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ABSTRACT This paper focuses on semi-partitioned cyclic executives for mixed-criticality multiprocessor
systems in the case of which a job can be split and execute on different processors, this strategy incorporates
most of the advantages of the fully partitioned scheduling while further maximising the total processor
utilization.We propose algorithms in order to improve the schedulability of such a system. The length of each
frame can be reduced to an optimal (minimum) value, which is a necessary schedulability condition for any
schedule under this systemmodel (i.e. every processor’s capacity is fully utilizedwithin each frame so that the
frame cannot be further shortened), whilst all timing requirements of the system are satisfied. By conducting
extensive experiments on a very large number of randomly generated job sets, it is demonstrated that our
proposed algorithms significantly reduce the required length of each frame; it is possible for almost 100% of
the job sets in the experiments to obtain their optimal values with the exception of a very limited number of
specific situations. We also prove that when the complete times of some specific jobs are fixed given values,
the strategy to shorten the frame presented in this paper is optimal.

INDEX TERMS Scheduling and task partitioning, schedulability analysis, multi-core/single-chip multipro-
cessors, cyclic executives, mixed-criticality systems, semi-partitioned scheduling, real-time and embedded
systems.

I. INTRODUCTION
Mixed criticality scheduling has represented a hot topic
and there are many papers (e.g. [4], [7], [9], [15]–[19],
[23], [27], [29]) that have been published recently exploring
the nature thereof. In a mixed criticality system, different
levels of certification are required for different applications
on the same execution platform. Each task can be charac-
terised by many different parameters under different levels of
criticality. One important mathematical problem is ensuring
that the timing constraints of high-criticality applications will
be guaranteed under all circumstances without underutilizing
the system resources.

A formal definition of different criticality levels can be
obtained with reference to the safety standards that define the
development and design processes for real-time embedded
systems, and there is a variety of domain specific safety
standards [20], such as ISO 26262 [2] for road vehicles,
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or DO 178C [3] for avionic software and DO 254 [1] for
avionics hardware.

Cyclic executive [6], [11], [26] is a simple static scheme for
implementation. It consists of continuously repeated frames
(or minor cycles) and major cycles, each major cycle consists
of fixed number of frames, and the tasks’ periods are multi-
ples of a frame up to the value of a major cycle. The schedule
of jobs within each frame is computed offline and stored in a
table. Every allocated job is required to start and finish within
each frame.

The issue of how to map the tasks to frames to best support
a set of tasks with given periods is beyond the scope of this
paper. In this paper, we assume that all jobs of tasks have
been allocated to each frame according to a given policy. Our
objective is to reduce the required length of each frame (or the
length of time required to complete all jobs in each frame)
towards an optimal (minimum) value in a mixed-criticality
system. There are two major benefits obtained by reducing
the required length of frames: 1) more task sets can be sched-
uled (i.e. all timing requirements are satisfied) after the tasks
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are mapped to frames, so that the schedulabiliy of the system
can be improved; 2) since the period of each task is restricted
to be the multiples of each frame, shorter frames enable the
tasks have smaller periods.

The semi-partitioned scheduling [5], [10], [12], [22], [24],
[25] allows some jobs to be split andmigrate from one proces-
sor to another during their execution; once a job’s execution is
split into two subsections, the first subsection must normally
be first executed on a processor in order to ensure this job will
not be executed in parallel on two different processors. This
scheme almost entails all the advantages of fully partitioned
scheduling, while it can further maximise the total processor
utilization by fully occupying the spare processor intervals
where a whole job’s execution cannot fit into.

This paper is based on the similar system model [13], [14]
of mixed criticality cyclic executives which follows indus-
trial practice [8] and assumes that all jobs of tasks have
been allocated to each frame according to a given policy.
The parameters and criticalities of the jobs are given by the
system definition. In each frame, there is a switching time
point S, before time S, only HI-criticality jobs are executed,
if there is no criticality change, only LO-criticality jobs are
executed after S; if there is a criticality change before S,
the LO-criticality jobs are abandoned in this frame and the
unfinished HI-criticality jobs must execute their extra com-
putation times.

Compared with the scheme where all HI-criticality and
LO-criticality jobs are executed together at the beginning of
each frame, the advantages of this system model are: 1) This
strategy enables composable certifiability if all HI-criticality
jobs are temporally isolated from the LO-criticality jobs,
namely the execution of a HI-criticality job must not be
delayed in any way by a LO-criticality job [21]. 2) Even if
there is a criticality change in a frame, there will be more
HI-criticality jobs to have already finished their executions
since they are always the first ones to be executed, hence
a reduced number of HI-criticality jobs require to execute
their extra computation times after the criticality change time.
This can save processor capacity and reduce average response
times for jobs in realistic systems.

The main contributions of this paper are summarized as
follows. In order to improve the schedule within a frame,
we present complete algorithms in this paper with the purpose
of reducing the length of each frame to an optimal value,
which is a necessary schedulability condition for any sched-
ule under this system model (i.e. every processor’s capacity
is fully utilized within each frame). These algorithms provide
solutions to the following issues: (1) how to partition the jobs
among processors before and after time S; (2) how to imple-
ment the executions of jobs in each frame when the schedule
is being remapped; (3) how to rearrange the schedule in order
to reduce each frame’s length to a minimum possible value.
By conducting experiments on a large number of randomly
generated job sets, we demonstrate that the proposed algo-
rithms significantly reduce the length of frames. With the
exception of a limited number of cases, 100% of these task

sets get optimal frames after the improvements.We also prove
that, when the completion times of some specific jobs before
the time S are fixed values, the results presented in this paper
are optimal.

II. SYSTEM MODEL AND EXISTING RESULTS
A cyclic executive system consists of continuously repeated
frames (or minor cycle) TF and major cycles TM , and the
values satisfy TM = kTF , where k is a positive integer,
defining the number of frames in each major cycle. The
jobs allocated to each frame execute repeatedly within a
continuous execution of a series of frames. Each task’s
period is constrained to be multiple of TF up to the value
of TM .

The mathematic problem of how to choose TF and TM to
best support a given task set is beyond the scope of this paper.
This paper is based on the same system model [13], [14]
which follows industrial practice [8], it assumes that the jobs
of tasks are allocated to each frame with fixed parameters by
the system definition. The time units of all jobs’ executions
are mapped within a frame [0,D), and they must complete
by the end of each frame, with some additional timing con-
straints to support mixed criticality systems which will be
detailed later in this section. Therefore, D is also the relative
deadline of all allocated jobs in this frame. Our purpose of
this paper is to reduce the length (or shorten the required
completion time of all jobs) of any given frame by rearranging
and partitioning the jobs’ executions in this frame, under the
assumption that all jobs have already been allocated to each
frame according to a given policy, so that the schedulability
of such a system can be improved.

The system executes on an m identical processor platform
with two criticality levels. Let i denote the i-th task τi in the
system, and ji represents a job of τi. Each job ji of task τi
has a criticality attribute χi which can either be HI-criticality
(χi = HI ) or low LO-criticality (χi = LO); χi is determined
by the designer of a system and never changes during the
operation of a system. Each HI-criticality job has two worst-
case execution times (WCETs) or computation times Ci(HI )
and Ci(LO), and each LO-criticality job has only one WCET
Ci(LO).
A switching time point S (0 < S < D) is set in the time

interval [0,D) of each frame. During the interval [0, S), all
processors are executing ONLY HI-criticality jobs’ Ci(LO).
At the start of each frame, the system is operating under a
low criticalitymodel. If eachHI-criticality job executes for no
more than Ci(LO), in the next interval [S,D), all processors
are only executing LO-criticality jobs.

If any HI-criticality job ji executes for more than Ci(LO)
in the interval [0,D), the criticality of the system changes
from low to high, then all HI-criticality jobs must execute
their Ci(HI ) and complete by the end of the frame D. In this
case, the switching time point S becomes meaningless and all
LO-criticality jobs are abandoned in this frame. In summary,
the timing constraints for each frame are described as follows.
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(1) S is the deadline of all HI-criticality jobs’ Ci(LO) if
there is no criticality change.

(2) D is the deadline of all LO-criticality jobs which start
their executions at time S if there is no criticality
change.

(3) D is also the deadline of all HI-criticality jobs’ Ci(HI )
if there is any criticality change before or at time S;
in this case, all LO-criticality jobs are abandoned and
restrictions (1) and (2) are no longer valid.

Most existing literatures on mixed criticality systems
(e.g. [4], [7], [9], [16]–[19], [23], [27], [29]) do not con-
sider cyclic executives with semi-partitioned schemes. In the
remainder of this section, we describe some existing results
from [13], [14]; our improvements in the next section will be
based on these results.

Let Ci(EX ) be the extra computation time required by
a HI-criticality job when a criticality change occurs, i.e.
Ci(EX ) = Ci(HI )−Ci(LO). The original schedule is to let all
HI-criticality jobs’ Ci(LO) fit into the interval [0, S), and to
let all Ci(EX ) fit into the interval [S,D).
In order to allow all HI-criticality jobs’Ci(LO) to fit into

[0, S) on an m identical processor platform, according to the
optimal scheme of McNaughton [28],

S = max
(∑

χi=HI
Ci (LO)

/
m, max

χi=HI
{Ci (LO)}

)
. (1)

In order to let all HI-criticality jobs’ Ci(EX ) fit into the
interval [S,D), the length of [S,D) must be greater than

1HI
= max

(∑
χi=HI

Ci (EX)
/
m, max

χi=HI
{Ci (EX)}

)
Let DHI be a frame’s deadline while considering only the

length of the time interval when all HI-criticality jobs can
complete their executions in the case of a criticality change
occurring. Therefore, for the original schedule,

DHI = S +1HI .

Let 1LO be the minimum length of the time interval
required by all LO-criticality jobs in order to execute their
Ci(LO). Additionally, the value of 1LO can be calculated
using the same approach outlined in equation (1). Since all
LO-criticality jobs must start and finish their executions in
[S,D) in the case of a criticality change occurring, the real
deadline of a frame is given by

D = max
(
DHI , S +1LO

)
. (2)

This paper addresses the problem of improvements toDHI .
Due to the definitions of the systemmodel, the values of S and
1LO are fixed and they cannot be improved. The frame’s real
deadline can be simply calculated by equation (2).

In order to let each HI-criticality job’s Ci(EX ) fit into
[S,DHI ), the calculation of DHI depends on the value of∑
χi=HI Ci (EX)

/
m. There are two cases:

Case (1). When max
χi=HI

{Ci (EX)} ≤
∑
χi=HI Ci (EX)

/
m,

according to McNaughton’s scheme, the amount of the

∑
χi=HI Ci (EX)

/
m units of computation time is equally

allocated to each processor. There is no possibility to improve
schedulability under this case, and the deadline of each frame
is given by

DHI = S +
∑

χi=HI
Ci (EX)

/
m. (3)

It is obvious that the deadline given by equation (3) is a
necessary schedulability condition under this system model,
and it is an optimal/minimum deadline for any schedule when
S is a fixed value.

Case (2). When max
χi=HI

{Ci (EX)} >
∑
χi=HI Ci (EX)

/
m,

As pointed out in [13], according to the system model and
the optimal scheme of McNaughton [28], the deadline of a
frame without improvements is given by

DHI =S+max
(∑

χi=HI
Ci(EX )/m, max

χi=HI
{Ci(EX )}

)
(4)

Note that according to the definition of cyclic executives,
every allocated job is required to start and finish within each
frame, so that the deadline of a frame is also the required
length of a frame.
The purpose of this paper is to improve the schedulability

of the HI-criticality jobs for Case (2) so that the length of
each frame can be reduced, while all timing requirements are
satisfied and the switching point S remains the same value.

III. IMPROVEMENT TO SCHEDULABILITY
This section improves the schedulability of the system by
reducing the original deadline of the frame DHI given by
equation (4).
Our objective of this section is to improve the implemen-

tation and to reschedule the HI-criticality jobs’ executions in
[0, DHI ] so that the required length of each frame can be
reduced from equation (4) towards the optimal value given
by equation (3), while the value of remains unaffected.
The algorithms in this section are introduced as follows.

In each frame, all HI-criticality jobs’Ci(EX ) are initially allo-
cated byAlgorithm 1 in the interval [S,DHI ]; all HI-criticality
jobs’ Ci(LO) are initially allocated by Algorithm 2. The
implementation of the jobs for the improvement is described
in Algorithm 3. Finally, Theorem 2 indicates the extend of the
improvement toDHI that can be achieved by Algorithm 3 and
Algorithm 4.

A. INITIAL ASSIGNMENT IN [S,DHI ] AND [0,S]
This section describes our initial partition strategies for
HI-criticality jobs in the intervals [S,DHI ] and [0, S]. The
purpose of this section is to let the HI-criticality jobs satisfy-
ing Ci(EX ) >

∑
χ i=HI Ci(EX/m) finish as soon as possible

in [S,DHI ] in order to execute theCi(LO) of the HI-criticality
jobs, such that more workload in [S,DHI ] could be brought
forward before time S.

Considering that the jobs with

Ci(EX ) >
∑

χi=HI
Ci(EX )/m
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Algorithm 1 The Allocation Policy of All Ci(EX ) in the
Interval [S,D]HI Is Described as Follows:

1) Since each job satisfying Ci (EX) ≥ Avg (EX) must
hold one processor, allocate each 0sub’s job to a pro-
cessor starting from processor P1 to Pα , where α is
the number of jobs in 0sub given by Definition 1; each
processor executes only one such a job.

2) Equally distribute the amount of all other jobs’
Ci (EX) to the remaining processors from Pα+1 to Pm
(by splitting the last job which cannot completely fit
into a processor), where m is the number processors
in the system. As a result, each processor receives the
execution time amount of

∑
Ci(EX)<Avg(EX)

Ci (EX)
/
(m− α),

are the ‘‘problem’’ jobs that need to be improved, the follow-
ing definition is used throughout all the algorithms
Definition 1: Let Avg(EX ) =

∑
χi=HI Ci(EX )/m and let

the subset of the jobs satisfying Ci(EX ) ≥ Avg(EX )

0sub = {js1, js2, . . . , jSα},

where jsκ represents any given job in 0sub, 1 ≤ κ ≤ α,
α is the number of jobs in 0sub, and the jobs in 0sub have
been sorted by their Csκ (EX) values in descending order,
namely

Cs1 (EX) ≥ Cs2 (EX) ≥ . . . ≥ Csα (EX) .

therefore, we let

t2 = S +

∑
Ci(EX)<Avg(EX) Ci (EX)

m− α
. (5)

Let t3 = S + Avg(EX ), (6)

and the initial DHI was given by equation (4). It is clear that
t2 ≤ t3 ≤ DHI , as shown in Figure 1.
In order to reduce DHI , it is necessary to bring for-

ward Csκ (EX) from any job of 0sub as much as possible
(such as the interval [t3,DHI ] on P1 in Figure 1, so that
if there is a criticality change before the completion time
of a job’s Csκ (LO), its Ci (EX) can partially get executed
before time S. Resultantly, the deadline of each frame is
reduced.

Because any amount of Csκ (EX) that is brought forward
before S must be executed after its Csκ (LO)’s completion
time, in order to bring back the time units as much as possible,
we must arrange a schedule for all HI-criticality jobs’ Ci(LO)
in the interval [0, S], in order to allow eachCsκ (LO) from0sub
to complete as early as possible.

The following algorithm provides such a schedule for
the interval [0, S] ensuring that each Csκ (LO) from 0sub
gets executed and finished as early as possible, and the
job with the greatest value of Csκ (EX) can always be

Algorithm 2 Each HI-Criticality Job’s Ci(LO) in the Interval
[0, S] Is Allocated and Implemented by the Following Steps

(1) Distribute each job satisfying Ci (LO) ≥∑
χi=HI Ci (LO)

/
m to different processors starting

from processor Pm towards P1, as shown in Figure 2.
(2) Distribute each Csκ (LO) of 0sub’s jobs to different

processors from P1 to Pα , where κ = 1, . . . , α given
by Definition 1. Note that each jsκ ’s Csκ (EX ) has
been in fact assigned to the same processor with its
Csκ (LO), as described in Algorithm 1.
According to Definition 1, the job with the greatest
value of Csκ (EX) will be firstly allocated to P1, then
the second largest one is allocated to P2, and so on,
as illustrated in Figure 2. If there are more than two
jobs having the same Csκ (EX) values, the job with
the minimum Csκ (LO) value is allocated first.
(Step (2) ensures each Csκ (LO) of 0sub finishes as
soon as possible, although the first subsection of a
split job will execute firstly on the same processor if
provided; this will be described in step (5).)

(3) Allocate all other HI-criticality jobs (not from 0sub)
to P1 in any order, until a job j` (coloured by yellow
in Figure 3) cannot be completely fit into P1. Then
split j`’s C` (LO) into two subsections, let the second
subsection occupy all remaining time on processor
P1 before S, and let the first subsection of j` execute
firstly on P2, such that the first subsection of j`
has the highest priority on the designated processor,
as illustrated in Figure 3. This means that if there is
an assigned job from 0sub already on P2, this job has
to wait until the first subsection of j` completes its
execution.

(4) If the first subsection of j` cannot be completely fit
into onP2 (due to a job of0sub that has been allocated
to P2), then find another processor to execute. If the
first subsection of j` cannot fit into any processor,
then no improvement is made.

(5) Allocate the remaining HI-criticality jobs to P2 in the
same manner of steps (3)(4), and then P3, . . . ,Pm,
until all HI-criticality jobs’ Ci(LO) have been parti-
tioned.
Note that based on step (5) of Algorithm 2, in all
the figures of this section, any empty space between
0 and S does not represent the processor idle time,
there could also be executions of jobs which are not
specified in each figure. This point will be empha-
sised again in Algorithm 3.

executed as a priority, hence more time units can be brought
forward.

Note that since case (b) is a very special case of this step,
the implementation of step (6) could be simplified as: if β +
α > m, no improvement is made.
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Algorithm 2 (Continued) Each HI-Criticality Job’s Ci(LO)
in the Interval [0, S] Is Allocated and Implemented by the
Following Steps

(6) Let β denote the number of HI-criticality jobs with
Ci (LO) ≥

∑
χi=HI Ci (LO)

/
m. If β+α > m, where

α is the number of jobs in 0sub, there are two cases:
Case (a): There are no jobs satisfying both condi-

tions Ci (LO) ≥
∑
χi=HI Ci (LO)

/
m and Ci (EX) >

Avg (EX), as shown in Figure 4. In this case,
we have to allocate a job satisfying Ci (LO) ≥∑
χi=HI Ci (LO)

/
m to a different job satisfying

Ci (EX) > Avg (EX) on the same processor (e.g. pro-
cessor 3 in Figure 4) before time S. This could result
in the failure of deadline S if there is no criticality
change. Therefore, no improvement is made in this
case.
Case (b): There is at least one job satisfying

Ci (LO) ≥
∑
χi=HI Ci (LO)

/
m and Ci (EX) >

Avg (EX). In this case we always allocate such a job’s
Ci (LO) and Ci (EX) to the same processor, as shown
in Figure 5. Let the number of such jobs be χ , if β +
α − χ ≤ m, the improvement is still possible; if
β + α − χ > m, no improvement can be made.

B. SWAP-IN/OUT THE TIME UNITS
While some workloads of Csκ (EX) are brought forward to
the interval [0, S], the same amount of Csκ (LO) may have to
be brought out to be executed after time S. In order to ensure
the timing requirements of the system model can be satisfied
and the value of S is not affected, the following regulations
are presented for the implementation of such an exchange in
time units.

Based on regulation (1), in all the figures of this section,
any empty space in [0, S] on each processor does not repre-
sent the processor idle time, and furthermore there are also
jobs executing.

Regulation (2) of Algorithm 3 guarantees that the value of
S is not affected by the swap-in/out process, and all the timing
restrictions of section 2 are satisfied.

Then it is necessary to establish how many time units of
Csκ (EX) for each 0sub’s job can be swapped in, and how to
‘‘swap out’’ the time units of Ci (LO) upon executing them
after S.
Lemma 1: There are always at least m− α processors not

executing any 0sub’s job at any instance of time.
Proof: Since the number of jobs in 0sub is α, and any job

can execute on only one processor at any instance of time, the
conclusion holds.
Theorem 1: By Algorithm 3 and Algorithm 4, when a

criticality change occurs in a system, the deadline of any
given job jsκ from 0sub can be reduced to

dsκ=S+Csκ (EX )−min {S − tsκ , S + Csκ (EX )− t3} ; (7)

Algorithm 3 The Implementation of the HI-Criticality Jobs
Obeys the Following Regulations

(1) We assume that at the beginning, the interval [0, S)
is fully occupied by the HI-criticality jobs’ Ci (LO)
on every processor. Therefore any time units of
Csκ (EX) brought forward before S potentially result
in the same amount of Ci (LO) swapping out after S.

(2) Any ‘‘swapped-out’’ time units of Ci (LO) are not
really out, they are still placed before S sharing the
exact same time interval (e.g. [x1, x2], where 0 <

x1 < x2 ≤ S) with the corresponding ‘‘swapped-in’’
time units of Csκ (EX) on the same processor. As a
result, there are two cases:
(a) If there is no criticality change before the finish

time of a ‘‘swapped-in’’ jsκ ’s Csκ (LO), job jsκ
finishes in the anticipated time. The ‘‘swapped-
in’’ jsκ ’s execution time units are abandoned
since jsκ no longer needs to be considered even if
a criticality change occurs after jsκ ’s finish time.
Therefore the executions of the ‘‘swapped-out’’
jobs are not affected at all, they get executions
before time S simply by following the allocation
policy of Algorithm 2.

(b) If there is a criticality change before the fin-
ish time of a ‘‘swapped-in’’ jsκ ’s Csκ (LO),
the ‘‘swapped-in’’ Csκ (EX) is executed in the
shared time interval [x1, x2] (after its Csκ (LO)’s
finish time). Therefore the ‘‘swapped-out’’ job
cannot be executed in [x1, x2] in this case, and it
has to execute these x2 − x1 time units’ Ci (LO)
after S in a specified time interval on a designated
processor.

equation (7) can also be presented as

if (S − tsκ ≥ S + Csκ (EX )− t3)dsκ = t3;

else dsκ = Csκ (EX )+ tsκ ;

where S is calculated by equation (1), t3 is given by equa-
tion (6), and tsκ is the completion time defined in step (1) of
Algorithm 4.

Proof: Algorithm 4 has provided details of the steps
indicating how to swap-in the time units of Csκ (EX) placed
before time point S whilst swapping-out the same amount
of time units of Ci (LO) placed after S. By Algorithm 3,
the ‘‘swapped out’’ time units are still placed before S and
share the same time interval of the ‘‘swapped in’’ units
of Csκ (EX). Therefore, the value of S is not affected at
all. In step (3) of Algorithm 4, we have proved that case
(a) is the only situation in which jsκ ’s finish time cannot
be further moved to an earlier instance. In other words,
we can always find processors to swap-in the computation
time of Csκ (EX ) if there is sufficient space between tsκ
and S.
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Algorithm 4 The Processing of Swap-in/Out Can Be Carried
Out According to the Following Steps
Step (1). Partition all HI-critical jobs’ computation times
in the interval [0,DHI ] according to Algorithm 1 and
Algorithm 2, and then let the current completion times of
Csκ (LO) from the 0sub’s jobs be {ts1, ts2, . . . , tsα}, where
0sub and α are given by Definition 1, as illustrated in
Figure 1.
Step (2). Let Lmax

mov.s1 = S − ts1, Lmax
mov.s2 = S − ts2, . . . ,

Lmax
mov.sα = S− tsα , which represent the upper bounds of the

move-in time units for jobs js1, js2, . . . , jsα in0sub. Starting
from processor P1, ‘‘swap in’’ the L(1)mov.s1 time units of

Cs1 (EX) to the interval
[
ts1, ts1 + L

(1)
mov.s1

]
on the same

processor, where

L(1)mov.s1 = min
{
t3 − t2, S + Cs1 (EX)− t3,Lmax

mov.s1
}
;

and ‘‘swap out’’ the L(1)mov.s1 time units of Ci (LO) to the

interval
[
t2, t2 + L

(1)
mov.s1

]
on processor Pα+1, as illustrated

in Figure 6. Note that the swap-out L(1)mov.s1 time units of
Ci (LO) could come from more than one job.
Step (3). This step studies the possibility of bringing
forward Cs1 (EX) of js1 to a further extend. Denote
C (2)
s1 (EX) to be the remainder ofCs1 (EX) after step (2), i.e.

C (2)
s1 (EX) = Cs1 (EX)−L

(1)
mov.s1. If S+C

(2)
s1 (EX) = t3 (i.e.

L(1)mov.s1 = S+Cs1 (EX)− t3), the finish time of js1 has been
moved up to t3, then this step ends. If S + C (2)

s1 (EX) > t3
(i.e. L(1)mov.s1 < S + Cs1 (EX) − t3), as shown in Figure 6,
there are two cases:

(a) L(1)mov.s1 = Lmax
mov.s1 < S + Cs1 (EX)− t3; or

(b) L(1)mov.s1 = t3 − t2 < S + Cs1 (EX)− t3.

If case (a) is true, js1’s finish time can no longer be
improved, and step (3) ultimately ends.
If case (b) is true, this means js1’s C

(2)
s1 (EX) can be further

brought in,
let

L(2)mov.s1 = min
{
t3 − t2, S + C

(2)
s1 (EX)− t3,L

max
mov.s1

−L(1)mov.s1

}
,

then swap in the L(2)mov.s1 time units of C (2)
s1 (EX) to the

interval [
ts1 + L

(1)
mov.s1, tk1 + L

(1)
mov.s1 + L

(2)
mov.s1

]
.

Therefore, when S−tsκ ≥ S+Csκ (EX )−t3, the completion
time of jsκ can be reduced to t3. When S − tsκ < S + Csκ
(EX ) − t3, since the swap-in time units of Csκ (EX ) must be
placed after tsκ , the maximum amount of swap-in time units
is S − tsκ , so the completion time of jsκ becomes

S + Csκ (EX )− (S − tsκ ) = Csκ (EX )+ tsκ .

Algorithm 4 (Continued) The Processing of Swap-in/Out
Can Be Carried Out According to the Following Steps

Since L(1)mov.s1 = t3 − t2 in case (b), the ‘‘swapped out’’
L(2)mov.s1 time units must be placed on another processor,
as shown in Figure 7, so L(1)mov.s1 and L(2)mov.s1 must NOT
come from the same job. Therefore, the ‘‘swapped in’’
L(2)mov.s1 time units have to be placed on another processor or
more than one processor which has no 0sub’s job execution
in this interval. Whilst all the ‘‘swapped out’’ time units
must not come from the 0sub’s jobs, and they are placed in
[t2, t3] from processor Pα+1 to Pm. In line with Lemma 1,
at any instance of time, there are always at leastm−α pro-
cessors are available to make this swapping in/out possible.
(It is recommended to place the initial ‘‘swapped in’’ time
units on the same processor if it is possible (e.g. P1 in
Figure 6) to reduce job migrations, and search processors
for the secondary ‘‘swapped in’’ time units starting from
Pα+1 (e.g. P3 in Figure 7).)
Step (4). The process of step (3) continues until the finish
time of js1 becomes t3
(i.e. L(1)mov.s1 + L

(2)
mov.s1 + ...+ L

(N )
mov.s1 = S +Cs1 (EX)− t3,

where (N ) is the number of movements for js1), or until
there is no space between ts1 and S in order to accommo-
date any new ‘‘swap-in’’ time units
(i.e. L(1)mov.s1 + L

(2)
mov.s1 + ...+ L

(N )
mov.s1 = Lmax

mov.s1).
Step (5). Repeat steps (2) and (3) for other jobs in 0sub,
as shown in Figure 8. Fully fill in the interval [t2, t3] on
each processor from Pα+1 to Pm by the ‘‘swapped out’’
time units. Finally we may get an improved deadline in
the form of t3 which is the greatest lower bound for any
scheduling algorithm.

FIGURE 1. Illustrative example of Algorithm 1 and step (1) of Algorithm 4.

Theorem 2: By Algorithm 3 and Algorithm 4, the deadline
of a frame DHI can be reduced to

max
jsκ∈{js1,js2,...,jsα}

{S + Csκ (EX )

−min {S − tsκ , S + Csκ (EX )− t3}}
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FIGURE 2. Illustrative example of steps (1) and (2) of Algorithm 2.

FIGURE 3. Illustrative example of step (3) of Algorithm 2.

FIGURE 4. Illustrative example of Algorithm 2 when α + β > m, and there
are no jobs satisfying both conditions Ci (LO) ≥

∑
χi=HI Ci (LO)/m and

Ci
(
EX
)
> Avg

(
EX
)
.

Proof: Since all HI-criticality jobs with the exception of
0sub finish at or before time t3, only the jobs of 0sub could

FIGURE 5. Illustrative example of Algorithm 2 when α + β > m, and there
is at least one job satisfying both conditions Ci (LO) ≥

∑
χi=HI Ci (LO)/m

and Ci (EX ) > Avg(EX ).

FIGURE 6. Illustration of step (2) of Algorithm 4.

be executed after t3. This result is obtained directly from
Theorem 1.

C. OPTIMALITY OF THEOREM 1 AND THEOREM 2
This section discusses the possibility of further improvement
applicable to the results of Section 3.2. When the finish
times of Csκ (LO) from 0sub’s jobs (i.e. the set of time
points {ts1, ts2, . . . , tsα} defined in Algorithm 4) are a fixed
values, the following theorem proves that the approaches of
Section 3.2 provide the best schedulability of the system.
Theorem 3: When the finish times of Csκ (LO) from 0sub

are fixed given values, the deadlines (or the length of time
required to complete the jobs) given by Theorem 1 and The-
orem 2 are optimal.

Proof: It is obvious that for any job jsκ , its Csκ (EX) can
only execute after its Csκ (LO)’s finish time tsκ , so that the
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FIGURE 7. Illustration of step (3) of Algorithm 4.

FIGURE 8. Illustration of step (4) of Algorithm 4.

length of the interval between tsκ and S is the upper bound for
the amount of time units in the case of which Csκ (EX) could
be swapped in before S. By Algorithm 4, we have already
proved that, unless there is insufficient space in [tsκ , S], every
step is possible until the deadline of jsκ has been reduced to t3.
Therefore, the results of Section 3.2 are optimal.

D. COMPLEXITY OF THE ALGORITHMS
Algorithm 1 and Algorithm 2 are ordinary semi-partitioned
strategies to allocate the load of jobs to each processor. The
complexity of each algorithm depends on the number of jobs
(denoted by n) required to be allocated and on the number of
processors (denoted by m) in a system. An upper bound for
the number of such allocations is n× m.
For Algorithm 4, since the processing of swap-in/out

depends on two factors:
1) the number of jobs in 0sub (with Ci (EX) ≥ Avg (EX));

2) howmany time units are available on a chosen processor
for swapping according to the algorithm.

Therefore, an upper bound for the number of steps (calcu-
lations) of the swap-in and swap-out is α×m, where α is the
number of jobs in 0sub.

IV. EXPERIMENTS AND EVALUATIONS
This section evaluates the extent to which improvements
can be achieved by the scheduling algorithms proposed in
Section 3 on the basis of an extensive number of experiments
based on a large number of job sets which are randomly
generated. As described in Section 2, since the values of S
and 1LO are already optimal due to the system definition,
this paper reduces the length of each frame by reducing DHI

for the HI-criticality jobs in the event of a criticality change
occurring.

The following main issues are addressed in this section.

(1) The average length of the deadline DHI that can be
reduced.

(2) The extent of the improvement of the total processor uti-
lization to be obtained, and the average total processor
utilization of the job sets after rescheduling.

(3) Since the proposed algorithms provide an opportunity
to obtain an optimal/minimum deadline given by equa-
tion (3), we will investigate what percentage of the
randomly generated job sets can obtain the optimal
values.

(4) The percentage of the job sets which cannot be
improved due to failures of step (4) or step (6) of
Algorithm 2 in relation to allocating each HI-criticality
job’s Ci (LO) to processors.

The WCETs of the jobs in each set are randomly gen-
erated between 1 and 1000, representing the computation
times ranging from 1ms to 1s which is very common in real
systems. In order to obtain uniformly distributed WCETs
in the range 1-1000, we let the job parameters be gener-
ated by the same approach provided in [30] according to an
exponential distribution. For example, if the number of jobs
for each system is 17, we first let C17(LO) = 1000, and
then let 16 computation times be generated between 1 and
1000. Since ln 1000 ∼= 6.9, the range of Ci(LO) is divided
into 7 intervals eo ∼ e1, e1 ∼ e2, . . . , e6 ∼ 1000, two
computation times are generated randomly in each interval
from C1(LO) to C14(LO), and for the other two computation
times C15(LO) ∼ C16(LO), one is generated in each of the
two minimum intervals.

The parameters ofCi(LO) andCi (EX) for theHI-criticality
jobs are generated separately. In order to avoid always having
Cn(LO) = Cn (EX) = 1000, where n is the number of
HI-criticality jobs, we let Ci (EX) be generated in the reverse
order ofCi(LO), that is to say they are generated fromCn(EX )
to C2(EX ) in the same intervals.
Each point on the diagrams of this section is the average of

30,000 sets of jobs that are randomly generated by the above
described policies.
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A. REDUCTION OF FRAME (LENGTH OF COMPLETION
TIME)
In this section, we evaluate to what extent the deadline DHI

(or the length of time required to complete all jobs) of each
frame can be reduced by our algorithms. On the graphs,
‘D-original’ and ‘D-improved’ represent the average required
DHI before and after the proposed algorithms are applied.
In the first experiment, we let the number of jobs in each

frame be varied from 4 to 24 when there are four processors
in the system. The results are shown in Figure 9.

FIGURE 9. Average length of time required to complete all jobs in each
frame as a function of the number of jobs on a four-processor platform.

FIGURE 10. Average length of time required to complete all jobs in each
frame as a function of the number of jobs on an eight-processor platform.

In the next experiment described by Figure 10, we change
the number of processors to 8, and let the number of jobs vary
between 4 and 52, so the average deadline is still a function
of the number of jobs within each frame.

In the following experiment, we let the number of pro-
cessors in each system vary between 2 and 16, and let the
number of jobs in each frame be 12, such that the length of the
deadline is expressed as a function of the processors’ number.
The results are presented in Figure 11.

FIGURE 11. Average length of time required to complete all jobs in each
frame as a function of the number of processors when there are 12 jobs
in each frame.

B. POSSIBILITY OF FURTHER IMPROVEMENT
This section evaluates the possibility of further improvement
by investigating the processor utilization in each given inter-
val. In this section, we denote the new completion time of
each frame to be DHINew after the proposed algorithms are
applied, and denote DHIOrig to be the original completion time
before the improvement. We investigate the total processor
utilization of jobs in the intervals [0,DHINew] and [0,DHIOrig].
This is because when the total processor utilization in a
time interval reaches its maximum possible value (e.g. the
processor utilization in [0,DHINew] reachesm for a system with
m processors), no algorithm can further reduce the length of
deadline in this time interval.

In the first experiment, we let the parameters of each
frame and the number of processors be exactly the same as
the experiment described by Figure 9, and the number of
jobs in each frame still varies between 4 and 28, thus the
processor utilization is determined by the number of jobs.
On the graph, ‘U-original’ represents the average processor
utilization in the interval [0,DHIOrig] before the improvement,
and ‘U-improved’ represents the average processor utiliza-
tions in the interval [0,DHINew] after the improvement is made.
The results are shown in Figure 12.

We can see from the results of Figure 12, that the proces-
sor utilization in each interval almost reaches its maximum
capacity 4 when the number of jobs is equal to or above 22.
This means that when the number of jobs in each frame
reaches 22 or more, no algorithm can further reduce the
required length of such a frame.

Comparing the experimental results of Figure 9 with
Figure 12, a comparative analysis can be found that before
the processor utilization in each interval reaches its maxi-
mum possible capacity, our proposed algorithms significantly
reduce the length of time required to complete the jobs, and
the lower the processor utilization in an interval, the greater
the improvement that can be made.
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FIGURE 12. Total Processor utilization in the intervals [0,DHI
New ]

(U-improved) and [0,DHI
Orig] (U-original) as a function of the number of

jobs on a four-processor platform.

FIGURE 13. Total Processor utilization in the intervals [0,DHI
New ]

(U-improved) and [0,DHI
Orig] (U-original) as a function of the number of

jobs on an eight-processor platform.

The second experiment described by Figure 13 has the
same parameters and number of processors with the exper-
iment of Figure 10. We can see from Figure 13 that when the
number of jobs is above 44, the utilization in each interval
almost reaches the maximum possible capacity. Comparing
the experimental results of Figure 10 with Figure 9, we can
get the same conclusion that before the utilization of each
interval reaches its maximum value, our algorithms always
greatly improve the completion of each frame.

Summary of Results From the experimental results of
Section 4.A and Section 4.B, we can conclude that the pro-
posed algorithms always significantly reduce the required
length of each frame under nearly all situations as long as the
total processor utilization in this time interval does not reach
its maximum possible value. The proposed algorithms also
significantly increase the total processor utilization in each
frame before the processor utilization reaches its maximum
possible value in this time interval. In each frame, when

there are a reduced number of jobs, or a lower processor
utilization, or there are more processors in the system, more
improvements can be made by the algorithms.

C. PERCENTAGE OF OPTIMAL/MINIMUM LENGTH OF
FRAMES OBTAINED
In this section, we first evaluate what percentage of the
job sets can obtain the optimal length of frames (given by
equation (3) which is a minimum possible value) before and
after the proposed algorithms are applied; in this experiment,
only the sets of jobs that can be successfully allocated to
the processors by Algorithm 2 are considered. The results of
the four-processor and eight-processsor platforms are shown
in Figure 14 and Figure 15 respectively. Each point on the
diagrams of this section is based on at least 40,000 randomly
generated sets of jobs.

FIGURE 14. Percentage of the job sets which obtained the optimal length
of frames before and after the improvement on a four-processor platform.

FIGURE 15. Percentage of the job sets which obtained optimal length of
frames before and after the improvement on an eight-processor platform.

We can see in Figure 14 and Figure 15 that with the
exception of one or two specific points (n = 13, n = 12),
almost 100% of the job sets get optimal length of frames in
all situations after the improvement, while the original sched-
ule always has 0% of the optimal values in every situation
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before the number of tasks is increased to a certain value
which results in the maximum capacity of the total processor
utilization in each time interval.

FIGURE 16. Percentage of the job sets that cannot be improved due to
processor allocation failure on a four-processor platform.

In the following experiment, we investigate what percent-
age of the job sets cannot be improved due to the processor
allocation failures by Algorithm 2. The numbers are reported
in Figure 16 and Figure 17.

FIGURE 17. Percentage of the job sets that cannot be improved due to
processor allocation failure on an eight-processor platform.

We can see in Figure 16 and Figure 17 that with the
exception of a few numbers on the x-axis, in most situations,
almost 100% of the job sets can be successfully allocated
to the processors in order to improve their schedule. When
the number of jobs in each system falls into some specific
interval, less than 1.4% of the job sets cannot be improved
due to failures in step (4) or step (6) of Algorithm 2.

V. CONCLUSION
In this paper, we presented algorithms for improving the
schedulability of cyclic executive mixed criticality systems.
These algorithms provide solutions to the following issues:
(1) how to allocate the workloads of jobs among processors

before and after time S; (2) how to implement the executions
of jobs in each frame when the schedule is being remapped;
(3) how to rearrange the schedule in order to reduce each
frame’s length (or the length of time required to complete all
jobs) to a minimum possible value.

We reduce the length of the frame by ‘‘swapping-in’’ the
time units of HI-criticality jobs’ Ci(EX ) before time S, whist
‘‘swapping-out’’ the same amount of time units of Ci(LO)
after S. We let the time units of HI-criticality jobs’ Ci(EX )
share the same time intervals with Ci(LO) before S, so that
the value of S is not affected and all the timing restrictions
from the system definition of Section 2 are guaranteed.

The presented algorithms can reduce the length of each
frame toward an optimal (minimum) value which is a nec-
essary condition for schedulability under any schedule. The
length of the frame that can be reduced only depends on
the finish times of Ci(LO) from a few specific jobs in 0sub.
We provided algorithms in order to enable such jobs’ Ci(LO)
to complete as soon as possible so as to maximize the
improvement. We also proved that, when these finish times
are fixed given values, the proposed algorithms and the results
given by Theorem 1 and Theorem 2 are optimal.

We evaluated the performance of the proposed algorithms
by conducting experiments on a very large number of ran-
domly generated job sets. We showed that the proposed algo-
rithms always significantly improve the completion time of
each frame in nearly all situations as long as the processor
utilization of this time interval does not reach its maximum
possible value. We also showed that if our algorithms cannot
shorten the frame, no algorithm can further reduce the length
of such a frame.

The original length of the frames is reduced by approx-
imately 25% across all job sets in our experiments before
the processor utilization of each time interval is equal to
the number of processors in the system, in which case no
algorithm can further improve the frames.

With the exception of a very limited number of specific
situations, we found that almost 100% of the job sets in our
experiments received the optimal length of completion time
after the improvements.
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