
Received November 19, 2020, accepted December 8, 2020, date of publication December 14, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3044610

An Anomaly Detection Algorithm for
Microservice Architecture Based on Robust
Principal Component Analysis
MINGXU JIN1, AORAN LV1, YUANPENG ZHU 1, ZIJIANG WEN2, YUBIN ZHONG2,
ZEXIN ZHAO1, JIANG WU1, HEJIE LI1, HANHENG HE1, AND FENGYI CHEN3
1School of Mathematics, South China University of Technology, Guangzhou 510641, China
2JOYY Inc., Guangzhou 511442, China
3School of Management Administration, Guangdong Industry Polytechnic, Guangzhou 510330, China

Corresponding author: Yuanpeng Zhu (ypzhu@scut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61802129, and in part by the Natural
Science Foundation of Guangdong Province, China, under Grant 2018A030310381.

ABSTRACT Microservice architecture (MSA) is a new software architecture, which divides a large single
application and service into dozens of supporting microservices. With the increasingly popularity of MSA,
the security issues of MSA get a lot of attention. In this paper, we propose an algorithm for mining
causality and the root cause. Our algorithm consists of two parts: invocation chain anomaly analysis based
on robust principal component analysis (RPCA) and a single indicator anomaly detection algorithm. The
single indicator anomaly detection algorithm is composed of Isolation Forest (IF) algorithm, One-Class
Support Vector Machine (SVM) algorithm, Local Outlier Factor (LOF) algorithm, and 3σ principle. For
general and network time-consuming anomaly in the process of the MSA, we formulate different anomaly
time-consuming detection strategies. We select a batch of sample data and three batches of test data of
the 2020 International AIOps Challenge to debug our algorithm. According to the scoring criteria of the
competition organizers, our algorithm has an average score of 0.8304 (The full score is 1) in the four batches
of data. Our proposed algorithm has higher accuracy than some traditional machine learning algorithms in
anomaly detection.

INDEX TERMS Microservice architecture, root cause analysis, anomaly detection.

I. INTRODUCTION
The concept of microservice emerged in 2012. As a way
to speed up the development process of web and mobile
applications, it has been widely concerned since 2014. MSA
is an architecture concept. Its main idea is to decompose a big
service into discrete services, to reduce system coupling, and
provide more flexible service support. MSA divides a large
single application and service into several or even dozens of
supporting microservices. It can expand a single component
rather than the entire application stack to meet the service
level agreement [1], [2].

TheMSAmakes the responsibilities of each part of the sys-
tem clearer. Each part is dedicated to providing better services

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

for others, by this strategy, there are still some problems in the
MSA [3]–[6]:

• The whole application of MSA is divided into multiple
services, so it is difficult to locate the failure nodes.

• In the MSA, a service failure may produce an avalanche
effect, resulting in the whole system failure.

Therefore, the fault diagnosis and root cause analysis of
MSA is particularly important. Currently, most studies of
root cause analysis (RCA) rely mainly on monitoring data,
including log data, service dependency data, and invocation
chain data [7]–[11].

In recent years, there are more and more RCA algorithms
and anomaly detection algorithms depending on graphs. The
researches of some MSA and cloud applications are very
representative [9]–[21].

Ma et al. presented iSQUAD, a framework for iSQ root
cause diagnoses, to deal with the problem of intermittent slow

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 226397

https://orcid.org/0000-0001-8682-6089
https://orcid.org/0000-0003-1625-6548

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

queries (iSQs) in real-world cloud databases [9]. Nie et al.
proposed an automatic diagnosis system based on causality
graph to help system operators find the root causes [10].
Xu et al. presented a novel approach to API perfor-
mance monitoring, which recognizes performance prob-
lems by response time deviation from a baseline response
time/throughput model that are created and continuously
updated through online learning [12]. Wang et al. proposed
a dynamic causal relationship analysis approach to construct
impact graphs amongst applications without given the topol-
ogy [14]. Yan et al. described the design and development
of a Generic Root Cause Analysis platform (G-RCA) for
service quality management (SQM) in large IP networks [19].
Ma et al. presented a framework, StepWise, which can detect
concept drift without tuning detection threshold or per-KPI
(Key Performance Indicator) model parameters in a large
scale KPI streams [21].

RPCA algorithm has been successfully applied in image
recognition, face recognition, signal processing, computer
vision and many other aspects [22]–[28].

Li et al. addressed the singing voice separation problem
and proposed a novel unsupervised approach based on RPCA
exploiting rank-1 constraint (CRPCA) [22]. Zhang et al. sur-
veyed the applications of RPCA in computer vision, image
processing, and video processing [23]. Mardani et al. cor-
roborated the effectiveness of RPCA in unveiling traffic
anomalies across flows and time [24]. Amoozegar et al.
proposed a new robust online subspace and anomaly tracker
for anomaly detection in time-evolving networks [25].
Ding et al. designed a more robust and useful real-time
false data injection attack detection mechanism based on
RPCA applied in the supervisory control and data acquisi-
tion (SCADA) system in smart grid [26]. Mahapatra et al.
presented a method for detecting malicious data injections in
PMUmeasurements and the corrupted signals were recovered
using a RPCA-based algorithm [27]. Song et al. proposed an
ensemble tensor decomposition to extract weak target signal
of infrared thermography videos for cracks detection [28].

In this paper, we use invocation chain anomaly analysis
based on RPCA and a single indicator anomaly detection
algorithm to help solve the RCA problem. In brief, our con-
tributions can be summarized as follows:
• Our algorithm is an RCA approach composing of RPCA
algorithm and various single indicator anomaly detec-
tion algorithms.

• Our algorithm gets the anomalous nodes accurately by
invocation chain anomaly analysis algorithm based on
RPCA, and locates the anomalous indicators of the cor-
responding nodes by combining various single indicator
anomaly detection algorithms.

• We have proved that our algorithm ranks the root causes
in the top two with 91.3% precision for the given four
batches of data. Our algorithm has an average score
of 0.8304 in the four batches of data.

The rest of this paper is structured as follows: The prob-
lems and solutions are described in Section II. Applications

of our algorithm in practical problems is demonstrated in
Section III. Section IV summarizes the conclusions and
describes our future work.

II. PROBLEM DESCRIPTION AND OUR SOLUTION
In this section, we describe the problem that our method is to
solve. Then, we elaborate on our project framework in detail.

A. DESCRIPTION OF THE PROBLEM
The analysis object of this challenge is a microservice appli-
cation system (a real microservice application in the private
cloud environment of a large operator). The data is pro-
vided by Zhejiang Mobile, including static topology data
between services, invocation chain data, gold indicator data
of observed services, and time-series data of underlying ser-
vices (operating system, oracle, container, and middleware).
All the datasets in this paper could be downloaded from:
http://iops.ai/.

In this competition, we aim to carry out anomaly detection
on business indicators, root cause analysis at the time of
anomaly. Then we further locate and investigate the failed
container or node, and finally get the failed indicators.
In addition to network type failures, other types of failures
are needed to be located at the level of performance indica-
tors (non-gold indicators), i.e., not only the failed contain-
ers or nodes but also the performance indicators that cause
the failure.

B. OVERALL FRAMEWORK OF OUR PROJECT
The basic framework of our algorithm is as follows:

• According to the success rate and average time of esb
indicators every 60 seconds, we screen potential anoma-
lous time period.

• For the potential anomalous time period, we find out
the invocation chain in the nearby time period, and
analyze the anomalous nodes in the invocation chain
(generation of anomalous nodes candidate set based
on the RPCA-based invocation chain anomaly analysis
algorithm).

• For the final anomalous nodes candidate set, we find
all related cmdb_id according to the given architecture
table, and perform single indicator anomaly detection
(Isolation Forest algorithm, 3σ principle, etc.) for all
single indicators corresponding to these cmdb_ids. The
final output of our algorithm is the final root cause that
the algorithm scores and sorts the indicators.

Figure 1 and Figure 2 respectively show the invoca-
tion chain anomaly detection frame diagram and indicator
anomaly detection flowchart.

Our root cause positioning strategy is as follows: Firstly,
we implement the invocation chain anomaly detection algo-
rithm based on the RPCA algorithm, and analyze a certain
number of invocation chains extracted from the fault time
period. Then we get the nodes with high anomaly scores. Sec-
ondly, we invoke the indicator anomaly detection algorithm

226398 VOLUME 8, 2020

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

FIGURE 1. Frame diagram of invocation chain anomaly detection.

FIGURE 2. Flowchart of indicators anomaly detection.

to detect all the indicators of the anomalous nodes in the fault
time period. If there is an indicator with a higher anomalous
score and the indicator is also in the candidate set of root
cause indicators given by the competition organizers, the indi-
cator is the final root cause. If not, the fault type of the node
is network fault.

C. ANALYSIS OF INVOCATION CHAIN ANOMALY
1) ANOMALY DETECTION STRATEGY ABOUT
DIFFERENT SITUATIONS
The basic framework for anomaly detection of invocation
chain nodes is as follows:

When the number of failed invocation chains in the win-
dow accounts for more than 1/3, we carry out anomalous

FIGURE 3. Two simple invocation chains and service time consuming.

TABLE 1. Time-consuming matrix of the two invocation chains.

invocation chain architecture detection. Otherwise, the same
window should be used for host network indicator anomaly
detection. If there is a host network anomaly, we carry
out network time-consuming anomaly detection. Otherwise,
we carry out general time-consuming anomaly detection.

According to the three failure invocation chain modes,
we propose a root cause node detection algorithm for failure
invocation chain as follows:

i) We traverse every node in depth. If there is a failure
node in its subtrees, we change its success status to
failure.

ii) We traverse every node in depth again. If it does not
contain any child node, we add it to the root cause
node candidate set. If there are failure nodes in its child
nodes, we do not add it to the root cause node candidate
set. We continue to traverse its failure nodes’ subtrees.
If there are no failure nodes in its child nodes, we add
all its child nodes and all nodes in its subtrees to the
root cause node candidate set except the node itself.

For general time-consuming anomaly detection, there are
the following strategies. We construct the standard trees by
the standard tree matching algorithm. Firstly, we consider
two different invocation (A, B, C are different services, ms=
millisecond):

It can be seen that the structure of these two invocation
chains is actually the same, so their time-consuming vectors
should be located in the same time-consumingmatrix. To per-
form anomaly detection correctly, we expect elements in
each column of the time-consuming matrix to come from the
nodes in the same topology location of different invocation
chains, i.e.:

Therefore, we need an algorithm to realize nodes matching
between all invocation chains. Then we briefly introduce the
standard tree matching algorithm to realize this requirement.
We obtain a standard tree by removing the time-consuming
record in the first invocation chain, and assign a number to
each node through traversal (depth-first traversal or breadth-
first traversal can be used, breadth-first traversal is used in

VOLUME 8, 2020 226399

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

FIGURE 4. The standard tree generated by standard tree matching
algorithm.

the specific implementation). The standard tree is shown
in Figure 4.

Invocation chains of different topology structure corre-
spond to different standard trees, for the given two simple
invocation chains in the paper. Due to different subtree
structures, the two subnodes of node A are distinguish-
able. In actual data, there is a situation where the subtrees
are indistinguishable. In this case, we need to perform
further subtree aggregation, superposition the same sub-
trees, and record the number of aggregation times for
the nodes of invocation chains to ensure correctness of
match.

When a new input invocation chain is processed, it is com-
pared and matched with all the standard trees in the standard
tree set. If there is a match, we obtain the corresponding stan-
dard tree node number according to the matching relationship
between each node and the standard tree node. We construct
the vectorized time consuming of invocation chain nodes
according to the number and time consuming. After getting
the time-consuming matrix, we use the RPCA algorithm to
detect the anomaly of the time-consuming matrix, and obtain
the same size of the anomaly submatrix. Then we output the
subject corresponding to the time anomaly.

For network time-consuming anomaly detection, there
are the following strategies. In the general time-consuming
anomaly detection strategy, the time used by the anomaly
nodes is actually the sum of the local time used by the node
and the communication time used between the child nodes.
If the fault is about the network and originates from the child
nodes, the corresponding communication time consuming
anomaly will be reflected in the time used by its parent
node. Therefore, we assign the time used by the child nodes
as the sum of the local time used by the parent nodes and
the communication time used between the child nodes. It is
expected that the fault nodes will be detected correctly in case
of network failure.

For the combination of general time-consuming anomaly
detection and network time-consuming anomaly detection,
we can find the following rules:

i) The shallower the anomalous time is, the more obvious
it is.

ii) The subject often has a parent-child relationship with
itself.

iii) In case of network failure, the anomalous time con-
sumption is reflected in the last node of the failure
subject.

Therefore, if the time used by the child node is taken as the
sum of the time used by the parent node and communication
time for both general faults and network faults, the anomalous

subject can still be correctly detected in general faults due to
the rules i) and ii).

2) RPCA ALGORITHM
The basic principle of invocation chain node anomaly detec-
tion based on RPCA is as follows.

The core idea of the algorithm is that for the invocation
chains in a period of time, we inspect the standard trees of the
invocation chains. We calculate those nodes of the standard
tree corresponding to the internal nodes of each invocation
chain. Suppose that each invocation chain views the same
node as the start node, then the first node of each invocation
chain can be thought corresponding to the root node of the
standard tree. By this means, each node of the standard
trees would get a time-consuming series by calculation. The
anomalous degree of time-consuming series for each standard
tree can be inspected by RPCA algorithm. Finally, the algo-
rithm would return the candidate set of anomalous nodes and
corresponding anomalous coefficients in a given number of
standard trees.

In the data of invocation chains, there is a condition that
the same node completing the same call many times. For
example, the service csf_001 calls local_method_004 four
times and every local_method_004 has carried on the jdbc
access to the db_009. For different invocation chains, these
local_method_004 could not be distinguished from each
other. Hence, it’s needed to aggregate these nodes that can
not be distinguished in the analysis of anomaly, then add
up the time consuming of these nodes, this operation is
called as subtree aggregation. In other words, all the same
subtrees under the same node could be aggregated as a new
subtree, whether the subtree is the same or not is defined
under the aggregation of subtrees. In addition, the definition is
recursive [13], [34].

The strategy of the calculation of the candidate sets of
anomalous nodes in standard trees and anomalous coeffi-
cients is as follows.

Firstly, the time series of each node in the standard tree
is taken as a column vector to obtain the time-consuming
matrix. What’s more, the columns of time-consuming matrix
are standardized to ensure the adaptability of the algorithm
to data of different orders of magnitude. Then RPCA algo-
rithm would be carried out on the processed time-consuming
matrix. For a given k value, the larger first k characteristic
value would be selected. For each selected principal com-
ponents, the absolute value of the largest element in linear
transformation weight vector corresponding to the nodes as
the main component of the corresponding node. The anoma-
lous coefficients of the nodes are defined as characteristics of
principle components multiplied by the node weights corre-
sponding to the weight vectors in principle component linear
transformation.

The brief introductions of RPCA algorithm are as follows.
RPCA algorithm: RPCA (robust principal component anal-

ysis) is essentially a problem of finding the best projection
of data in low dimensional space like the classical PCA

226400 VOLUME 8, 2020

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

algorithm [33]. When the observation data is large enough,
PCA algorithm can not give ideal results, while RPCA
algorithm can recover the data with essentially low rank
from the large and sparse noise polluted observation data.
RPCA algorithm considers such a problem: The general data
matrix D contains both structural information and noise.
Then the matrix can be decomposed into two matrices and
added: D = A + E , A is low rank (due to the internal
structure information, there is a linear correlation between
rows or columns), E is sparse (if there is noise, it is sparse),
then RPCA algorithm can be written as the following opti-
mization problem [34]–[37], i.e.:min

A,E
rank(A)+ λ||E||0,

s.t. A+ E = D.
(1)

Since rank and L0 norm have non convex and non
smooth properties, this NP problem is generally trans-
formed into solving a relaxed convex optimization
problem: min

A,E
||A||∗ + λ||E||1,

s.t. A+ E = D.
(2)

D. INDICATORS ANOMALY DETECTION
In this section, we would like to introduce our single indi-
cator anomaly detection algorithm in detail. The algorithm
is composed of two parts: The first part is Features Min-
ing Method and the second part is SLI Algorithm, which
ingrates One-Class Support Vector Machine, Local Outlier
Factor algorithm, Isolation Forest algorithm, and 3σ prin-
ciple. SLI algorithm can combine with the aforementioned
features mining method and make full use of the advantages
of IF algorithm, One-Class SVM, LOF algorithm and 3σ
principle.

1) FEATURES MINING METHOD
In order to eliminate the influence of dimension and ensure
that the scale of data change is not lost, we first use the
Max method to normalize KPI data of the anomalous node
as follow, i.e.,

xi =
Xi
Xmax

, (3)

where X = (X1,X2, . . . ,Xn) represents a KPI vector, Xmax =
max{X1,X2, . . . ,Xn}, n is the dimension of the KPI vec-
tor X . In order to make full use of the information in the
indicator data, six features [38] of the normalized KPI data
x = (x1, x2, . . . , xn) are mined as input data for the subse-
quent anomaly detection algorithm (SLI Algorithm). Differ-
ent from [38], we consider both local and global features of

the data in feature extraction.

y(1)i = xi,

y(2)i = xi − xi−1,

y(3)i = xi − 2xi−1 + xi−2,

y(4)i = xi − 3xi−1 + 3xi−2 + xi−3,

y(5)i =
1
m

i∑
j=i−m

xj,

y(6)i =

√√√√ 1
m

i∑
j=i−m

(xj − y
(5)
i)2,

(4)

where xj, j = i − m, i − m + 1, . . . , i represent the KPI
data five minutes before the corresponding time point of xi,
and m represents the amount of data five minutes before the
corresponding time point ti of xi.

2) SLI ALGORITHM
Firstly, we briefly introduce the four algorithms Isolation
Forest, One-Class SVM, LOF algorithm and 3σ principle as
follows.

a: ISOLATION FOREST
In an isolated forest, an anomaly is defined as more likely
to be separated, which is understandable as a point thinly
distributed and far from a dense population. In an isolated
forest, the data set is recursively randomly divided until all the
sample points are isolated. Under this random segmentation
strategy, the anomalous point w have a short path usually and
we define L(w) = 1 [39]. Otherwise, we define L(w) = 0.

b: ONE-CLASS SVM
It is assumed that the parameters of the generated hypersphere
are center c and the corresponding hypersphere radius r > 0,
the volume of the hypersphere F(r) is minimized and center c
is a linear combination of the lines that are supported. Similar
to the traditional SVMmethod, the distance between all train-
ing data points yi and the center can be required to be strictly
less than r . But for better performance, penalty coefficient D
of the relaxation variable ϑ is constructed [40], [41]. Thus,
the optimization problem can be written as follows, i.e.,

min
r,o

F(r)+
n∑
j=1

ϑi,

||yi − c||2 ≤ r + ϑi, i = 1, 2, 3, . . . , n,
ϑi ≥ 0, i = 1, 2, 3, . . . , n.

(5)

Next, we use Lagrange dual to solve the above optimization
problem (5). For the new data point p, if the distance from p
to the center is less than or equal to the radius r , it’s not an
anomalous point and we define L(p) = 0, otherwise it’s an
anomalous point and we define L(p) = 1.

VOLUME 8, 2020 226401

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

c: LOF ALGORITHM
The relevant expressions of the LOF algorithm are defined as
follows, i.e.,

d(w, a) = ||w− a||2, (6)

where d(w, a) represents the distance from w to a. What’s
more, dk (w) is defined as the k-distance of w. That is to say
dk (w) represents the distance from the kth most distant point
of w to w and k is a constant. Ok (w) is defined as k-distance
neighborhood of w, which represents the set of all the points
which are less than dk (w) away from w. dr is defined as the
kth reach-distance from point w to point a, which satisfies the
following expression [42].

dr − dk (w, a) = max(k − d(w), d(w, a)). (7)

Furthermore, the local reachability density is defined as
follows, i.e.,

dlk (w) =
|Ok (w)|∑

a∈Ok (w) dr − dk (w, a)
. (8)

The local outlier factor is defined as follows, i.e.,

lofk (w) =

∑
a∈Ok (w)

dlk (a)
dlk (w)

|Ok (w)|
=

∑
a∈Ok (w)

dlk (a)
dlk (w)

|Ok (w)|dlk (w)
. (9)

For LOF algorithm, if the lofk (w) is less than 1, it means
that the density of w is higher than the density of its neigh-
borhood points, and w is the normal point and we define
L(w) = 0. If the lofk (w) is greater than 1, it means that
the density of w is less than the density of its neighborhood
points, and the more likely that w is the anomalous point and
and we define L(w) = 1.

d: 3σ PRINCIPLE
We define

vi = |
xi − xmean

xstd
|, (10)

where xi represents the ith data point, x = [x1, x2, . . . , xn],

xmean =
∑n

i xi/n and xstd =
[∑n

i=1 (xi − xmean)
2 /n

]1/2.
If vi > 3, xi can be viewed as an anomalous point and we
define L(w) = 1. Otherwise, we define L(w) = 0.

Secondly, A detailed description of the SLI algorithm is as
follows, i.e.,
INPUT:
When training themodel, we inputT = [T1,T2,T3,T4,T5,

T6] and

T1 = [y(1)1 , y
(1)
2 , . . . , y

(1)
n]T,

T2 = [y(2)1 , y
(2)
2 , . . . , y

(2)
n]T,

T3 = [y(3)1 , y
(3)
2 , . . . , y

(3)
n]T,

T4 = [y(4)1 , y
(4)
2 , . . . , y

(4)
n]T,

T5 = [y(5)1 , y
(5)
2 , . . . , y

(5)
n]T,

T6 = [y(6)1 , y
(6)
2 , . . . , y

(6)
n]T,

(11)

where T represents the data obtained from the original
training data Xtrain through the features mining method.

Xtrain represents the data before the anomalous time period
of the corresponding indicator.

When we verify the algorithm, we input U = [U1,U2,

U3,U4,U5,U6], where U represents the data obtained from
the original data Xtest through the features mining method.
Xtest is an indicator data of the anomalous node in the anoma-
lous period.
OUTPUT:
The anomalous score S = qab/qall of the indicator in

the anomalous period, where qall represents the amount of
indicator data of the anomalous node in the anomalous period,
qab represents the number of anomalous data points detected
by the SLI algorithm.

The whole steps of the SLI algorithm are described as
follows.
Step 1: Normalize KPI data of the anomalous node by the

Max method.
Step 2: Use features mining method to extract the features

of normalized KPI data.
Step 3: Use training data to train the Isolation Forest, One-

Class SVM, LOF algorithm and 3σ principle.
Step 4: Use four models trained in step 3 to detect the data

of anomalous subjects in anomalous time period.
Step 5: Calculate N (xi) = Lif (xi) + Lsvm(xi) + Llof (xi) +

2Lsigma(xi), where Lif (xi), Lsvm(xi), Llof (xi) and Lsigma(xi)
represent the label value of xi obtained by Isolation Forest
algorithm, One-Class SVM, LOF algorithm and 3σ principle
respectively. If N (xi) > 3, we take L(xi) = 1 and xi is judged
as an anomalous point.
Step 6: Calculate the anomalous score S of the indicator in

the anomalous period.

III. EXPERIMENT AND RESULT ANALYSIS
This section mainly aims to verify the effectiveness of our
algorithm framework. In this section, firstly, we select the
sample data and the first three batches of test data of the
2020 International AIOps Challenge to evaluate our algo-
rithm. Secondly, we compare the root cause analysis results
of IF, LOF and One-Class SVM algorithm with our algo-
rithm. Finally, we analyze the results of our algorithm in
detail.

A. PERFORMANCE OF OUR ALGORITHM
Firstly, we should read the file containing all invocation
chain information given by the competition organizers. Then,
we define the invoking relationship and establish complete
invocation chains according to three reserved fields ‘id’, ‘tra-
ceid’, and ‘pid’ of the file. Because the complete invoking
topology diagram is too large, part of the complete invoking
topology diagram is shown in Figure 5.

Anomalies are usually observed in several monitoring indi-
cators. For microservices, response and latency times are
important key performance indicators (KPIs). We extract
more static attributes or KPIs from other subjects, such as
CPU memory usage, container memory usage and cache-
related KPIs.

226402 VOLUME 8, 2020

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

FIGURE 5. Invoking relationship topology diagram.

TABLE 2. Main monitoring KPIs.

In the preliminary stage of this competition, the competi-
tion organizers inject the fault into the target environment by
manual injection, and the duration of the injection is 6 hours
(from 0:00 a.m. to 6:00 a.m. every day). Since different
technology stacks have different indicators and the number
of effective indicators reaches more than 100, a large number
of resources and costs will be wasted if all of them are
detected. By testing, some specific KPIs are collected as
shown in Table 2.

Through the test and analysis of the sample data given by
the competition organizers, we filter hundreds of KPI data,
and finally get some important KPI data shown in Table 2.
These KPI data has an obvious data fluctuation in the time
period of failure, which facilitates our anomaly detection
algorithm to identify the specific fault container. We sim-
plify the set of root cause indicators to effectively reduce
the computational complexity of anomaly detection algo-
rithm and improve the overall efficiency of the algorithm,
to more accurately locate the specific anomalous indicators.
We eliminate some KPI data which change little with time,
and use certain prior knowledge to simplify the detection
complexity.

The fault time information of the sample data has been
provided by the competition organizers, which is convenient
for the teams to debug their own algorithm. From Figure 6,
we see that during the fault period (5 minutes), the value of
KPI curve of business indicators will fluctuate significantly,
and accordingly, some indicators related to the underlying
services will be anomalous during this period of time.

FIGURE 6. Average response time for business indicator data. The time
nodes where the fault period begins is marked in red.

TABLE 3. 11 faults of the sample data.

TABLE 4. Partial application deployment architecture list.

We debug our algorithm with the sample data. Firstly,
anomalous nodes of 10 out of 11 faults are located by
our invocation chain anomaly analysis algorithm based on
RPCA algorithm. Then, specific fault nodes of corresponding
anomalous containers could also be verified accurately by our
single indicator anomaly detection algorithm. By comparing
the output candidate set of root cause and the file of fault
content given by the competition organizers, the top two root
causes located by our algorithm could hit the real root cause.
According to table 3, it can be seen that for the detected faults
of two anomalous nodes, take the first fault as an example.
Because docker_003 is deployed on os_019, the invocation
chain detection algorithm would get two anomalous nodes,
i.e., the anomalous node itself and its deployed principle.
Through the experiment of the sample data, it can be seen that
our algorithm has a higher accuracy to some extent. Table 4
shows a partial application deployment architecture list.

VOLUME 8, 2020 226403

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

TABLE 5. 11 faults of the first batch of test data.

TABLE 6. 13 faults of the second batch of test data.

The sample data of this competition has given the specific
anomalous nodes and corresponding indicators when the fault
occurs. Then, we select the first three batches of test data to
test our algorithm. The test data only gives the time point
where the fault occurs, and contestants do not need to carry
out anomaly detection on the esb indicator. The given time
points to the time stamp are taken as the input of our algorithm
to get the final anomalous nodes and corresponding anoma-
lous indicators, as shown in Tables 5–7.

According to Table 5, we consider the 4th fault in the
first batch of test data. The actual fault is located on os_009,

TABLE 7. 11 faults of the third batch of test data.

FIGURE 7. KPI curves corresponding to anomalous nodes detected in the
fault time period except network fault of sample data. Green lines show
normal time periods. Yellow lines show anomalous time periods. The
anomalous points detected by our indicator anomaly detection algorithm
are marked in red.

actually is fly remote according to application deployment
architecture list given by competition organizers. The spe-
cific reason is that the complete set of faults given by the
competition organizers does not include faults of fly remote.
By manually viewing the failed invocation chain information
and the KPI curves of the anomalous indicators, we could
lock the location of anomalous node as flyremote_001.

Figures 7-10 showKPI curves corresponding to anomalous
nodes detected in the fault time period except network fault
of the first three batches of test data. From our root cause
location strategy mentioned in Section II, we can see that
there is no corresponding anomalous indicator of network
fault. If the anomalous node is docker, it is generally the
CPU fault and the value of the indicator ‘container_cpu_used’
is usually around 90, for example, Figure 7(a) and 8(a).
If the anomaly is db, there are generally two types of faults:

226404 VOLUME 8, 2020

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

FIGURE 8. KPI curves corresponding to anomalous nodes detected in the
fault time period except network fault of the first batch of test data.
Green lines show normal time periods. Yellow lines show anomalous
time periods. The anomalous points detected by our indicator anomaly
detection algorithm are marked in red.

FIGURE 9. KPI curves corresponding to anomalous nodes detected in the
fault time period except network fault of the second batch of test data.
Green lines show normal time periods. Yellow lines show anomalous
time periods. The anomalous points detected by our indicator anomaly
detection algorithm are marked in red.

database connection limit and database off monitoring. For
the former, the indicator ‘Sess_Connection’ would drop to a
very low value, for example, Figure 7(c) and 8(b). For the
latter, the indicator ‘On_Off_State’ would change from 1 to
0, for example, Figure 7(f) and 9(c). If the anomaly is os,
the values of indicators ‘Sent_queue’ and ‘Received_queue’
would increase sharply, and the indicator ‘Received_queue’
would show a certain lag, for example, Figure 8(c) and 9(b).

FIGURE 10. KPI curves corresponding to anomalous nodes detected in
the fault time period except network fault of the third batch of test data.
Green lines show normal time periods. Yellow lines show anomalous
time periods. The anomalous points detected by our indicator anomaly
detection algorithm are marked in red.

TABLE 8. Comparative results of different algorithms.

B. PERFORMANCE OF DIFFERENT ALGORITHMS
Table 8 shows the comparison results on the sample data and
the first three batches of data of the 2020 International AIOps
Challenge using different algorithms. We transform the fault
time given by each batch of data into the corresponding times-
tamp as the input. We obtain the final root cause indicator
score by indicator anomaly detection with four algorithms,
IF algorithm, LOF algorithm, One-Class SVM algorithm and
our algorithm. And our indicator anomaly detection algo-
rithm is the combination of voting scores of three algorithms
IF, LOF, and One-Class SVM. Besides, the final scoring
rules of the root cause indicator are consistent with the rules
of this International AIOps Challenge, i.e., if the first root
cause indicator is correct, we get 1 point, if the second
root cause indicator is correct, we get 0.2 point, if there is
no root cause indicator is correct, we get 0 point. The total
score of root cause indicators divided by the amount of faults
is the final root cause indicator score.

Compared with IF algorithm (The average score of the four
batches of data is 0.6784), LOF algorithm (The average score
of the four batches of data is 0.5657), and One-Class SVM
algorithm (The average score of the four batches of data is
0.5913), our algorithm (The average score of the four batches
of data is 0.8304) has a higher score, which indicates our
single indicator algorithm including three algorithms has a
better root cause location effect.

VOLUME 8, 2020 226405

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

IV. CONCLUSION
In this paper, we propose a root cause location method based
on execution trace for MSA. Firstly, we describe the exe-
cution trace of request processing by invocation trees, and
construct a standard tree library by using the standard tree
matching algorithm. Then, we extract the invocation chains
in the period of partial execution trace failure to match with
the standard tree library, and vectorize the time-consuming
matrix of the standard tree nodes to build an anomalous time-
consuming matrix. We use RPCA algorithm to analyze the
anomalous time-consuming matrix, and the single indicator
anomaly detection algorithm to locate the root causes. Finally
we output nodes with high anomalous scores. Experimental
results show that the proposed algorithm ranks the root causes
in the top two with over 90% precision for given sample data
and test data, which verify the effectiveness of the proposed
algorithm.

At present, this method still has the following problems
to be improved: Firstly, the root cause location of offline
data is based on the condition that the competition organizers
have given the specific time nodes of fault occurrence. Our
next work is to explore some effective anomaly detection
algorithms for esb indicators; Secondly, our algorithm only
performs well for offline data. To successfully apply our algo-
rithm to online data, we try to use Kafka to accept streaming
data from the cloud services. After we convert the received
streaming data into the data in a specific format, the online
data can be perfectly connected with our algorithm.

REFERENCES
[1] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and

V. Muntés-Mulero, ‘‘Graph-based root cause analysis for service-
oriented and microservice architectures,’’ J. Syst. Softw., vol. 159,
pp. 110432.1–110432.17, Jan. 2020.

[2] J. Zhao and L. Huang, ‘‘Exploration of research on microservice fault
diagnosis technology,’’ J. Netw. New Media, vol. 9, no. 1, pp. 57–64,
Jan. 2020.

[3] W. Lin, M. Ma, D. Pan, and P. Wang, ‘‘FacGraph: Frequent anomaly
correlation graph mining for root cause diagnose in micro-service architec-
ture,’’ in Proc. IEEE 37th Int. Perform. Comput. Commun. Conf. (IPCCC),
Nov. 2018, pp. 1–8.

[4] J. M. Q. Alvarez, J. A. O. Sanabria, and J. I. M. Garcia, ‘‘Microservices-
based architecture for fault diagnosis in tele-rehabilitation equipment oper-
ated via Internet,’’ inProc. IEEELatin Amer. Test Symp. (LATS),Mar. 2019,
pp. 1–6.

[5] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, ‘‘Fault
analysis and debugging of microservice systems: Industrial survey, bench-
mark system, and empirical study,’’ IEEE Trans. Softw. Eng., early access,
Dec. 18, 2018, doi: 10.1109/TSE.2018.2887384.

[6] L. Huang,W. Zhuang,M. Sun, and H. Zhang, ‘‘Research and application of
microservice in power grid dispatching control system,’’ in Proc. IEEE 4th
Inf. Technol., Netw., Electron. Automat. Control Conf. (ITNEC), Jun. 2020,
pp. 1895–1899.

[7] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian, ‘‘A causality mining
and knowledge graph based method of root cause diagnosis for perfor-
mance anomaly in cloud applications,’’ Appl. Sci., vol. 10, no. 6, p. 2166,
Mar. 2020.

[8] Z. Wang, T. Wang, W. Zhang, N. Chen, and C. Zuo, ‘‘Fault diagnosis for
microservices with execution trace monitoring,’’ J. Softw., vol. 28, no. 6,
pp. 1435–1454, Jun. 2017.

[9] M.Ma, Z. Yin, S. Zhang, S.Wang, C. Zheng, X. Jiang, H. Hu, C. Luo, Y. Li,
N. Qiu, F. Li, C. Chen, and D. Pei, ‘‘Diagnosing root causes of intermittent
slow queries in cloud databases,’’ Proc. VLDB Endowment, vol. 13, no. 10,
pp. 1176–1189, Jun. 2020.

[10] X. Nie, Y. Zhao, K. Sui, D. Pei, Y. Chen, and X. Qu, ‘‘Mining causality
graph for automatic Web-based service diagnosis,’’ in Proc. IEEE 35th Int.
Perform. Comput. Commun. Conf. (IPCCC), Dec. 2016, pp. 1–8.

[11] L. Meng, Y. Sun, and S. Zhang, ‘‘Midiag: A sequential trace-based fault
diagnosis framework for microservices,’’ in Proc. 17th Int. Conf. Services
Comput. (SCC), Honolulu, HI, USA, Sep. 2020, pp. 137–144.

[12] J. Xu, Y. Wang, P. Chen, and P. Wang, ‘‘Lightweight and adaptive ser-
vice API performance monitoring in highly dynamic cloud environment,’’
in Proc. IEEE Int. Conf. Services Comput. (SCC), Honolulu, HI, USA,
Jun. 2017, pp. 35–43.

[13] P.-S. Huang, S. D. Chen, P. Smaragdis, and M. Hasegawa-Johnson,
‘‘Singing-voice separation from monaural recordings using robust princi-
pal component analysis,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2012, pp. 57–60.

[14] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
‘‘CloudRanger: Root cause identification for cloud native systems,’’ in
Proc. 18th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID),
May 2018, pp. 492–502.

[15] J. Lin, P. Chen, and Z. Zhang, ‘‘Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,’’ in Proc. 16th Int.
Conf. Service-Oriented Comput. (ICSOC), Hangzhou, China, Nov. 2018,
pp. 3–20.

[16] P. Chen, Y. Qi, and D. Hou, ‘‘CauseInfer: Automated end-to-end perfor-
mance diagnosis with hierarchical causality graph in cloud environment,’’
IEEE Trans. Services Comput., vol. 12, no. 2, pp. 214–230, Mar. 2019.

[17] P. Chen, Y. Qi, P. Zheng, and D. Hou, ‘‘CauseInfer: Automatic and dis-
tributed performance diagnosis with hierarchical causality graph in large
distributed systems,’’ in Proc. IEEE Conf. Comput. Commun. (INFO-
COM), Toronto, ON, Canada, Apr. 2014, pp. 1887–1895.

[18] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, ‘‘AutoMAP:
Diagnose your microservice-based Web applications automatically,’’ in
Proc. Web Conf., Apr. 2020, pp. 246–258.

[19] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates, ‘‘G-
RCA: A generic root cause analysis platform for service quality man-
agement in large IP networks,’’ IEEE/ACM Trans. Netw., vol. 20, no. 6,
pp. 1734–1747, Dec. 2012.

[20] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng,
‘‘Opprentice: Towards practical and automatic anomaly detection through
machine learning,’’ in Proc. Internet Meas. Conf., Oct. 2015, pp. 211–224.

[21] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, ‘‘Robust and rapid
adaption for concept drift in software system anomaly detection,’’ in Proc.
IEEE 29th Int. Symp. Softw. Rel. Eng. (ISSRE), Memphis, TN, USA,
Oct. 2018, pp. 13–24.

[22] F. Li and M. Akagi, ‘‘Unsupervised singing voice separation based on
robust principal component analysis exploiting rank-1 constraint,’’ in Proc.
26th Eur. Signal Process. Conf. (EUSIPCO), Sep. 2018, pp. 1920–1924.

[23] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, ‘‘On the applica-
tions of robust PCA in image and video processing,’’ Proc. IEEE, vol. 106,
no. 8, pp. 1427–1457, Aug. 2018.

[24] M. Mardani, G. Mateos, and G. B. Giannakis, ‘‘Recovery of low-rank plus
compressed sparse matrices with application to unveiling traffic anoma-
lies,’’ IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5186–5205, Aug. 2013.

[25] M. Amoozegar, B. Minaei-Bidgoli, M. Rezghi, and H. Fanaee-T, ‘‘Extra-
adaptive robust online subspace tracker for anomaly detection from stream-
ing networks,’’Eng. Appl. Artif. Intell., vol. 94, Sep. 2020, Art. no. 103741.

[26] Y. Ding and J. Liu, ‘‘Real-time false data injection attack detection in
energy Internet using online robust principal component analysis,’’ inProc.
IEEE Conf. Energy Internet Energy Syst. Integr. (EI), Beijing, China,
Nov. 2017, pp. 1–6.

[27] K. Mahapatra and N. R. Chaudhuri, ‘‘Malicious corruption-resilient wide-
area oscillationmonitoring using online robust PCA,’’ inProc. IEEEPower
Energy Soc. Gen. Meeting (PESGM), Portland, OR, USA, Aug. 2018,
pp. 1–5.

[28] J. Song, B. Gao, W. L. Woo, and G. Y. Tian, ‘‘Ensemble tensor decom-
position for infrared thermography cracks detection system,’’ Infr. Phys.
Technol., vol. 105, Mar. 2020, Art. no. 103203.

[29] M. Kim, R. Sumbaly, and S. Shah, ‘‘Root cause detection in a service-
oriented architecture,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 41,
no. 1, pp. 93–104, Jun. 2013.

[30] N. Laptev, S. Amizadeh, and I. Flint, ‘‘Generic and scalable frame-
work for automated time-series anomaly detection,’’ in Proc. 21th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), Aug. 2015.,
pp. 1939–1947.

226406 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSE.2018.2887384

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

[31] W. Xu, L. Huang, A. Fox, D. A. Patterson, and I. M. Jordan, ‘‘Detecting
large-scale system problems by mining console logs,’’ in Proc. 27th Int.
Conf. Mach. Learn. (ICML), Haifa, Israel, Jun. 2010, pp. 112–132.

[32] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, ‘‘Execution anomaly detection in
distributed systems through unstructured log analysis,’’ in Proc. 9th IEEE
Int. Conf. Data Mining, Miami, FL, USA, Dec. 2009, pp. 149–158.

[33] M. Partridge and M. Jabri, ‘‘Robust principal component analysis,’’ in
Proc. IEEE Signal Process. Soc. Workshop Neural Netw. Signal Process.,
Sydney, NSW, Australia, vol. 1, Dec. 2000, pp. 1–10.

[34] E. J. Candes, X. Li, Y. Ma, and J. Weight, ‘‘Robust principal component
analysis?’’ J. ACM, vol. 58, no. 3, pp. 1–37, Dec. 2009.

[35] J. Wright, A. Ganesh, S. Rao, and Y. Ma, ‘‘Robust principal component
analysis: Exact recovery of corrupted low-rank matrices,’’ Apr. 2009,
arXiv:0905.0233. [Online]. Available: https://arxiv.org/abs/0905.0233

[36] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, ‘‘Robust
subspace learning: Robust PCA, robust subspace tracking, and robust
subspace recovery,’’ IEEE Signal Process. Mag., vol. 35, no. 4, pp. 32–55,
Jul. 2018.

[37] N. Vaswani, Y. Chi, and T. Bouwmans, ‘‘Rethinking PCA for modern
data sets: Theory, algorithms, and applications [scanning the issue],’’ Proc.
IEEE, vol. 106, no. 8, pp. 1274–1276, Aug. 2018.

[38] Zhang, Zhu, Li, Wang, and Guo, ‘‘Anomaly detection based on mining
six local data features and BP neural network,’’ Symmetry, vol. 11, no. 4,
p. 571, Apr. 2019.

[39] F. Liu, K. Ting, and Z. Zhou, ‘‘Isolation forest,’’ in Proc. IEEE 8th Int.
Conf. Data Mining, Pisa, Italy, Dec. 2008, pp. 413–422.

[40] R. Perdisci, G. Gu, and W. Lee, ‘‘Using an ensemble of one-class SVM
classifiers to harden payload-based anomaly detection systems,’’ in Proc.
6th Int. Conf. Data Mining (ICDM), Hong Kong, Dec. 2006, pp. 488–498.

[41] Y.-S. Choi, ‘‘Least squares one-class support vector machine,’’ Pattern
Recognit. Lett., vol. 30, no. 13, pp. 1236–1240, Oct. 2009.

[42] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, ‘‘LOF: Identifying
density-based local outliers,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), May 2000, pp. 93–104.

MINGXU JIN was born in China, in 1998. He
received the B.S. degree in mathematics and
applied mathematics from the South China Uni-
versity of Technology, Guangzhou, China, in 2020,
where he is currently pursuing the master’s degree
in computational mathematics. His research inter-
ests include computer-aided geometric design and
machine learning.

AORAN LV was born in China, in 1999. He is
currently pursuing the B.S. degree in informa-
tion and computing science with the South China
University of Technology, Guangzhou, China. His
research interests include computer graphics and
machine learning.

YUANPENG ZHU was born in China, in 1984.
He received the master’s degree in computational
mathematics and the Ph.D. degree in appliedmath-
ematics from Central South University, Changsha,
China, in 2011 and 2014, respectively. From
2014 to 2016, he was a Postdoctoral Fellow with
the School of Mathematical Sciences, University
of Science and Technology of China, Hefei, China.
Since 2016, he has been with the South China Uni-
versity of Technology, Guangzhou, China, where

he is currently a Lecturer with the the School of Mathematics. His research
interests include computer-aided geometric design, geometric modeling, and
spline.

ZIJIANG WEN was born in China, in 1991.
He received the B.S. degree in statistics from
Guangdong Medical University, Guangzhou,
China, in 2015. He is currently engaged inmachine
learning with JOYY Inc. His research interests
include artificial intelligence and deep learning.

YUBIN ZHONG was born in China, in 1993. He
received the master’s degree in control science
and engineering from the Guangdong University
of Technology, Guangzhou, China, in 2019. He is
currently engaged in data mining with JOYY Inc.
His research interests include machine learning,
anomaly detection, and recommendation systems.

ZEXIN ZHAO was born in China, in 1999.
He is currently pursuing the B.Eng. degree in
information management and information system
with the South China University of Technology,
Guangzhou, China. His research interests include
software engineering and machine learning.

JIANG WU was born in China, in 1999.
He is currently pursuing the B.Eng. degree in
information management and information sys-
tem with the South China University of Tech-
nology, Guangzhou, China. His research interests
include neural networks, optimization algorithm,
data mining, big data processing, and robotics.

HEJIE LI was born in China, in 2000. He is
currently pursuing the B.S. degree in informa-
tion and computing science with the South China
University of Technology, Guangzhou, China. His
research interests include machine learning and
data algorithm.

VOLUME 8, 2020 226407

M. Jin et al.: Anomaly Detection Algorithm for MSA Based on RPCA

HANHENG HE was born in China, in 1998. He
is currently pursuing the B.S. degree in informa-
tion and computing science with the South China
University of Technology, Guangzhou, China. His
research interests include machine learning and
computer vision.

FENGYI CHEN was born in China, in 1985. She
received the master’s degree in accounting sci-
ence from the University of Macau, in 2012. She
is currently pursuing the Ph.D. degree with The
Hong Kong Polytechnic University. Her research
interests include grey forecasting and market
forecasting.

226408 VOLUME 8, 2020

