for this converter is the current
overrating which identifies the maximum required switch
rating. It can be determined as the ratio between themaximum
and the nominal phase currents. An increase in the current
rating of the switches with 15 % of the rated current is
recommended. Table 4 shows the performance of different
injection methods and their limitations.

VI. RECENT ADVANCES IN MV-PV CONVERTERS
A. ADVANCED GRID SUPPORT FUNCTIONS
Grid connected PV inverters are required to meet local stan-
dards and grid codes in order to achieve a high-quality signal
of voltage and current supplied to the grid. Some constraints
like harmonic current limits, maximum total harmonic

distortion (THD) of current, dc current injection, and operat-
ing frequency range should be strictly followed [97]. Certain
grid codes obligate grid connected PV inverters to deliver
reactive power to the grid. PV inverters should stay connected
and be able to provide dynamic grid support during symmet-
ric and asymmetric voltage sags and faults [30]. However,
the grid support is determined by two factors: (1) the depth
of voltage sags, and (2) the fault duration. Another aspect is
the current rating of the inverter, thus during reactive current
injection, the active current can be sufficiently reduced.

With the expected increase of renewable energy production
in the near future, the number of inverter-based power gener-
ation may exceed 50% of the total power capacity which will
form new inverter dominated grids [2], [98]. This inevitable
evolution will lead the transition from ‘‘grid-following’’
inverters, which are currently used in the grid, to ‘‘grid-
forming’’ inverters, which have the ability to stabilize the grid
voltage and regulate the frequency [10].

B. HYBRID INTEGRATION WITH DIFFERENT DERS
PV systems have an intermittent nature which reduces the
efficiency and performance of the output power. This nature
can be observed in nonuniform solar irradiance, unequal
ambient temperatures, partial shading, and/or inconsistent
module degradation [27]. The hybrid integration of DERs
in the MV grid-connected PV converters has many advan-
tages related to resilience and power quality of large-scale
PV systems. This hybrid integration can be either through
batteries or ultra-capacitors to provide peak power shaving,
frequency regulation, and dynamic voltage support [99]. Bat-
tery energy storage systems (BESS)s have been integrated
with two level PV inverters in small scale PV applications.
However, large battery modules, low interface voltage, low
reliability and large volume are the disadvantages which limit
the application to large-scale PV applications[100].

Multilevel converters such as the CHB and MMC topolo-
gies are superior candidates for such integration combining
the advantages of enhanced power quality using PV-BESS
systems and application to higher power and voltage ratings.
The use of CHB and MMC topologies provides a hybrid
structure as each SM can be integrated with PV arrays, BESS
or both. Thus, this integration offers greater flexibility in
control and power flow along with various features such as
dynamic voltage support, fault ride-through capability, etc.
Moreover, MMC topology has become a well-established
technology in HVDC applications which extends its use if
DERs are integrated to the converter SMs while transmitting
the power from remote locations (e.g. solar and wind farms)
to the ac side [10], [101]. Power imbalance and energy man-
agement strategies can be designed to arrange the operation
of the hybrid integrated-DERs systems.

C. CHALLENGES RELATED TO POWER BALANCING
STRATEGIES
Various power balancing strategies proposed for PV-MV
converters have been discussed in Section V. However, chal-
lenges to further improve the performance of these converters
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during different power imbalance conditions remain open.
For instance, Further investigations and experiments for the
inter-bridge power imbalance strategies for both CHB and
MMC topologies would be of interest. Also, there is a need to
study the measures and limitations of the proposed strategies.
In this sequence, the effectiveness of the sorting algorithm for
the MMC topology to maintain the voltage balance between
SMs during the inter-bridge power imbalance has not been
fully addressed. In fact, under severe inter-bridge power
imbalance, the sorting algorithm may lose its function as
submodules with lower voltage will always be inserted which
elevates the stress on the switches.

The proposed balancing strategies based on ZSI for
Star-CHB converters have shown a limited power balanc-
ing capability during severe power imbalance conditions,
which results in a total shut down of the system. Further
investigations would be beneficial to expand the converter
balancing range. Another challenge for the MMC topology is
the inter-arm power imbalance during severe partial shading
conditions. The need to generate the circulating ac current
may cause power oscillations, and dc offsets in grid currents
as the power balance between the arms cannot be totally
guaranteed. Control strategies to cope with these conditions
would be of interest.

VII. CONCLUSION
In this review, a comprehensive study for the modular MV
converters-based large-scale PV systems has been provided.
The CHB and MMC topologies are found to be promising
candidates for the future of the MV large-scale PV sys-
tems due to their modular structure. Following the design
requirements of the SM circuit, the F-DAB is considered
the most suitable topology featuring high power density
and unidirectional power flow with reduced switch count.
Sensor-less methods to apply MPPT are reliable, efficient,
and cost wise compared to traditional methods. However,
potential future research regarding SM circuit design and
MPPT control would be of interest. The power balancing
capabilities and limitations for the balancing strategies of
different topologies have been investigated. Despite numer-
ous balancing strategies proposed for Star-connected CHB
topology, Delta-connected CHB topology and MMC topol-
ogy have shown a superior performance during unbalanced
PV power generation. The potential of the Modular MV-PV
converters and the recent advances in the field should drive
this technology to be commercially viable in solar PV sys-
tems.
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