IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 26, 2020, accepted December 11, 2020, date of publication December 14, 2020,

date of current version December 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3044857

An Efficient-Assembler Whale Optimization
Algorithm for DNA Fragment Assembly
Problem: Analysis and Validations

MOHAMED ABDEL-BASSET !, (Senior Member, IEEE), REDA MOHAMED ',
KARAM M. SALLAM “', RIPON K. CHAKRABORTTY “2, (Member, IEEE),

AND MICHAEL J. RYAN“2, (Senior Member, IEEE)

!Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt

2Capability Systems Centre, School of Engineering and Information Technology, UNSW Canberra at the Australian Defence Force Academy, Campbell, ACT

2612, Australia
Corresponding author: Reda Mohamed (redamoh @zu.edu.eg)

ABSTRACT The study of deoxyribonucleic acid (DNA) is crucial in many fields, including medicine,
biology, zoology, agriculture, and forensics. Since reading a DNA sequence is onerous because of its massive
length, it is common in many DNA analysis applications to divide DNA strands into small segments or
fragments which, after analysis, must be reassembled. Since this reassembly takes a non-specific polynomial
time to solve, the DNA fragment assembly problem (DFAP) is NP-hard. This paper proposes a new assembler
for tackling the DFAP based on the overlap-layout-consensus (OLC) approach. The proposed assembler
adapts a discrete whale optimization algorithm (DWOA) using standard operators adopted from evolutionary
algorithms to simulate the strategy adopted by humpback whales when searching for prey. For the first time,
we formulate the behaviors of whales to be applied directly to any discrete optimization problem based on
three primary operations: a swap-based best-position operator, an ordered crossover operator, and selection
of a random whale operation to perform the exploitation and exploration phases of the algorithm. These
operations were carefully designed to preserve the methodology of the original whale algorithm. DFAP is a
multi-objective problem that seeks to reach the optimal order of segments that maximizes the overlap score
and minimizes the number of contigs (set of overlapping DNA segments) to compose a one-contig DNA
strand. Existing local search methods, such as problem aware local search (PALS) many non-conflicting
movements (PALS2-many), suffer from being trapped in local optima. Hence, the integration of DWOA
with PALS2-many improves the search capability for finding the optimal order of fragments. In addition,
we propose a new variation of PALS2-many that achieves simultaneously the two objectives of DFAP. Our
proposed DWOA was compared with a number of the most recent robust assemblers: a hybrid crow search
algorithm for solving the DFAP (CSA-P2M*Fit), P2M*Fit, and a hybrid genetic algorithm (GA-P2M*Fit).
The experimental results and statistical analyses of the proposed DWOA on thirty benchmark instances
show that DWOA significantly outperforms those algorithms in reaching fewer contigs, in addition to being
competitive with CSA-P2M*Fit and superior to P2M*Fit and GA-P2M*Fit for the overlap score.

INDEX TERMS DNA sequence, DNA fragments assembly problem, overlap-layout-consensus, whale
optimization algorithm.

I. INTRODUCTION

Progress in the study of deoxyribonucleic acid (DNA)
has allowed the early detection and prediction of an indi-
vidual’s exposure to many diseases including as cancer

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuai Liu

222144

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[1]-[3] and autoimmune [4] diseases. DNA analysis has
been further extended to the fields of forensics and crime
detection [5]-[8], genetic engineering and agriculture (i.e.,
improving the productivity of crops) [9]-[11]. Despite such
wide-spread applications of DNA analysis, reading the
complete DNA sequence is still an onerous task due to the
massive length of DNA strands—human DNA is estimated to

VOLUME 8, 2020

https://orcid.org/0000-0002-2794-3936
https://orcid.org/0000-0002-1903-4062
https://orcid.org/0000-0003-4039-1897
https://orcid.org/0000-0002-7373-0149
https://orcid.org/0000-0002-6335-3773
https://orcid.org/0000-0001-9909-0664

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

contain about 3.2 billion nucleotides [12], [13]. So, a standard
procedure is to divide the DNA strands into small segments
or fragments at random positions to facilitate the reading
process. Once the analysis is complete, the DNA fragments
must be combined back into the original DNA sequence—
the process is referred to as the DNA fragment assembly
problem (DFAP). In DFAP, the main objective is to find the
optimal order of the fragments to reassemble the original
DNA sequence; the layout phase is therefore considered as
the core of DFAP.

In order to ensure the accuracy of any reassembled DNA,
the two main objectives of DFAP are to attain the optimal
order of the fragments that combine to form the original DNA
while maximizing the overlap score among these fragments
and minimizing the number of contigs (set of overlapping
DNA segments). The traditional approaches of DFAP try all
the possible fragment combinations in order to detect the
best combination. For F fragments, there are 2 F! possible
combinations such that solution time increases exponentially
and it may take years to find the exact solution [12]. Due to
the significant success of meta-heuristic algorithms in solving
such problems in a reasonable time [14]-[21], this work
was motivated to adapt those algorithms for solving DFAP
in order to overcome the computational time and accuracy
problems which plague traditional methods.

Recently, a meta-heuristic algorithm [22] known as whale
optimization algorithm (WOA) has been proposed for tack-
ling continuous optimization problems [23]-[25]. WOA has
the advantages over a large number of the other meta-heuristic
algorithms that motivate investigation of its use for tackling
the DNA fragment assembly problem:

« Having two exploitation capabilities allows the whales

to quickly move toward the optimal solution.

o Terminating its exploration capability after the first half
of the iterations assists in accelerating convergence due
to reducing the diversity between the members of the
population; noting that this is considered a disadvan-
tage for a problem with several local minima and a
global minimum that is not easy to reach, as found
in such problems as parameter extraction problem of
double- and triple-diode models for solar photovoltaic
systems [26].

o Easy to understand and implement. In addition, to the
best of our knowledge, there is no research tackling this
problem using WOA.

Recently, several variants of the WOA have been proposed
for tackling various discrete optimization problems. In [27]
A binary version of the WOA has been proposed for tackling
the binary optimization problems, specifically three engi-
neering optimization problems and a real-world travelling
salesman problem. Mafarja [28] integrated the WOA with
simulated annealing (SA) to address the feature selection
problem; the SA was used to improve the quality of the best-
so-far solution after a number of iterations until accelerating
convergence toward the optimal solution. WOA was also
integrated with the quantum theorem [29] to improve the

VOLUME 8, 2020

diversification and intensification of the standard WOA
for the feature selection problem. Further, WOA was
improved by the Lévy flight strategy and the local search
strategy (LSS) [30] for tackling the single and multidi-
mensional 0-1 knapsack problems. WOA has also been
suggested in [31] for tackling the clustering problem in
data mining. Abdel-Basset [32] modified the WOA and
hybridized this modified version with a LSS for address-
ing the scheduling of the multimedia data objects. Further,
in [33] the green job scheduling problem was tackled by
proposing a discrete version of the WOA. Jiang, et al. [34]
improved the WOA for tackling the energy-efficient schedul-
ing problem; the improvement was based on the dis-
patch rules, a nonlinear convergence factor, and a mutation
operation (MO).

After reviewing the recent published variants of the WOA,
we found that no variant has been proposed for addressing
DFAP. Therefore, in this paper, we propose a new discrete
variant based on adapting the behaviors of the WOA under
relevant genetic operators for tackling DFAP.

At the outset, the performance of the standard WOA
mapped using the largest position value (LPV) technique is
initially proposed for addressing DFAP. LPV arranges the
continuous positions of the whale in descending order. The
largest position value is mapped to 1, the second-largest
position value is mapped to 2, and so on. However, the per-
formance of the WOA under this mapping technique is poor
in comparison to some of the recent robust algorithms as
shown in the results section. Recently, a new trend has
appeared in several reported works, such as the crow search
algorithm [35] and Faris et al. [36] to convert continuous
optimization algorithms into discrete versions by borrowing
some adequate genetic operators to simulate the nature of the
standard algorithm for tackling combinatorial problems. This
trend, in addition to the poor performance of the standard
WOA, motivates us to propose a discrete version of the WOA
by borrowing some relevant genetic operators for tackling the
DFAP. Specifically, the discrete version of WOA (DWOA) is
proposed under a number of genetic operators that are utilized
to mimic the behavior of the WOA discretely:

o the swap-based best position operator to mimic the

action of encircling prey;

« the ordered crossover operator to mimic the bubble-net

attacking method; and

« random positions are used to search for prey.

The DWOA was compared with the standard version and
a number of the well-known robust algorithms mapped using
LPV and the results of the comparison show the efficacy of
the DWOA when solving the DFAP. Moreover, the DFAP is
solved under two objectives: minimizing the number of con-
tigs with maximizing the overlap score. Therefore, at the first
sublter iterations, DWOA is integrated with the PALS2-many
technique [37] applied to search the best order of the frag-
ments that minimizes the number of the contigs within
this number of iterations. PALS2-many is summarized as
follows:

222145

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

1) The algorithm generates a neighborhood solution (NS)
by a movement that reverses the sub-permutation
between two different positions.

2) Next, the variations are calculated in the overlap score
and the number of contigs between the current solution
and the NS for only the swapping fragments. If the
variation in the number of contigs is minimized or the
overlap core is maximized with preserving the number
of contigs, this movement is stored in a list.

3) Then, the algorithm selects many non-conflicting
movements from the list that minimize the number of
contigs and applies them on the current solution.

4) Finally, the previous three steps are continuously exe-
cuted until there is no movement improving the current
solution.

Then, within the remainder number of the iterations,
an improvement on the PALS2-many was proposed and
called PALS2-many-based fitness and contig (PMFC). The
PMEC strategy applied to the current solution only the move-
ments that increase the overlap while reducing or keeping
the number of contigs. This new variant of DWOA that used
a local search method to improve its quality in terms of
the number of contigs and overlap score is abbreviated as
DWOA-LS. The proposed algorithm (DWOA-LS) works on
maximizing the overlap score based on the DWOA consid-
ering as the man objective that need to be optimized in our
research as shown in most of the papers in the literature.
While, within the first sublter iterations, the LS works on
finding the order of the fragments that minimizes the number
of contigs with an overlap score higher than obtained by the
DWOA. Afterwards, within the rest of the iterations to maxi-
mize the overlap score considering the main objective of our
research, the LS is adapted to search for the highest overlap
score with preserving the number of contigs, or minimizing it.
In general, the LS is employed at the first sublter iterations
to find the order that will minimize the number of contigs
with preserving the overlap score. For the remainder of the
iterations, the LS will be functionalized to optimizing the
overlap score with preserving the number of the contigs.

Generally, the main contributions and novelty of this work
are:

1) Development of a discrete WOA (DWOA) for solving
DFAP, that borrows some of the standard operators
adopted from evolutionary algorithms to mimic the
behaviors of humpback whales.

2) Incorporation of two advanced local search strategies
(PALS2-many and an improved variant of PALS2-
many) with DWOA (DWOA-LS) to boost the searching
capability.

3) Conduct of a rigorous experimental analysis and
comparison with the proposed DWOA against other
existing assemblers. To do so, thirty instances were
considered in terms of overlap score, the number of
contigs, and a new evaluation function.

4) The investigation shows that DWOA outperforms
all other algorithms used in the comparison, when

222146

considering two objectives together: the first objective
is to minimize the number of contigs, and the second
objective is to maximize the overlap score.

The remainder of this paper is organized as follows.
Section II summarizes the related work of the DFAP.
Section III presents the DNA fragment assembly problem.
Section IV overviews the standard WOA. Section V illus-
trates the proposed approach to adapt WOA to solve the
DFAP. Section VI presents the discussion and the experimen-
tal results of the proposed method for addressing DFAP on
three sets of standard benchmarks. Section VII draws con-
clusions about the proposed approach and highlights some
potential future work.

Il. RELATED WORK

Alba and Luque [38] presented a heuristic algorithm
called problem aware local search (PALS) that can obtain
near-optimal solutions for DFAP better than the existing
assemblers including PMA [39] and available commercial
packages such as CAP3 [40]. Nonetheless, their proposed
heuristic algorithm was still trapped in local optima and
consequently converged slowly towards the optimal solution,
particularly for large-scale DFAPs. Therefore, researchers
have been encouraged to find new and effective methods
for problems involving larger numbers of fragments. The
emergence of metaheuristic algorithms and their promising
success in tackling many optimization problems [41]-[47]
has attracted many researchers to look to use such tech-
niques for solving DFAP. One of the first algorithms that
solved DFAP was a genetic algorithm (GA) proposed by
Parsons et al. [48] using sorted-order and traditional per-
mutation representations. Their results demonstrated that the
edge-recombination crossover works better for such a prob-
lem, so they incorporated the permutation representation and
the edge-recombination operation in a GA which produced
better results than a greedy algorithm.

Nebro et al. [49] proposed a GA and solved the
DFAP with the aid of a computing grid comprising
150 computers, reducing computing time from days to
hours. Further, Hughes et al. [5S0] presented three varia-
tions of GA based on ring species, island model, and
recentering-restarting to maximize the overlap score and
obtain high-quality orderings. They integrated two heuristics,
including 2-opt and Lin-Kernighan since one heuristic alone
can become trapped in local optima. They concluded that
the recentering-restarting variations works better with their
proposed heuristic. However, in most of the solved instances,
the algorithm does not attain the optimum overlap.

Bucur [51] designed an advanced GA by employ-
ing segmented permutations for representing candidate
solutions. Their algorithm was verified using only three
instances of DFAP of medium sizes. More recently,
Rathee ef al. [52] incorporated the quantum computing
concept with GA (QGFA) to carry out DNA frag-
ment assembly with an overlap-layout-consensus process.
The performance of QGFA was assessed against several

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

well-known algorithms, with the results showing that QGFA
performs better that these algorithms for both the number
of contigs and the overlap score obtained. In [53], three
efficient algorithms (GA, simulated annealing (SA), and
PALS) were proposed for handling noisy and noiseless DFAP
instances. Among those meta-heuristics, SA demonstrated
the best results for noiseless DFAP instances, while GA
showed better performance for DFAP in the presence of
noise.

Particle swarm optimization (PSO) is another meta-
heuristic algorithm that is commonly used in solving DFAP.
Some of the works done for tackling the DFAP based on
PSO will be reviewed within this paragraph. Rajagopal and
Sankareswaran [54] studied three variations of PSO, includ-
ing constant and dynamic inertia weight, and adaptive PSO,
with the adaptive PSO providing superior results. In [55],
six variations of PSO were introduced using two seeding
algorithms to generate the population and variable neigh-
borhood search (VNS). The results showed that combining
the SA, tabu search, and VNS with PSO is the best variant.
Some authors have resorted to hybridization as a trend for
tackling DFAP. Mallén-Fullerton and Fernandez-Anaya [56]
combined PSO with the differential evolution (DE) algo-
rithm. Further, Huang et al. [57] integrated PSO with the SA
algorithm which was shown to outperform PSO, albeit with
an increase in computational time.

Vidal and Olivera [58] presented a firefly algorithm (FA)
[59] on a GPU (DFA-GPU) for DFAP. A local search (LS) is
combined with DFA-GPU, which provides a parallel model
for tackling different DFAP instances without degradation
in the performance and time-consuming. For the suggested
crow search algorithm (CSA) in [35], their fitness function
only considered the overlap score, without considering the
number of contigs which, as a consequence, results in inferior
performance. In addition, Ali [60] proposed a discrete particle
swarm optimization (DPSO) based on a new updating rules
known as probabilistic edge recombination (PER) for tack-
ling the layout stage in the OLC DFAP. PER operator creates
a new permutation by considering relative ordering of DNA
fragments. In addition, Ali, within the same research, created
another variant of DPSO combined with PALS to improve
the exploitation capability for reaching better outcomes; this
variant was called quick-PALS.

Furthermore, the memetic gravitational search algorithm
(MGSA) [61] is proposed for tackling the DFAP based on
the OLC approach and used the tabu search to initialize the
population. Moreover, MGSA used time-varying maximum
velocities to increase the diversity among the members of
the population to reduce the probability of stuck into local
minima problem. Finally, MGSA was integrated with the
SA-based variable neighborhood search to improve the accu-
racy of the best solution obtained by MGSA. The MGSA was
validated on 19 DFAP instances in an attempt to maximize the
overlap score among the fragments of each sequence. How-
ever, the MGSA doesn’t take in consideration the number of
contigs, which is its main limitation.

VOLUME 8, 2020

Ulker [62] adapted the harmony search (HS) algorithm for
DFAP. Because HS was proposed to address the continuous
optimization problem and the DFAP is a combinatorial one,
the smallest position value was used to convert the contin-
uous solutions generated by HS into permutation ones to
be adequate for tackling this combinatorial problem: DFAP.
The performance of HS was observed using three real DNA
datasets. Indumathy [63] adapted the cuckoo search (CS)
algorithm to reconstruct the original sequence of the seg-
mented DNA as the first attempt to apply this algorithm
on the DFAP. The CS algorithmwas observed using nine
instances and compared with a number of variants of the
PSO. The experimental results show the superiority of the
CS over those variants. Other metaheuristics developed for
DFAP include the ant colony system algorithm [64], and the
bee algorithm [65].

All the algorithms mentioned in the literature dealt with
DFAP by improving one of the following two objectives: (1)
minimizing the number of contigs only, or (2) maximizing
the overlap score only. This is at odds with the nature of the
problem that needs to achieve the two objectives simultane-
ously when looking for the best order of the DNA fragments
while maximizing the overlap score among the fragments
in this order. Specifically, the major problems that affect
the algorithms developed in the literature are summarized as
follows:

« Most of approaches have difficulty in avoiding becom-

ing trapped in local optima.

o The efficacy of most approaches has not been tested on
a sufficient number of large-scale instances.

« Existing algorithms can obtain the optimal overlap for
several cases, but the number of subsequent contigs is
too large.

The significance of quick, reliable DNA analysis and the
shortcomings of existing approaches motivate us to suggest
an efficient assembler based on DWOA for solving the DFAP.
The efficient assembler DWOA-LS presented here works on
finding the best order of the fragments while maximizing the
overlap among them.

Ill. DNA FRAGMENT ASSEMBLY PROBLEM
Deoxyribonucleic acid (DNA) is the hereditary material that
stores the information required to create all living organisms.
DNA consists of four chemical bases, including Adenine (A),
Cytosine (C), Thymine (T), and Guanine (G). The sequence
of the four letters (A, G, C, and T) indicates the available
information for building the living organism. The letters join
in pairs, A with T, C with G, to create base pairs. Each
pair is tied to a sugar molecule and a phosphate molecule
to compose a nucleotide. A nucleotide resembles a ladder
comprising of two long strands that make a spiral called a
double helix [35], [66].

In the field of computational biology, these sequences are
used to extract the function of information coded in DNA.
The human genome consists of a vast number of bases (about
3.2 billion), and the current sequencing technologies cannot

222147

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

read more than 1000 bases. Accordingly, a shotgun sequenc-
ing strategy has been used to overcome that problem by
breaking the long DNA sequence into smaller pieces called
fragments or segments. These fragments are sequenced ran-
domly by machine so that the original order and orientation of
them is lost. The fragments have to be reassembled based on
the overlap among them to regain the original order of the
DNA. The assembler has to calculate the overlap between
all possible pairs of fragments to reassemble the ones that
have the highest similarity score to compose a contig, which
consists of a set of contiguous and overlapping fragments.
The problem is known as the DNA fragment assembly prob-
lem (DFAP) and the challenge is to reassemble the contigs
successfully to retrieve the original DNA.

The traditional assembly approach involves three stages:
overlap, layout, and consensus, which is known as the
overlap-layout-consensus (OLC) approach. In the overlap
step, the assembler calculates the overlap score between
all possible fragments. Detecting the highest overlap score
between the prefix of one fragment and the suffix of another is
the objective of this step. The semi-global alignment method
is adopted and is implemented using dynamic programming
[3]-[5]. In the layout step, the order of the fragments that
maximizes the sum of all the overlaps of each adjusted
fragment is reassembled until the original DNA sequence
is obtained. Finally, in the consensus step, the order of the
fragments from the layout step is used to form the complete
DNA. These phases are illustrated in Fig. 1.

IV. STANDARD WHALE OPTIMIZATION ALGORITHM:
OVERVIEW

In WOA, Mirjalili and Lewis [22] mimicked the actions and
behaviors of humpback whales, which use an astounding
feeding method called the bubble-net approach when attack-
ing their victim or prey. They surround the victim in a spiral
shape and then swim up to the surface in a shrinking circle.
WOA mimics this hunting tradeoff between a spiral model
and a shrinking encircling prey with a probability of 50% to
update the position of the whale. The mathematical model for
the encircling mechanism is as follows:

— -7 - -
Zt+1)=Z*@t)— A x D (1)
X:Z*a*mnd—a 2)

t

a=2-2x% 3)

Umaxlter

_—> - =2 =
Dist = |C xZ*(t) — Z (1)| (@]
Z‘) = 2 x rand ®)

where 7 is the p_o)sition vector of the current whale, ¢ the
current iteration, Z* the position vector of the best whale in
the population, rand a random number between [0, 11, t,4x1rer
to maximum number of iterations, and a a distance control
parameter linearly decreased from 2 to 0 [22]. The spiral
model tries to mimic the helix-shaped movement of whales.

222148

Read fragments of DNA:

[afalr]cfefe]o]

(a) Overlap step:

EEE[|«
EEEE| - [EEE
a]e]<] | EEE|

(b) Lavout step:

[e]le] [][s]
EEEE]: - EEE
EEE| |

>
>
=

(c) Consensus step:
AlaA TA GT e

FIGURE 1. lllustration of the OLC approach.

The mathematical model of a spiral shape is as follows:

=7 %) =
Z(+1)=Z"t)+cosQxm x1)*e™ xDist (6)
—> = —
Dist = |Z*(t) — Z ()| @)

where D_z)s_t) is a vector used to store the absolute distance
between Z*(¢) and Z (¢), [a numerical value created ran-
domly between [-1, 1] and b a fixed value to depict the
logarithmic spiral shape. To search for the prey in another
direction of the search space, WOA uses a random whale from
the population to update the position of the current whale
in the exploration phase. If A is greater than 1, then the
current whale is updated according to a random whale from
the population. The mathematical model of the search for the
prey is as follows:

— _>)k - =
Z+1)=Z*t)— A« D (®)
— — —> —
Dist = |C % Z% g — Z (1)] ©))

where 7,'”01 is a vector including the position of a whale
with an index of ind in the current population; this index
is randomly selected between 1 and N to enable the WOA
to explore other regions within the search space to avoid

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

becoming trapped into local minima. With the significant
success achieved by WOA when solving many optimization
problems, in this research, it is adapted for the first time in
this work to address the DFAP as discussed later.

V. THE PROPOSED APPROACH: DWOA-LS ALGORITHM
This section provides a full explanation and illustration of
the proposed DWOA-LS algorithm. The fundamental com-
ponents of this proposed solution approach are: initialization,
fitness evaluation, the DWOA for DFAP, and PALS as a local
search approach. Each of these components is described in
the following subsections.

A. INITIALIZATION

DFAP is a combinatorial problem, seeking to increase the
overlap among the adjacent fragments, while the ultimate
goal is to produce a one-contig DNA. To provide an effec-
tive solution representation, a proper understanding of this
problem is essential. The set of fragments is enumerated
from 1 to N, where N is the maximum number of fragments.
Then, a possible solution to DFAP is to rearrange the set of
numbers from 1 to N. The identification of the optimal order
of the fragments requires an examination of the permutations
of the numbers assigned to those fragments. Now, to solve
this DFAP by using the proposed DWOA-LS we assume that
each whale carries a solution to the problem. We randomly
initialize the population of M whales, while each whale is
described by a position vector of size N containing a permu-
tation of numbers assigned to the fragments, which represent
a solution to DFAP. Each position in the whale position vector
should have a different fragment number.

B. OBJECTIVE FUNCTION

An objective function plays an essential role in DWOA-LS
to reach the best solution for a given problem. In this case,
the objective function calculates the fitness value of each
whale in the population. The whale that has the best fitness
value is identified as the best solution. In DFAP, the main
objective is getting the optimal arrangement of the fragments,
which achieves the highest overlap score and reduces the
number of contigs. In the proposed DWOA, the evaluation is
based on the overlap score only, and the minimization of the
number of contigs is considered as an objective for the two
versions of the PALS2-many method. Therefore, to calculate
the overlap score of each whale estimated by the DWOA to
find the nearest one to the optimal solution:

N-2

F(Z @)=Y wifa.fus1) (10)

d=0

where F (7(1)) represents the fitness values of the current
whale 7(0, and w(fy, fa+1) the overlap score between any
two consecutive fragments. In each possible order estimated
by an algorithm, this equation is used to estimate its quality
by summing the count of the similar consecutive letters at the
end of the first fragment f; with the letters at the beginning

VOLUME 8, 2020

of the second one fid + 1), and the order with the highest
overlap score is considered the best. For example, Fig. 1
includes three fragments, which need to be arranged to return
the original DNA sequence. Therefore, the sum of the count
of the similar letters between each two consecutive fragments
is calculated, and the order that fulfills the highest score
is considered the best as depicted in this figure. As identi-
fied previously, the overlap score has been calculated using
semi-global alignment, implemented by a dynamic program-
ming approach.

C. THE DISCRETE WHALE OPTIMIZATION ALGORITHM
(DWOA)

The standard WOA was designed to address the
continuous-search space problems and cannot, therefore,
be used with the discrete-search space of the DFAP.
In the literature, authors suggest converting continuous
optimization-based algorithms to discrete ones by using map-
ping methods, such as the smallest position value (SPV) or the
LPV. SPV arranges the continuous positions of the whale in
ascending order so that the smallest position value is mapped
to 1; the second smallest position value is mapped to 2, and
so on. Unlike SPV, LPV arranges the continuous positions
of the whale in descending order. The largest position value
is mapped to 1, the second-largest position value is mapped
to 2, and so on. From the experimental results presented here,
the mapping of continuous search space into a discrete space
isn’t an effective way to solve DFAP. The main disadvantages
of using the continuous algorithms mapped using LPV and
SPV to solve the combinatorial problems are as follows:

« In combinatorial problems, generally, updating all the
positions of the vector together may deteriorate the qual-
ity of the solution because it may need a small change to
reach the optimal.

o SPV arranges the continuous values and the smallest
one is given a value of 1, the second smallest a value
of 2, and so on. However, if there are two continuous
values are equal, then one will take a random value and
subsequently this will convert the algorithm to a random
search if a significant number of the continuous values
are equal.

Therefore, a new trend is to redesign the standard algorithm
to deal with combinatorial problems. Examples include:
in [35], the crow search algorithm was redesigned with the
ordered crossover operation, which was more suitable for
DFAP; and Faris et al. [36] converted the addition opera-
tion in the salp swarm algorithm into a crossover operation
providing improved results compared to selected standard
algorithms. An essential stage in DWOA is the adaptation
of Egs. (1), (6), and (8) to be able to address the solution of
discrete problems. In this work, the WOA is adapted using
the following operators:

o The swap-based best position operator mimics the action

of encircling prey.

o The ordered crossover operator mimics the bubble-net
attacking methods.

222149

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

« random positions are used to search for prey.
The adaptation of the previous three operations to simulate
the actions performed by the whales is illustrated in detail in
the next subsections.

D. ENCIRCLING PREY (EXPLOITATION PHASE)
In this phase, the whales encircle the prey as in Eq. (1). How-
ever, Eq. (1) is used for continuous problems only. Therefore,
the swap-based best-position operator is used to imitate this
action for the DFAP that is, to enable the current whale to
update its position towards the best position or the optimum
prey Z*(t). To update the position of the whale Z (r + 1),
the following steps are executed:
« selecting a random position i from the best whale Z *(t)
and return the value v; found in that position; N
« searching for the value v; in the current whale Z (¢) and
return its position j; and
« swapping the values in the positions i and j in the current
whale Z (t).
This operator enables the current whale to move toward
the victims gradually before attacking them, as illustrated
in Fig. 2.

7). =1

1
o TeTsTs2[w0 i [3]4l7]
Z(®).v; =97, =1

= / L
V=9, = [11]7]4 28 J10[3[5]9]6]
Z(t + 1) = swap (v, v, Z(1)) [i[774[9]2]8 [10][3[5

FIGURE 2. An illustrative example of a swap-based best-position
operator between the prey and current whale.

If the value v; in the best whale ?‘(t) is equal to the value
v; in the current whale Z (¢), we select a random position j
from the current whale Z (¢). Then, we swap _tPe two values
in the positions i and j in the current whale Z (¢) as shown
in Fig. 3.

i
DoTelsTs 2 10 113+ Nl7]

Zt)v =1

i

DBOORMIEn 0

., =1y =11

Z(t + 1) = swap (vi. v, Z())

[oT4]5[8[2[10 M3 6 [11]7]

FIGURE 3. An illustrative example of a swap-based best position
operator between the prey and current whale for equal values. The values
in the position i in the current and best whale are equal, so another
position j is selected from the current whale and swapped with i.

E. SPIRAL BUBBLE-NET FEEDING METHOD
(EXPLOITATION PHASE)

In this phase, the whales swim up towards the prey in a
spiral shape as in Eq. (6). But to fit this for discrete problem,
we have used an ordered crossover operator to simulate this
action for DFAP. The ordered crossover operator is applied
to the current whale Z (#) to modify its positions towards the

222150

i J

G [9 J6l5]8|2[10]11]3]4]1]7]
G (2 [704]21]8 [[5]3]9]6]
ocZ®, Z'(t) [8 J6]9]7]2]10][11]3]4]1]5]

FIGURE 4. An illustrative example of the ordered crossover operator
between the prey and current whale.

best wlii)le ?‘(r) found so far. To update the position of the
whale Z (t + 1), we follow these steps:

. Generate two random positions i and j within the current
whale Z (t), such that i < j.

o Copy all the values between the two positions i and j
from the best whale Z*(t) to Z(@+1).

« Remove the previous values copied to Z (¢ +1) from the
current whale and copy the remaining values in the order
they appear from Z (¢) to Z (¢t + 1) to fill the positions
before i then the positions after j.

Fig. 4 describes the ordered crossover (OC) operation

between the best whale and the current one. We replace the
original equation (Eq. (6)) with the following equation 11:

— — —
Z(t+1)=0C(Z (1), Z*1) (11)

F. SEARCH FOR PREY (EXPLORATION PHASE)

In the standard WOA, the current whale Z(t) moves towards
arandom whale selected from the population to search for the
prey. However, if we apply this procedure for DFAP, the vari-
ation in population will be reduced. Therefore to increase the
diversity of the population, the current whale Z (t) is updated
and randomly generated from the solution area of the problem
to explore more promising solutions that were not discovered
before. Based on the hunting behavior of the WOA, there is a
probability of 50% of selecting between a spiral model and a
shrinking encircling prey to update the position of the whale.

G. INTEGRATION OF DWOA WITH LOCAL SEARCH
In this section, we explain how to integrate DWOA with
a heuristic method to boost its performance and improve
the quality of the solutions. We used two variations of the
PALS [38]. At first, we review the previous versions of PALS:
o The original PALS iteratively ameliorated a random
solution by producing its neighborhood solutions. The
neighborhood solution (NS) is generated by a move-
ment that reverses the sub-permutation between two
positions in the solution. Then, the algorithm calculates
the variation in the overlap (Ap) and the number of
contigs (ANC), between the current solution and the
NS for only the affected fragments. PALS tries all the
possible movements and stores them in a list, and then
selects a single movement that reduces or maintains
the number of contigs while not decreasing the over-
lap. When several movements have the same minimum
ANC, PALS chooses the NS with the maximum Ap.

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

Initialization

Return the best Z*

No

Update the current whale: Z;(¢) using the
ordered crossover operation (OC)

Update the current
whale: Z; i (¢) randomly

Update the current whale:

Z;(t) using the swap-based
best position operation

No

Apply PALS2-many to the
current whale: Z;(t) after OC

Apply PMFC to the current
whale: Z;(t) after OC

Update the best solution if the current whale 1s better

i++

FIGURE 5. Flowchart of the proposed algorithm DWOA-LS for solving DFAP.

The drawbacks of PALS is that a particular NS may
appear again through iterations and the calculations may
be redone, which is time-consuming.

e In PALS2-many [37], the algorithm selects the
movement that reduces ANC, but in the case of hav-
ing several movements with the same minimum ANC,
PALS2-many selects the NS with the lowest Ap.
To speed up the algorithm, many non-conflicting move-
ments are selected from the list, so that the algorithm
reduces the number of calculations required. PALS2-
many can produce a sub-optimal solution with minimum
ANC, but it can’t reach the optimal overlap in large
instances.

o PALS2M*Fit [35] is concerned with the movements that
increase Ap. It can obtain the optimal overlap, but the
number of contigs is large, especially for large instances,
which conflicts with the ultimate objectives of achieving
a single-contig DNA with optimal overlap.

The disadvantages of PALS2-Many are summarized as

follows:

1) adding the movements that minimize the number of

contigs to the list even if they minimize the overlap
score; and

VOLUME 8, 2020

2) adding to the list the movements that preserve the

number of contigs with maximizing the overlap score.

It should be noted that there is a case that isn’t taken into
consideration by PALS2-Many and PALS2M*Fit, in which
the movements that will only maximize the overlap score
by preserving or reducing the number of contigs. If those
movements will minimize the number of contigs only, they
must be discarded because one objective will be achieved,
but not the other. Therefore, to tackle this issue in this work,
an improvement is proposed on the PALS2-many called
PALS2-many-based fitness and contig (PMFC). The PMFC
strategy is applied to list the movements that increase the
overlap Ap while reducing or keeping ANC. This improve-
ment seeks to find the order that not only maximizes the
overlap score among the fragments but also minimizes, or at
least preserves, the number of contigs among them. This will
help in reaching the near-optimal order of the fragments that
reconstruct correctly the original DNA sequence.

The PALS approach tries to achieve the best contig and
the PALS2M*Fit tries to attain the optimal overlap, nei-
ther of them attempt to achieve both objectives together.
In this work, DWOA is incorporated with PALS2-many to
exploit the search capability of DWOA and the improvement

222151

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

performed by PALS2-many to obtain better solutions. For a
predetermined number of iterations (sublter), PALS2-many
is applied to the new candidate whale Z (r + 1) after the
crossover operation with an objective of minimizing the
number of contigs in the hope of finding one contig.For
the remaining iterations, the PMFC strategy is applied to
maximize the overlap score by preserving or minimizing
the number of contigs. The switch between PALS2-many
and PMFC enables DWOA of reaching the optimal order of
fragments. Both PALS2-many and PMFC is performed with a
local search probability smaller than R, where R is a random
value in the range [0, 1]. Fig. 5 shows the flowchart of the
proposed DWOA integrated with PALS2-many and PMFC as
local search methods (DWOA-LS).

Algorithm 1 The Proposed DWOA-LS

1: Initialize the population of whales Z;, (i =
1,2,3,....,n);

2. Evaluate the fitness of each whale;

3: Find the best whale Z*;

4: 1t =0;

5: while t < t,,,4x5ter dO

6: fori=1:ndo

7: Update WOA parameters

8: if p < 0.5 then

9: if [A] <1 thgn

10: Update Z (t+ + 1) using swap best position

operation;

11: else -

12: Update Z (¢ 4 1) using random position;

13: end if

14 else =

15: Update Z (¢ + 1) using the modified ordered

crossover operation;

16: Generate R € [0, 1];

17: if R < LSP then

18: if ¢+ < sublter then N

Apply PALS2-many to Z (¢ + 1);

19: else =
20: Apply PMFC to Z (¢ + 1);
21: end if
22: end if
23: end if
24: end for

25 Check the feasibility of the whale Z+1);

26: Update Z (r + 1) in the_Eopulati_)on, if better;

27. Update the best whale Z* with Z (¢ 4 1) if better;
28 t<t+1;

29: end while N

30: return the best whale Z*

Algorithm 1 illustrates the steps of solving DFAP using
DWOA-LS improved with the PALS2-many and PMFC.
The first step, the population is initialized randomly. Then,
the fitness value for each whale inside the population is

222152

calculated, and the whale that has the highest fitness value
is indicated as the best whale and stored in Z*. In the next
step, from line 4 to line 25 the whales update their positions
using the swap-based best position operation, the ordered
crossover operation, and the random whale through a num-
ber of iterations. In line 15 to line 23, the current whale is
updated using the ordered crossover operation. Then PALS2-
many and PMFC are applied to the current whale after the
crossover operation with a local search probability (LSP)
discussed in the parameter settings section. PALS2-many is
applied for a specified number of iterations and PMFC is
applied for the remaining iterations. The current whale is
updated in the population if better. The best whale is updated
through iterations. The algorithm satisfies a number of itera-
tions. On completion, the algorithm returns the best obtained
solution.

More illustration, in DWOA-LS, the DWOA strives to
optimize the overlap score regarding the main objective that
needs to be optimized for solving the DFAP as used in most
of the papers in the literature, while the LS (PALS2-many
and PMFC) is employed to optimize the number of contigs.
In brief, DWOA will work to optimize the overlap score as
the main objective, while LS strives to minimize the number
of contigs with an overlap score higher than obtained by the
DWOA within the first slice of the iteration that is smaller
than sublter. While, within the rest of the iterations, LS based
on PMFC seeks to maximize the overlap score by preserving,
or reducing the number of contigs. Therefore, the DWOA will
work on maximizing the overlap score, while the LS work
also on maximizing the overlaps score with a constraint to
ignore the solutions that will increase the number of contigs
although the overlap score is maximized.

H. COMPUTATIONAL COMPLEXITY

The time complexity of DWOA-LS is observed in this
section. Specifically, the time complexity of the proposed
approach is based on the following:

1) Updating the positions in each generation that is based

on:
a) The number of whales, M.
b) The number of fragments, N.
c) Cost of the objective function, Cyp;.

2) The number of the iterations #,,qyfser -

3) Applying the local search strategy: PALS.

The time complexity of updating the current whales in
big-0 is of O(tyaxiter NM). While the big-O of evaluating the
whales is of O(tinaxirer M Copj). Generally, the time complexity
of DWOA is expressed as follows:

O(tmaxirer NM)
O([maxlterMCr)bj

if cost(N) > cost(Cop)
if cost(N) < cost(Copj)
(12)

O(DWOA) =

In Eq. 12, the time complexity of the proposed algorithm
relies on the cost of the objective function and the number of
fragments. The time complexity of the local search strategy is

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

about O(N?) for one iteration as described in the pseudo-code
of the PALS2-many. Since PALS2-many is applied with a
probability with our proposed approach, the number of times
where this method is executed is not known. Therefore, in the
worst case, assuming that this method is applied in all iter-
ations, the time complexity of the proposed is estimated as
follows:

O(DWOA — LS) = O(DWOA) + O(PALS)
= O(DWOA) + O(ImaxlteerM)
= O(tmaxiterN*M) (13)

Since the PALS has a higher growth rate in terms of
time complexity of, the time complexity of the proposed
algorithm in the worst case iS O(figxiterN 2 M), which is
quite significant. Therefore, time complexity is one of the
main limitations of our proposed approach that needs to be
improved in future work.

VI. EXPERIMENTS AND DISCUSSION

Several experiments have been conducted to assess the
efficacy of our proposed DWOA-LS algorithm. Thirty bench-
mark instances are chosen for testing the DWOA-LS effec-
tiveness. We perform all the experiments on a device
equipped with Windows 7 ultimate platform with a 64-bit
operating system, Intel® Core i3-2330M CPU @ 2.20 GHz,
and 1 GB of RAM. DWOA-LS is implemented using
the Java programming language. Statistical analyses are
also introduced to validate the results. This experimental
section is designed as follows. Subsection VI-A describes
the DFAP benchmark instances used in the experiments.
Subsection VI-B describes the parameter setting of DWOA-
LS. Section VI-C evaluates the performance of the pro-
posed DWOA-LS. Section VI-D compares DWOA-LS with
the best three recent assemblers (based on our knowledge)
suggested for solving DFAP. Section VI-E compares the
proposed DWOA-LS with some others assemblers. Finally,
section IV-F summarizes the conclusion of our experiments.

A. DESCRIPTION OF THE BENCHMARK INSTANCES

We examine the performance of DWOA-LS on three bench-
mark collections taken from [67]: GenFrag consisting of
ten instances; DNAgen containing six instances, and f-series
containing fourteen instances. Table 1 presents a description
of the thirty instances in terms of coverage, average fragment
length (AFL), number of fragments (NF), and the original
sequence length (OSL). Here, the coverage is the summation
of the bases found in all fragments divided by the total length
of the original DNA sequence [35], which can be calculated
by using Equation 14.

Z;-V:Fl length of fragment;j
Coverage = (14)
length of target fragment

The coverage value has to be greater than 1 to ensure that
there is an overlap between the fragments to be used in the
reassembling process. AFL ranges from 182 to 1003 bases;

VOLUME 8, 2020

TABLE 1. Description DFAP instances.

ID Instances Abbreviation Coverage AFL NF OSL
1 X60189(4) X4 4 395 39 3835
2 X60189(5) X5 5 286 48 3835
3 X60189(6) X6 6 286 48 3835
4 X60189(7) X7 7 387 68 3835
5 M15421(5) M5 5 398 127 10089
6 M15421(6) M6 6 350 173 10089
7 M15421(7) M7 7 383 177 10089
8 102459(7) J7 7 405 352 20000
9 BX842596(4) BX4 4 708 442 77292

10 BX842596(4) BX7 7 703 773 77292

11 Acinl AC1 26 182 307 2170

12 Acin2 AC2 3 1002 451 147200

13 Acin3 AC3 3 1001 601 200741

14 Acin5 AC5 2 1003 751 329958

15 Acin7 AC7 2 1003 901 426840

16 Acin9 ACY 7 1003 1049 156305

17 F25(305) F305 - 307 25 7630

18 F25(400) F400 - 400 25 10006

19 F25(500) F500 - 500 27 13051

20 F50(315) F315 - 315 50 15791

21 F50(412) F412 - 412 50 20628

22 F50(498) F498 - 498 50 24956

23 F100(307) F307 - 307 100 30443

24 F100(415) F415 - 415 100 -

25 F100(512) F512 - 512 100

26 F508(354) F508 - 354 508

27 F635(350) F635 - 350 635

28 F737(355) F737 - 355 737

29 F1343(354) F1343 - 354 1343

30 F1577(354) F1577 - 354 1577

NF ranges from 25 to 1577 fragments. For simplicity, we pro-
vide an abbreviation for each instance which is used in the
remainder of the paper.

B. PARAMETER SETTINGS
Parameter setting may affect the performance of the algo-
rithm. So, several experiments were performed to detect the
best values for the parameters. Six instances: M15421(5),
M15421(6), M15421(7), 102459(7), BX4, and BX7 are used
for tuning the population size (M), sublter, and LSP, with
their results are introduced in Tables 2, 3 and 4, respectively.
Considering the population size, different values are con-
sidered such as 5, 10, 20, and 30 on different benchmark
instances. Table 2 shows that the population size 30 is better
because using this population value enables the proposed
algorithm to reach the optimal value in fewer iterations for
six instances. The population size of 5 is the worst.
Considering sublter, to test the efficiency of the proposed
algorithm, several experiments are conducted by considering
sublter = 20,50, 70, 100, 120 and 500, with the results
presented in Table 3. Regarding sublter, at the outset, a value
of 20 was selected randomly. With a cutoff value between the
compared fragments equal to 50, the number of contigs was
8 for BX4 and 2 for the BX7, while the fitness values were
227682 and 444839 for those two instances, respectively.
For a value of 50, the number of contigs didn’t change, but
the fitness values for BX4 and BX7 become 227878 and
445039, respectively. Because changes in the overlap scores
were quite significant, another value of 70 was selected and
changes in the overlap score were observed. Consequently,
three other values of 100, 120, and 500 were selected and

222153

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

TABLE 2. Tuning of the population size (Pop Size) parameter.

Datasets Pop Size=5 Pop Size=10 Pop Size=20 Pop Size=30
Fit NC | bestlter Fit NC | bestlter Fit NC | bestlter Fit NC | bestlter
M15421(5) 38746 1 280 38746 1 138 38746 1 85 38746 1 70
M15421(6) 48052 1 92 48052 1 80 48052 1 48 48052 1 41
M15421(7) 55171 1 325 55171 1 270 55171 1 190 55171 1 105
J02459(7) 116700 1 338 116700 1 253 116700 1 185 116700 1 109
BX4 227920 1 1220 227920 1 961 227920 1 450 227920 1 90
BX7 445422 2 1410 445422 2 1000 445422 2 800 445422 2 671
TABLE 3. Tuning of the sublter parameter.
Datasets sublIter=20 subIter=50 sublter=70 sublter=100 sublter=120 sublter=500
Fit NC Fit NC Fit NC Fit NC Fit NC Fit NC
M15421(5) 38707 3 38717 3 38735 3 38741 3 38741 3 38746 3
M15421(6) 48052 2 48052 2 48052 2 48052 2 48052 2 48052 2
M15421(7) 55130 2 55156 2 55166 2 55170 2 55170 2 55170 3
J02459(7) 116544 1 116577 1 116540 1 116560 1 116565 1 116547 1
BX4 227682 8 227823 8 227878 8 227912 8 227912 8 227920 8
BX7 444839 2 445039 2 445183 2 445251 2 445293 2 445330 2
TABLE 4. Tuning of the LSP parameter.
Datasets LSP=0.2 LSP=0.3 LSP=0.5 LSP=0.7 LSP=1.0
Fit NC | Best Iter Fit NC | Best Iter Fit NC | Best Iter Fit NC | Best Iter Fit NC | Best Iter
M15421(5) 38746 1 169 38746 1 136 38746 1 112 38746 1 108 38746 1 108
M15421(6) | 48052 1 24 48052 1 19 48052 1 10 48052 1 8 48052 1 6
M15421(7) 55171 1 270 55171 1 236 55171 1 182 55171 1 120 55171 1 112
J02459(7) 116700 1 169 116700 1 162 116700 1 115 116700 1 105 116700 1 105
BX4 227920 1 428 227920 1 323 227920 1 263 227920 1 161 227920 1 141
BX7 445422 2 2000 445422 2 1077 445422 2 550 445422 2 325 445422 2 280
TABLE 5. Parameter setting for the proposed algorithm.
DWOA-LS DEWOA DES1/DES2
Parameter Value Parameter Value Parameter Value
Number of runs 30 Number of runs 30 Number of runs 30
Population size 30 Population size 30 Population size 30
The maximum number of iteration 5000 The maximum number of iteration 5000 The maximum number of iteration 5000
PALS2-many iterations (sublter) 100 CR 0.9 CR 0.02
Local Search Probability 0.7 B 5
Lshade WOA/LWOA/CWOA /SCA
Parameter Value Parameter Value
Number of runs 30 Number of runs 30
Population size 18 x N Population size 30
The maximum number of iteration 5000 The maximum number of iteration 5000
F 0.5 Chaotic map type for CWOA Tent
CR 0.5 The Constant a of SCA 2.0
Min N 4 3 in LWOA 1.5
Archive rate 1.4 “d is linearly decreased by 2 to 0 for different variants of WOA
p_best_rate 0.11

it was clear that the change in the overlap score (fitness
value) is quite significant when sublter is equal to 100 and
become nearly constant when sublter is equal to 120 and 500.
Consequently, the best value for sublter is 100. Note that,
in the remaining experiments, the cutoff value is reset to 10.
Table 5 presents the values of the DWOA-LS parameters
and the other algorithms parameters used in the conducted
experiments.

Regarding LSP, at the start, a value of 0.2 for LSP was
selected randomly, and then the number of iterations used
under this value was observed until reaching the optimal
solution forthe six instances mentioned previously. As a result
of observation, it is notified that the proposed algorithm needs
a high number of iterations to reach the optimal value for

222154

those instances. Therefore, another value of 0.3 was used
to determine the influence of this parameter on the perfor-
mance of the algorithm; using this value the optimal solu-
tion was reached in fewer iterations in comparison to the
previously observed value for those instances. For a value
of 0.5, the algorithm reached the optimal values for the same
instances in fewer iterations compared with the other two
values. For a value of 0.7, the proposed algorithms could
reach the optimal values for those instances in fewer iterations
compared with the others. For a value of 1.0, the proposed
approach reached the optimal values in a number of iterations
similar to 0.7. Therefore, within our experiments, a value
of 0.7 was used instead of 1.0 to avoid the time complexity
problem.

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

8000F — 1
b T + — e
| T |
7500 | T ‘ g _
o Q g g g g T
$ 7000t T
= 1 L g
5 +
2]
& 6500} T
j=
i)
3 6000 s
m | "
5500 | ey g é _
A=
5000 | L T
0 001 002 003 0.04 0.05 0.1 02 03 04 05

CR
(b)

7500 | +
+
_ i T
_ = | + | |
T | I | F (-
7000 T - .
U B B T | [
" R I Tty T Lo
@ ‘ Lo [[
=] | | | | | | | | | | T |
@ I \ L | \
> 6500 | | Q \ L |
3 0
[}
S
3 6000 8 \ R m g i
2 T T |
m T o Lo] Il : I
P | \ Lo |
A A T R S O B
L | 4
55001 1 L i Lot l ; L]
| Bl -
| 1
0 115 2 25 3 35 4 45 5 55 6 65 7 10
b
(@)
8500" T T T T T T
8000 |
7500 +
7000+ T
| T |
| | T
gso0f 1 L[] |
’L \H‘ \ W
sy LA
[\
= I
5500 | L
L
5000 1 1 1 I I I I

T e =i

P, -

=

0 0.010.02 0.03 0.04 0.05 0.1

02 03 04 05 06 07 08 09

S FH—1 1 H

FIGURE 6. Depiction of tuning the parameters: (a) b; (b) CR of DE; and (c) CR of DEWOA.

Regarding the compared algorithms, five continuous WOA
and DE variants and the sine-cosine algorithms mapped using
LPV were compared with DWOA under the same number of
iterations and population size assigned in Table 5:
o Improved Lévy flight whale optimization (LWOA) [68].
o Chaotic-based whale optimization algorithm
(CWOA) [69].

« Differential evolution improved using differential evolu-
tion (DEWOA) [70].

« Differential evolution based on “DE/rand/1” scheme
(DES1) [70].

« Differential evolution based on “DE/current to best/1”
scheme (DES2) [70].

« Sine-cosine optimization algorithm (SCA) [71].

Because those algorithms were proposed for tackling con-
tinuous optimization problems rather than the discrete nature
of DFAP, the parameters of those algorithms were tuned
to determine the optimal relevant values for solving this

VOLUME 8, 2020

problem. The standard WOA doesn’t need any tuning for their
parameters with the exception of parameter b that controls
in the spiral shape. To adjust this parameter for the different
variants of WOA, several values, involving 0, 1, 1.5, 2, 2.5, 3,
35,4,45,5,55,6,6.5,7, 8, and 10, are randomly selected
and experimented within 30 independent runs to determine
the best value for this parameter. Based on our experimental
results that is depicted in Fig.6(a), the best value for b is 5.
The performance of the differential evolution is based
on two factors: scaling factor (F) that is here adapted as
mentioned in [70] and the crossover rate (CR), so different
experiments were separately performed to extract the best
value of this parameter for three different variants of DE:
DE based on the “DE/rand/1” scheme, DE based on the
“DE/current to best/1”” scheme, and the hybridized WOA
and DE (DEWOA). For the DE based on the “DE/current
to best/1” and “DE/rand/1”, it is obvious for the outcomes
depicted in Fig.6(b) that 0.02 is the best for CR. Similarly,

222155

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

100 T T T T T T

——DWOA ||
——WOA-LPV

90 -

80 -

70

60 -

PD

50 -

a0

30

20 -

10

T T T T Y M T . < Y T S T S R
0123456 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Instances

0

(a)

60

40t B

PD

30 - b

01234586 7 8 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30
Instances

(b)

FIGURE 7. Comparison of PD based on the overlap score of (a) DWOA and WOA-LPV; and (b) DWOA-LS and DWOA.

for DEWOA as depicted in Fig.6(c), the best value for CR
for DEWOA is 0.9. Finally, SCA is a self-adaptive algorithm
that has one parameter, control in the distance, which was set
as declared in the cited paper.

C. PERFORMANCE OF DIFFERENT WOA AND DE
VARIANTS

The purpose of this section is to assess the performance
of the proposed algorithm: DWOA-LS through two main
experiments:

o The first experiment compares the WOA integrated with
LPV technique (WOA-LPV) and DWOA without using
the local search method.

o The second observes the performance of different
improved WOA and DE variants.

o The third experiment studies the effect of adding local
search to the proposed algorithm by comparing DWOA
and the proposed algorithm DWOA-LS.

1) THE COMPARISON BETWEEN DWOA AND WOA-LPV

This first experiment investigates the performance of two
algorithms. The first algorithm is the standard WOA that uses
the LPV technique (WOA-LPV). The second algorithm is
DWOA without the local search method. This comparison
is made to prove that the traditional mapping of continuous
values to adapt WOA (WOA-LPV) for solving DFAP isn’t
effective. Table 6 presents the results obtained by the two
algorithms based on the fitness function that uses the overlap
score. The column opt shows the optimal overlap score for
each benchmark instance obtained by the LinACN Kernighan
heuristic (LKH) algorithm [72]. The best, average, and worst
overlap score values are recorded in the table for running each
algorithm 30 runs. By observing the results, DWOA attains
much better results compared to WOA-LPV. For example,
DWOA achieves higher overlap values for all the DFAP
instances. The convergence of DWOA to the optimal solution
is faster than WOA-LPV. This comparison demonstrates why
WOA-LPV was not used and why the investigation used a

222156

TABLE 6. A summary of the fitness values of DWOA and WOA-LPV.

2*Instances 2*Opt DWOA WOA-LPV
Best Average Worst Best Average ~ Worst
X4 11478 10259 9430 8708 6971 6371 5424
XS 14161 12838 11855 10879 8764 7870 6934
X6 18301 15529 14798 13581 9518 8516 7327
X7 21271 17985 17342 16536 10859 9839 8828
M5 38746 34243 33017 31724 11858 9781 7669
Me 48052 39301 37526 36383 11684 10282 8668
M7 55171 45665 43843 42846 13739 12217 10118
J7 116700 75948 73776 69988 16731 14811 13047
BX4 227920 129983 125256 118771 21719 17666 15089
BX7 445422 205539 192391 184539 30743 27369 22788
AC1 47618 36159 33615 32259 12849 11477 10726
AC2 151553 108964 105164 100328 18829 15155 12231
AC3 167877 113856 107020 100069 17747 14687 12516
AC5 163906 111344 104715 100091 18843 16501 14504
AC7 180966 118834 106835 100272 21710 18535 15632
ACY 344107 152257 142521 133764 26252 22130 19042
F305 596 588 570 545 536 512 479
F400 777 764 739 706 710 642 581
F500 921 914 892 833 804 756 708
F315 1581 1470 1425 1362 1121 1039 937
F412 1573 1461 1392 1303 1042 959 902
F498 1570 1465 1408 1336 1173 991 888
F307 2793 2579 2524 2464 1513 1415 1247
F415 2860 2658 2613 2559 1631 1452 1352
F512 2732 2540 2486 2419 1569 1413 1316
F508 18112 11481 10916 10331 5123 4950 4760
F635 22498 13063 12494 11645 6193 6026 5867
F737 25218 13616 13229 12954 7058 6791 6529
F1343 49042 20751 20277 19713 12058 11737 11563
F1577 57373 23362 22754 22355 13824 13643 13309

discrete version of WOA (DWOA) that supports some oper-
ators from the evolutionary algorithms.

Also, Fig. 7 (a) depicts a comparison between DWOA
and WOA-LPV in terms of the percentage deviation (PD).
PD shows the percentage of the difference between the aver-
age fitness value found by an algorithm and the optimal
fitness value divided by the optimal fitness value. We can
calculate PD as:

pp = erse T L 10 (15)

opt
Fig. 7 (a) shows that the DWOA is closer to the optimal
solution than the standard version mapped using LPV. In LPV,
there is no one-to-one mapping between the continuous solu-
tion and the permutation one because the permutation solu-
tion can be encoded by an infinite number of the continuous

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

250

Il Average

200

a
3

Number of contigs

50

DWOA WOA-LPV
Algorithms

(2)

=)
S

Il Best
Il Average f
I Worst

<
=
T

o>
S

o
S

Number of contigs
8 5

20

DWOA-LS DWOA
Algorithms

(W)

FIGURE 8. Comparison based on the mean of best, average and standard deviation of number of contigs between (a) DWOA and WOA-LPV; and

(b) DWOA-LS and DWOA.

TABLE 7. A summary of the number of contigs obtained by the DWOA
and WOA-LPV.

2*Instances DWOA WOA-LPV
Best Average Worst Best Average Worst
X4 1.0 1.6 3.0 1.0 1.9 4.0
X5 1.0 2.33 5.0 1.0 33 6.0
X6 1.0 2.8 4.0 3.0 9.0 5.6
X7 1.0 24 4.0 2.0 4.13 8.0
M5 3.0 5.53 9.0 19.0 25.0 31.0
Mé 7.0 10.4 14.0 30.0 40.53 57.0
M7 4.0 9.93 14.0 106 117 124
J7 18.0 27.0 23.0 82.0 93.3 107.0
BX4 17.0 22.0 29.0 83.0 98.6 114.0
BX7 40.0 47.2 55.0 187.0 202.4 227.0
AC1 47.0 51.33 56.0 126.0 136.233 145.0
AC2 6.0 11.8 16.0 63.0 79.9 95.0
AC3 16.0 21.46 28.0 107 1233 137
AC5 16.0 234 33.0 140 158.6 179
AC7 23.0 30.13 38.0 185 198.0 229.0
AC9 37.0 49.86 60.0 214 242 264
F305 3.0 5.0 7.0 7.0 10.34 13.0
F400 3.0 5.2 7.0 9.0 10.43 13.0
F500 4.0 5.8 8.0 8.0 11.34 14.0
F315 6.0 7.93 10.0 15.0 21.86 26.0
F412 5.0 7.5 11.0 14.0 19.26 26.0
F498 3.0 5.0 9.0 13.0 19.76 25.0
F307 6.0 10.69 13.0 47.0 53.87 61.0
F415 8.0 10.53 13.0 46.0 51.76 61.0
F512 7.0 9.8 17.0 40.0 48.76 57.0
F508 110.0 126.46 138.0 361.0 374.96 388.0
F635 153.0 164.2 181.0 450.0 478.66 492.0
F737 169.0 193.03 206.0 539.0 561.2 584.0
F1343 394.0 438.26 473.0 1060 1076.4 1085.0
F1577 516.0 542.86 571.0 1221.0 1249.06 1275.0

numerical vectors. Because this disadvantage was solved in
DWOA, it performs better than WOA-LPV.

However, the fitness values using the overlap score alone
can’t be used to assess the quality of the algorithm, because
the algorithm may achieve high fitness values, but the
obtained order of fragments contains a large number of
contigs. Therefore, we compare the two algorithms based
on the number of contigs attained from each algorithm,
as recorded in Table 7. It can be observed that the results of
DWOA outperform WOA-LPV based on the number of con-
tigs for all instances. Based on these results, DWOA is better
than WOA-LPV for solving the DFAP. DWOA outperform

VOLUME 8, 2020

60000 - s5923.4
50000 -
40000 -
30000 -

20000 - 15418.3
124722 13104.6 13096.4 12287.7 128117
10030.4

Average of the fitness values

10000 -

DWOA DWOA CWOA-LPV LWOA-LPV SCA-LPV DEWOA-LPV DESI-LPV DES2-LPV Lshade-LPV
Algorithms

FIGURE 9. Average of the fitness values on X4-BX7 instances.

WOA-LPYV in terms of the number of contigs and the overlap
score. Fig. 8 (a) shows a comparison between DWOA and
WOA-LPV based on the average number of contigs for all
instances. For the best case of the algorithm, we can see that
DWOA obtains in average 54.1contigs for all the instances,
whereas WOA-LPV achieves 172.6 contigs. As can be seen
from the Fig. 8 (a), the DWOA achieves the minimum number
of contigs compared to WOA-LPV for the best, average, and
worst cases.

2) COMPARISON OF DIFFERENT WOA AND DE VARIANTS

After completing the comparison between the DWOA and
WOA-LPYV, in this section, different robust WOA and DE
variants, in addition to the SCA are compared with DWOA
to prove its efficacy over the other recent improved variants
on the instances from X4 to BX7. In the start, each vari-
ant is executed for 30 independent runs and the obtained
outcomes in average are recorded in Table 8. Afterwards,
those outcomes were observed to see the performance of
DWOA; this observation shows that the DWOA could be
superior to the other algorithms due to replacing the mapping
phase by some genetic operators to get rid of the infinite
number of the updated solutions that could represent the same
permutation. In Fig. 9, the average of the outcomes recorded
in Table 8 for each algorithm is graphically depicted to show
more clear the superiority of DWOA. This figure shows

222157

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

10000 -

8000 -

Best fitness

e

-

-,

= T
o
7]

- r ol
_=— ==
e il

12000 -

11000

10000

9000

8000

Best fithess

7000

6000

5000 -

T L
[T‘_\fﬁ

L1
(R q e . -
| == L= =

—

pam
L e

= |

4000 - 2l =
L i 1 I 1 I 1 1 1
SCA-LPV CWOA-LPY LWOA.LPV DES1-LPV DES2LPY DEWOA-LPY LshadelPV WOALPV ~ DWOA
Algorithms.

(a) X4 instance

«10t
T T
181 T
nil
13+ 1
12F 3 1
n
S1ar 1
£
Z e ==
5[e]
] e = =lis T
mo9r A
y = 2
08+ 1 — ‘]
Yre= = = O I
05+ Z 1
.
i
05- | I ! | .
SCALPV CWOALPY LWOALPV DESTLPV DES2PV DEWOALPV LshadelPV WOALPV DWOA
Algorithms
(c) X6 instance
x10*
IF T !
=X
25k -4
g 2t 1
]
€
s
2
]
@15 -
@ e
=
o= = =
=2
- <
05 ‘ ‘) ‘ !

SCALPV CWOALPV LWOALPV DES1-LPV DES2-LPV DEWOA-LPVLshadeLPV WOALPV ~ DWOA
Algorithms

(e) M5 instance

FIGURE 10. Boxplot obtained by different algorithms.

that DWOA outperforms the other algorithms with a value
of 55923, while Lshade-LPV performs worst with an amount
of 9719. Additionally, Fig. 10 measures the distribution of the
outcomes based on five metrics: minimum, first quartile (Q2),
median, third quartile (Q3), and maximum for the instances

222158

1 | | 1 |
SCA-LPV CWOA-LPY LWOALPV DES1-LPV DESZ-LPV DEWOA-LPV Lshade-LPV WOALPV DWOA
Algorithms

(b) X5 instance

x10*
T T T
18 T 1
=
16F 1A
+
a 141 o al
g T
€ 12- T (e
| bl _
-] 1 T 1 1
57 7‘—/ - —
1 4 £ o] T 1
T Sl 1
— ke 25 *
== toae =2 5]
1 1 1 i |
SCALPY CWOALPV LWOALPV DESIAPV DESZLPV DEWOALPVLshadelPV WOALPV ~ DWOA
Algorithms
(d) X7 instance
0t
T T T T
A =
+
251 b
"
8
Er 1
g
5
n
[
05t 1
T
o= =]
J_ A
= = —

051 1 1 | | i | [
SCA-LPV CWOA-LPV LWOA-LPV DES'-LPV DES2-LPV DEWOA-LPV Lshade-LPV WOA-LPY DWOA
Algorithms
(f) M6 instance

X4,XS5, X6, X7, and M5. Again, this figure shows the superi-
ority of the proposed DWOA for the five observed instances
over the five metrics.

Then, the CPU time required by each algorithm is com-
puted and recorded in Fig.11 which shows the increase in

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

TABLE 8. Comparison of different WOA and DE variants.

Instances opt Average Fitness Value
DWOA WOA-LPV CWOA-LPV[69] LWOA-LPV[68] SCA-LPV[71] DEWOA-LPV[70] DESI-LPV[70] DES2-LPV [70] LSHADE-LPV [73]
X4 11478 9430 6371 6260 6027 5262 7272 7161 7228 5234
X5 14161 11855 7870 7666 7617 6396 8968 8765 9008 6050
X6 18301 14798 8516 8584 8431 6711 9948 9471 9950 6599
X7 21271 17342 9839 10076 10173 8175 12036 11442 11923 7825
M5 38746 33017 9781 10142 10267 7273 12897 10546 11549 7275
Meé 48052 37526 10282 10058 9953 7562 12281 9834 10721 7468
M7 55171 43843 12217 11680 12136 8876 14728 11459 12553 8703
J7 116700 73776 14811 15559 15839 11634 18081 13062 13627 10848
BX4 227920 125256 17666 20280 20364 15299 25011 17037 17511 14867
BX7 445422 192391 27369 30741 30157 23116 32961 24100 24047 22321

TABLE 9. Wilcoxon rank sum test.

Instances Statistical rank sum test between the DWOA and those below algorithms

WOA-LPV Lshade-LPV [7

X4 p 6.78604E-08 6.79562E-08 6.78604E-08 6.79562E-08 7.89803E-08 6.79562E-08 6.78604E-08 6.78604E-08
X5 E 6‘795612E»08 6.795612E-08 6.795612E-08 6,795(12E—08 6,795;2E—08 6.795(12E—08 6,795;2E—08 6,795;2E—08
X6 E 6‘786(;4E»08 6.795(12E-08 6.795(12E-08 6,786(;4E—08 6,795(:2E—08 6.7956]2E—08 6.795(12E—08 6,795(12E—08
X7 E 6‘795(12E»08 6.795(12E-08 6.795(12E-08 6,795612E—08 6,795(:2E»08 6.795;2E-08 6.795(12E»08 6,795(12E»08
M5 g 6‘795(12E»08 6.786(1)4E-08 6.795(12E-08 6,786(;4E—08 6,795612E»08 6.795612E-08 6.795612E»08 6,795612E»08
M6 I[: 6‘786(])4E708 6.79561:2E708 6.79561:2E708 6,795612E708 6,795612E708 6.795612E708 6,7956]2E708 6,7956]2E708
M7 I[: 6‘776417E-08 6.795612E-08 6.795612E-08 6,7956]2E-08 6,7956]2E-08 6.795612E-08 6,7956]2E-08 6,7956]2E-08
J7 I; 6.786(])4E-08 6.795(;2E-08 6.795(;2E-08 6.7956I2E-08 6.7956I2E-08 6.786(;4]3-08 6,7956]2E-08 6,7956]2E-08
BX4 l; 6.795612E-08 6A795612E-08 6A795612E-08 6.795612E-08 6.795612E-08 6A795612E-08 6,786(%4E-08 6,786(%4E-08
BX7 E 6.795612E-08 6A786014E-08 6A795612E—08 6.795612E—08 6.795612E—08 6795612E—08 6.795612E—08 6.795612E—08

6:20

25.16 24.94

2223

1451 13.67 _—

Average computational time in

DWOA WOA-LPV CWOA-LPV LWOA-LPV SCA-LPV DEWOA-LPV DES1-LPV DES2-LPV Lshade-LPV

Algorithms

FIGURE 11. Average CPU time of each variant.

speed of the DWOA compare with others with the exception
of WOA-LPV and CWOA-LPV that are very competitive
with DWOA.

Finally, the Wilcoxon rank sum test [74] at a confidence
level of 5% is used to show the significance of the DWOA
over the other techniques. This test is based on two hypothe-
ses: Null and alternative. This test assumes that there is no
difference between the outcomes of a pair of the algorithms in
the Null hypothesis case, in which the p-value is greater than
the significant level (0.05) and h=0. Alternatively, it assumes
that there is a difference between the two outcomes, in which
case the p-value is less than the significant level (0.05) and
h=1. Table 9 compares DWOA-LS with the other algo-
rithms on the instances X4-BX7, showing that the alternative
hypothesis is accepted with all the algorithms over all the
instances and this confirms the significance of the DWOA
over those algorithms.

VOLUME 8, 2020

3) COMPARISON OF DWOA AND DWOA-LS

The third experiment is conducted to study the effect of inte-
grating the local search method with the proposed algorithm.
We use the overlap score as a fitness function to evaluate the
comparison between DWOA without Local Search (DWOA),
and DWOA combined with the Local Search (DWOA-LS).
Table 10 presented the results of the two algorithms for the
best, average, and worst cases. Based on the results intro-
duced, the DWOA-LS assembler finds the optimal solution
for 20 out of 30 instances and can reach one contig for
22 out of 30 DFAP instances. From this analysis, the proposed
algorithm DWOA-LS outperforms DWOA for all the DFAP
instances. DWOA-LS obtained substantially better results
for the medium and large DFAP cases, as opposed to the
disappointing performance of DWOA. This superiority in
the performance of DWOA-LS over DWOA is a result of
the PMFC that enables DWOA to escape the local minima in
which it may fall during the optimization process as a result of
reducing the diversity among the members of the population.
Subsequently, the possibility of reaching to other permuta-
tions that may improve the quality of the solutions is substan-
tially reduced. In addition, this LS accelerates convergence
toward the best-so-far solution because, applying it after the
OC, generates the updated solutions based on the best-so-far
position and the current one and this may increase conver-
gence toward the optimal solution. Additionally, Fig. 7 (b)
shows the percentage deviation between the two algorithms,

222159

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

TABLE 10. A summary of the fitness results obtained by DWOA and
DWOA-LS.

TABLE 11. A summary of the number of contigs between DWOA-LS and
DWOA.

Instances Opt DWOA-LS DWOA

Best Average Worst Best Average Worst

X4 11478 11478 11478 11478 10259 9430 8708
X5 14161 14161 14161 14161 12838 11855 10879
X6 18301 18301 18301 18301 15529 14798 13581
X7 21271 21271 21271 21271 17985 17342 16536
M5 38746 38746 38746 38746 34243 33017 31724
M6 48052 48052 48052 48052 39301 37526 36383
M7 55171 55171 55171 55171 45665 43843 42846
J7 116700 116700 116700 116700 75948 73776 69988
BX4 227920 227920 227920 227920 129983 125256 118771
BX7 445422 445422 445422 445422 205539 192391 184539
AC1 47618 47618 47618 47618 36159 33615 32259
AC2 151553 151546 151538 151528 108964 105164 100328

AC3 167877 167854 167838 167823 113856 107020 100069
AC5 163906 163869 163859 163853 111344 104715 100091

AC7 180966 180902 180865 180854 118834 106835 100272
ACY 344107 344076 344050 344035 152257 142521 133764
F305 596 596 596 596 588 570 545
F400 777 777 777 777 764 739 706
F500 921 921 921 921 914 892 833
F315 1581 1581 1581 1581 1470 1425 1362
F412 1573 1573 1573 1573 1461 1392 1303
F498 1570 1570 1570 1570 1465 1408 1336
F307 2793 2793 2792 2791 2579 2524 2464
F415 2860 2860 2860 2860 2658 2613 2559
F512 2732 2732 2731 2731 2540 2486 2419
F508 18112 18108 18103 18099 11481 10916 10331
F635 22498 22493 22484 22481 13063 12494 11645
F737 25218 25197 25194 25180 13616 13229 12954
F1343 49042 48951 48944 48936 20751 20277 19713

F1577 57373 57271 57260 57251 23362 22754 22355

from which it can be observed that DWOA-LS has the lowest
percentage deviation for all DFAP instances.

In addition to the comparison of the overlap between
DWOA-LS and DWOA, Table 11 provides a comparison
based on the number of contigs. The proposed DWOA-LS
outperform DWOA in all instances. From Fig. 8 (b), we can
see significant differences between the two algorithms in
the average number of contigs for all DFAP instances. The
average number of contigs in the best case for DWOA-LS
is 1.433 contigs and for the DWOA it is 54.17 contigs. Fur-
thermore, the average number of contigs in the worst case is
1.533 contigs and 68.5 for DWOA. It is obvious that using
the local search affects significantly the obtained number
of contigs and the overlap score. Broadly speaking, in the
first sublter of iterations, the proposed approaches uses the
LS, PALS2-many, to minimize the number of contigs even
if the overlap score will be minimized. Then, after ending
this number of iterations, another LS, abbreviated as PMFC,
replaces PALS2-many with the objective of maximizing the
fitness value (overlap score) while preserving or minimizing
the current number of contigs. The LS within the optimization
process therefore plays a double role: the first is to arbitrarily
minimize the number of contigs within the first sublter of
the optimization process, while the second plays a significant
role in improving the overlap score while preserving or min-
imizing the number of contigs.

From the experiments conducted in this section, the fol-
lowing conclusions can be drawn:

o Simulating the behaviors of the WOA by borrowing
some genetic operators can significantly improve its
performance as a result of utilizing effectively the whole
optimization process and the individuals within the

222160

Instances DWOA-LS DWOA
Best Average Worst Best Average Worst
X4 1.0 1.0 1.0 1.0 1.6 3.0
X5 1.0 1.0 1.0 1.0 2.33 5.0
X6 1.0 1.0 1.0 1.0 2.8 4.0
X7 1.0 1.0 1.0 1.0 2.4 4.0
M5 1.0 1.0 1.0 3.0 5.53 9.0
Mé6 1.0 1.0 1.0 7.0 10.4 14.0
M7 1.0 1.0 1.0 4.0 9.93 14.0
J7 1.0 1.0 1.0 18.0 27.0 23.0
BX4 1.0 1.0 1.0 17.0 22.0 29.0
BX7 1.0 1.0 1.0 40.0 472 55.0
AC1 2.0 2.0 2.0 47.0 51.33 56.0
AC2 2.0 2.0 2.0 6.0 11.8 16.0
AC3 2.0 2.0 2.0 16.0 21.46 28.0
ACS 2.0 2.0 2.0 16.0 234 33.0
AC7 2.0 2.0 2.0 23.0 30.13 38.0
ACY 7.0 7.0 7.0 37.0 49.86 60.0
F305 1.0 1.2 2.0 3.0 5.0 7.0
F400 2.0 2.0 2.0 3.0 52 7.0
F500 2.0 2.8 3.0 4.0 5.8 8.0
F315 1.0 1.0 1.0 6.0 7.93 10.0
F412 1.0 1.2 2.0 5.0 7.5 11.0
F498 1.0 1.0 1.0 3.0 5.0 9.0
F307 1.0 1.0 1.0 6.0 10.69 13.0
F415 1.0 1.0 1.0 8.0 10.53 13.0
F512 1.0 1.0 1.0 7.0 9.8 17.0
F508 1.0 1.0 1.0 110.0 126.46 138.0
F635 1.0 1.0 1.0 153.0 164.2 181.0
F737 1.0 1.0 1.0 169.0 193.03 206.0
F1343 1.0 1.0 1.0 394.0 438.26 473.0
F1577 1.0 1.0 1.0 516.0 542.86 571.0

population by erasing the problems of the traditional
mapping methods that may generate the same permu-
tation by different real-value positions.

o The experiments shows the superiority of DWOA over
the recent robust algorithms mapped using the LPV.

o Then, to accelerate convergence, two-phase-based LS
is integrated with the DWOA: in the first phase, an LS
known as PALS2-many is applied within the first sublter
of iterations focused only on minimizing the number of
contigs, while the second phase is applied after sublter
iterations to preserve or minimize the current number of
contigs while maximizing the overlap score.

o The experiments show that PALS2-many and PMFC
enhance the performance of DWOA.

o Applying PALS2-many in the first specified number of
iterations concentrating on achieving a one-contig solu-
tion (in addition to applying PMFC within the remain-
ing iterations focusing on the maximum overlap while
preserving or decreasing the number of contig) assists
in the production of more promising solutions that can
attain the optimal overlap with a one-contig solution in
most instances.

D. COMPARISON BETWEEN THE PROPOSED ASSEMBLER
AND THREE RECENT ASSEMBLERS

This section is concerned with investigating the superiority of
DWOA-LS over other existing assemblers. The experiments

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

TABLE 12. A comparison of fitness and number of contigs between DWOA-LS and other assemblers.

2*Instances DWOA-LS CSA-P2M*Fit P2M*Fit GA-P2M*Fit
Fitness NC Fitness NC Fitness NC Fitness NC
X4 11478 1.0 11478 1.0 11478 1.0 11478 1.0
X5 14161 1.0 14161 1.0 14157 2.0 14161 1.0
X6 18301 1.0 18301 1.0 18301 1.0 18301 1.0
X7 21271 1.0 21271 1.0 21271 1.0 21271 1.0
M5 38746 1.0 38746 3.0 38661 5.0 38746 3.0
M6 48052 1.0 48052 2.0 48052 2.0 48052 2.0
M7 55171 1.0 55171 2.0 55169 3.0 55171 2.0
J7 116700 1.0 116700 2.0 116352 4.0 116700 2.0
BX4 227920 1.0 227920 9.0 226858 15.0 227920 8.0
BX7 445422 1.0 445422 2.0 442708 10.0 445422 2.0
AC1 47618 2.0 47618 6.0 47140 10.0 47609 5.0
AC2 151546 2.0 151545 61.0 151256 90.0 151520 49.0
AC3 167854 2.0 167861 74.0 167025 113.0 167781 59.0
AC5 163869 2.0 163891 82.0 163107 144.0 163758 80.0
AC7 180902 2.0 180924 86.0 179822 159.0 180748 81.0
AC9 344076 7.0 344078 64.0 343059 124.0 343968 54.0
F305 596 1.0 596 19.0 596 19.0 596 19.0
F400 777 2.0 777 14.0 777 14.0 777 14.0
F500 921 2.0 921 14.0 921 14.0 921 14.0
F315 1581 1.0 1581 26.0 1575 26.0 1581 26.0
F412 1573 1.0 1573 26.0 1568 26.0 1573 26.0
F498 1570 1.0 1570 28.0 1568 28.0 1570 28.0
F307 2793 1.0 2793 69.0 2772 69.0 2793 69.0
F415 2860 1.0 2860 65.0 2843 65.0 2860 65.0
F512 2732 1.0 2732 69.0 2713 69.0 2732 69.0
F508 18108 1.0 18110 261.0 17885 260.0 18082 259.0
F635 22493 1.0 22492 333.0 22119 335.0 22454 332.0
F737 25197 1.0 25206 403.0 24793 406.0 25163 403.0
F1343 48951 1.0 49012 644.0 47956 663.0 48834 641.0
evaluate the performance of our proposed assemblers with the &s T T
—e—DWOA-LS
other assemblers based on three performance measures: —=—CSA-P2M*Fit
1) The fitness function using the overlap score. 2T —%—P2M*Fit)
2) The number of contigs. ——GA-P2M*Fit

3) An evaluation function called F' + C.

The third experiment compares DWOA-LS and other
three assemblers based on their outcomes in the published
papers, including CSA-P2M*Fit [35], P2M*Fit [35], and
GA-P2M*Fit [35]. The fitness function depending on the
best overlap score and the minimum number of contigs (NC)
are used as two main performance measures in this experi-
ment. Table 12 introduces the results of the four algorithms.
Although the two assemblers DWOA-LS and CSA-P2M*Fit
find the optimal fitness values for 20 out of 30 instances,
DWOA-LS outperforms CSA-P2M*Fit. DWOA-LS obtains
a one-contig solution that has the optimal overlap score
in 17 DFAP datasets, but CSA-P2M*Fit and GA-P2M*Fit
achieve this solution in only four DFAP datasets. In con-
trast to DWOA-LS in the other assemblers, when the DFAP
becomes larger, the number of contigs becomes disastrous.
The maximum number of contigs is seven contigs for
DWOA-LS, while the maximum number of contigs for the
other assemblers is 788 for CSA-P2M*Fit and GA-P2M*Fit
and 810 for P2M*Fit.

Graphically, Fig. 12 compares the different assemblers
based on the PD values to determine how close each algo-
rithm is to the optimal overlap score. As can be seen from
the Fig. 12, the overlap score of the CSA-P2M*Fit is slightly
higher in some instances. However, the superiority of the

VOLUME 8, 2020

PD

05

Instances

FIGURE 12. A comparison of PD for DWOA-LS with other three
assemblers based on the best overlap score.

CSA-P2M*Fit in the overlap score does not mean that it
is better because in some cases, a solution that has a bet-
ter fitness value may generate a larger number of contigs.
Therefore, the difference between our algorithm and the
CSA-P2M*Fit in the overlap score doesn’t provide a useful
evaluation of performance for solving DFAP. In this paper,
another evaluation function is proposed to evaluate the per-
formance of the assemblers illustrated below.

As mentioned earlier, the fitness using the overlap score
alone cannot be used to judge the quality of the assemblers
because, in some situations, a solution that has a better fitness

222161

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

97.43
100 86.85

80 67 40/—/’/_/—”"__

Average computational time in
seconds

DWOA-LS GA-P2M*Fit CSA-P2M*Fit

Algorithms

(a)

Average computational time in

10794.44

4324.68 3905.83

DWOA-LS GA-P2M*Fit CSA-P2M*Fit

Algorithms

(b)

FIGURE 13. Comparison of the CPU values for DWOA-LS, CSA-P2M*Fit, and GA-P2M*Fit 921 on (a) instance X4-BX7; and (b) the reminder of the instances.

TABLE 13. A comparison among algorithms based on F+C function.

Instances Optimal P2M*Fit GA-P2M*Fit CSA-P2M*Fit DWOA-LS |
X4 2 1.987 2 2 2
X5 2 1.947 1.995 1.981 2
X6 2 1.972 2 2 2
X7 2 1.974 2 2 2
M5 2 1.94 1.984 1.984 2
Mé 2 1.986 1.994 1.989 2
M7 2 1.976 1.994 1.989 2
J7 2 1.973 1.996 1.997 2
BX4 2 1.954 1.983 1.981 2
BX7 2 1.971 1.994 1.998 2
AC1 2 1.942 1.984 1.980 1.996
AC2 2 1.781 1.888 1.859 1.997
AC3 2 1.785 1.896 1.871 1.998
ACs 2 1.785 1.888 1.878 1.999
AC7 2 1.798 1.901 1.898 1.999

ACY 2 1.866 1.945 1.935 1.994
F305 2 1.273 1.28 1.28 1.992
F400 2 1.474 1.48 1.48 1.96
F500 2 1.513 1.518 1.518 1.933
F315 2 1.49 1.5 1.5 2

F412 2 1.485 1.5 1.5 1.996
F498 2 1.45 1.46 1.46 2

F307 2 1.302 1.32 1.319 1.999
F415 2 1.341 1.36 1.359 2

F512 2 1.305 1.32 1.319 1.999
F508 2 1.465 1.489 1.487 1.999
F635 2 1.447 1.476 1.476 1.999
F737 2 1.421 1.451 1.453 1.999
F1343 2 1.476 1.517 1.518 1.998
F1577 2 1.453 1.495 1.498 1.998

using overlap score can have a large number of contigs.
Therefore, the judgment has to be based on two factors:

1) The primary factor is minimizing the number of contigs

with the target of reaching one contig.

2) The second factor is maximizing the overlap score.

As a result, a new fitness function is proposed to evaluate
the performance of the assemblers based on the previous
two factors. This fitness function is called (F+C), which is
calculated according to the following formula:

NF — NC +1

avg_fitness n
NF

opt
where avg_fitness is the average obtained overlap score for
a given algorithm, and opt is the best known overlap score.
NF and NC represent the number of fragments and contigs,
respectively.

Based on the results introduced in Table 13, we can see
the superiority of the DWOA-LS for all instances for F+C
values. Our algorithm contributes significantly to reduce the
number of contigs and to increase the overlap score among the
fragments compared with the other assemblers. DWOA-LS
can reach the ultimate objective that contains a one-contig
solution with the optimal overlap score in 13 datasets. For

F+C=

(16)

222162

the remaining datasets, DWOA-LS is too close to obtain 2.
CSA-P2M*Fit and GA-P2M*Fit get the optimal solution in
only three datasets, as shown in Table 13.

To measure the CPU time for DWOA-LS, CSA-P2M*Fit,
and GA-P2M*Fit, the latter two algorithms were imple-
mented to make a fair comparison between the CPU time
consumed by each. The investigation of CPU time was
divided into two experiments. The first computed the CPU
time for the first benchmark until reaching the optimal value
for each instance. After running each assembler (DWOA,
GA-P2M*Fit, and CSA-P2M*Fit) for 30 independent runs,
the average was calculated of the computational time needed
for each of the datasets from X4 to BX7. As can be seen
in Fig. 13a, the proposed assembler is faster than CSA-
P2M*Fit and GA-P2M*Fit in reaching the optimal solution
for those datasets.

The second experiment computed CPU time for the other
datasets, which includes some instances with an optimal solu-
tions that the algorithms couldn’t reach, which investigates
the CPU time consumed by each one until the end of the
optimization process. After running each algorithm 30 inde-
pendent on those datasets, the average CPU time is introduced
in Fig. 13b, which shows that CSA-P2M*Fit is faster than
the proposed algorithm and GA-P2M*Fit. However, the pro-
posed algorithm is very close to the CPU time consumed by
CSA-P2M*Fit, so they are competitive in terms of the CPU
time.

To complete this experiment a statistical test known
as the statistical ranking color scheme (SRCS) [75] is
used to compare the algorithms: DWOA-LS, CSA-P2M*Fit,
GA-P2M*Fit and P2M*Fit. SRCS sets all the algorithms
to an initial value of 0. Then, the Krusskal-Wallis test is
employed for detecting whether there are any differences
between the algorithms. If there is no difference, the algo-
rithms terminate in their initial value O. If there is a signifi-
cant difference among the algorithms, the Mann—Whitney—
Wilcoxon + Holm test is applied for each possible pair
of the algorithms, and the ranking value of the algorithm
with the highest performance is incremented by 1, and the
other is decreased by 1. If there are no differences, then the
ranking value is preserved. Hence, the top-ranked algorithm
has the highest performance. Here, this test is applied on the
proposed algorithm and another three assemblers to illustrate
the superiority of our proposed algorithm.

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

TABLE 14. The SRCS ranking results of different algorithms based on the
average fitness value/contigs.

Instance DWOA-LS CSA-P2M*Fit P2M*Fit GA-P2M*Fit
X4 1/0 1/0 -3/0 1/0
X5 1/3 1/-1 -3/-3 1/1
X6 171 1/1 -3/3 1/1
X7 1/1 1/1 -3/-3 1/1
M5 173 1/0 -3/-3 1/0
M6 1/3 1/-1 -3/-3 1/1
M7 2/3 2/-1 -3/-3 1/1
J7 2/3 2/0 -3/-3 -1/0
BX4 2/3 2/-1 -3/-3 -1/1
BX7 2/3 2/1 -3/-3 -1/-1
AC1 2/3 2/3 -3/-3 -1/1
AC2 3/3 1/-1 -3/-3 -1/1
AC3 173 3/-1 -3/-3 -1/1
ACS 1/3 3/-1 -3/-3 -1/1
AC7 173 3/-1 -3/-3 -1/1

ACY 1/3 3/-1 -3/-3 -1/1
F305 1/3 1/-1 -3/-1 1/-1
F400 1/3 1/-1 -3/-1 1/-1
F500 1/3 1/-1 -3/-1 1/-1
F315 1/3 1/0 -3/-3 1/0
F412 1/3 1/0 -3/-3 1/0
F498 1/3 1/0 -3/-3 1/0
F307 0/3 0/0 -3/-3 3/0
F415 0/3 0/0 -3/-3 3/0
F512 0/3 0/0 -3/-3 3/0
F508 1/3 3/-1 -3/-3 -1/1
F635 3/3 1/-1 -3/-3 -1/1
F737 1/3 3/0 -3/-3 -1/0
F1343 1/3 3/-1 -3/-3 -1/1
F1577 1/3 3/-1 -3/-3 -1/1

Table 14 shows the ranking value for four different assem-
blers according to the average fitness value-based the average
overlap and the average number of contigs obtained by each
algorithm for each instance. Based on the ranking values
introduced, our proposed algorithm outperforms all other
algorithms based on the number of contigs in all instances.
If the algorithm attains a value 0, it means that all the algo-
rithms obtain the same results. If the algorithm achieves any
value of (1, 2, 3), it means that the algorithm outperforms
one, or two, or three algorithms, respectively. If the algorithm
obtains any value of (—1, —2, —3), it means that there are
one, or two, or three algorithms that precede this algorithm,
respectively. DWOA-LS achieves a value of 3 in most of
the instances for the number of contigs. Also, for the fitness
value, DWOA-LS is equivalent to the other algorithms or
outperforms one or more of three algorithms. CSA-P2M*fit
outperforms our proposed algorithm in 8 instances based on
the average fitness value and so is a little higher in fitness
value. There is, however, a clear difference in the number of
contigs between the two algorithms as the proposed algorithm
produces an output that is closer to the optimal order of the
fragments.

E. COMPARISON OF THE PROPOSED ASSEMBLER AND
OTHER ASSEMBLERS

The fourth experiment compared the proposed assembler
with other selected state-of-the-art assemblers:

1) Transposition restarting and recentering genetic algo-
rithm with island model (Trans. RRGA+IM) [50];
2) Problem aware local search (PALS) [53];

VOLUME 8, 2020

TABLE 15. The SRCS ranking results of the algorithms in terms of F+C
values.

Instance DWOA-LS CSA-P2M*Fit GA-P2M*Fit P2M*Fit
X4 1 1 1 -3
X5 3 -1 1 -3
X6 1 1 1 -3
X7 1 1 1 -3
M5 3 0 0 -3
M6 3 -1 1 -3
M7 3 -1 1 -3
J7 3 1 -1 -3

BX4 3 -1 1 -3
BX7 3 1 -1 -3
AC1 3 -1 1 -3
AC2 3 -1 1 -3
AC3 3 -1 1 -3
AC5s 3 -1 1 -3
AC7 3 -1 1 -3
ACY 3 -1 1 -3
F305 3 0 0 -3
F400 3 0 0 -3
F500 3 0 0 -3
F315 3 0 0 -3
F412 3 0 0 -3
F498 3 0 0 -3
F307 3 -1 1 -3
F415 3 -1 1 -3
F512 3 -1 1 -3
F508 3 -1 1 -3
F635 3 0 0 -3
F737 3 1 -1 -3
F1343 3 1 -1 -3
F1577 3 1 -1 -3

3) Parallel hybrid particle swarm optimization and defer-
ential evolution (PPSO+DE) [56];

4) Firefly algorithm (FF) [59];

5) Genetic algorithm (GA) [64]

6) Queen-bee evaluation based on genetic algorithm

(QEGA) [76]; and

7) Simulated annealing (SA) [76].

The comparison is based on the best of the overlap scores
obtained on the first two DFAP collections (GenFrag and
DNAgen). Table 16 records the results of the nine algo-
rithms, from which it can be seen that DWOA-LS out-
performs all other algorithms in all instances by obtaining
the optimal overlap score values in eleven DFAP instances.
SA is second bestwith three datasets. From the last columns
at Table 16, which presents a comparison of the total average
overlap among the algorithms over the first DFAP collections
(GenFrag and DNAgen). The Average of the second column
represents the average of all the optimal values recorded for
these two collections, which is 128328. DWOA-LS performs
best with a value of 128318, which is very close to 128328.
This experiment shows that our proposed algorithm is robust
and successful in tackling DFAP. Trans. RRGA+IM per-
forms second best with a value of 127875. GA performs worst
with a value of 119176.

F. SUMMARY OF OUR EXPERIMENTS

From the previous experiments, the proposed algorithm
DWOA-LS has been shown to be an effective assembler for
tackling DFAP compared to other existing assemblers. The
proposed DWOA-LS is capable of obtaining the minimum

222163

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

TABLE 16. A summary of the overlap score for DWOA-LS and other selected algorithms.

Instances opt Trans.RRGA+IM PALS PPSO+DE FF GA QEGA SA DWOA-LS
X4 11478 11478 11478 11478 11478 11478 11476 11478 11478
X5 14161 14161 14021 13642 14075 13502 14027 14027 14161
X6 18301 18301 18301 18301 18097 17688 18266 18301 18301
X7 21271 21245 21210 20921 20898 20884 21208 21271 21271
M5 38746 38690 38528 38686 37743 37714 38578 38583 38746
Mo 48052 48048 48048 47669 47033 46949 47882 48048 48052
M7 55171 55168 55067 54891 51509 52695 55020 55048 55171
J7 116700 116502 115320 114381 108701 111103 116222 116257 116700

BX4 227920 227297 225783 224797 211654 220029 227252 226538 227920
BX7 445422 442452 438215 429338 413630 416414 443600 436739 445422
AC1 47618 47477 46876 47264 45160 45565 47115 46955 47618
AC2 151553 151335 144634 147429 147460 143444 144133 144705 151546
AC3 167877 167268 156776 163965 164652 154947 156138 156630 167854
AC5 163906 163246 146591 161511 162915 145332 144541 146607 163869
AC7 180966 180033 158004 180052 179913 155873 155322 157984 180902
AC9 344107 343314 325930 335522 333815 313203 322768 324559 344072
Average 128328 127876 122799 125615 123046 119176 122722 122733 128318

number of contigs while increasing the overlap score. Also,
DWOA-LS is proved to be more robust for solving DFAP
as it performs well for medium- and large-scale instances.
A new evaluation function has been proposed to measure the
performance of the different assemblers based on achieving
a one-contig solution and attaining a high overlap score. This
function can be useful in situations when an algorithm gets a
higher overlap, but the number of contigs is large. So, the best
algorithm balances the two objectives.

VII. CONCLUSION AND FUTURE WORK

In this paper, a WOA was adapted to solve a discrete fragment
assembly problem (DFAP). To fit this WOA for discrete
problems (DWOA), the swap-based best-position mutation
operator was used to simulate the action of encircling the
prey to move the whale around prey within a shrinking circle.
The ordered crossover operators were employed to simulate
the spiral shape, where DWOA selects a random block of
positions from the prey and his block is copied to the same
locations in the current whale. Finally, to search for the
prey, the whale positions were generated randomly from the
fragment numbers instead of using a random whale to prevent
the reduction of the variation in the population. A local search
approach called PALS2-many was also employed with the
proposed DWOA in a version abbreviated as DWOA-LS for
a better order of fragments. The local search helps DWOA
to minimize the number of contigs, in addition to maximiz-
ing the overlap score among the fragments. We propose a
new evaluation function F4C to assess the quality of differ-
ent assemblers. DWOA-LS was validated on 30 benchmark
instances and compared with a number of the robust recent
state-of-the-arts algorithm for the DFAP under two experi-
ments. In the first experiment, DWOA was compared with
five WOA and DE variants, in addition to SCA to demon-
strate the superiority of DWOA to convert the continuous
behaviors of the whale to discrete. Additionally, to show
the significance of the DWOA, the Wilcoxon rank sum test

222164

was used to show the significance of DWOA over those
algorithms. The second experiment was performed to show
the superior performance of DWOA-LS over a number of
recent robust state-of the arts assemblers suggested for the
DFAP. The experimental results and statistical analyses of
this experiment show that the DWOA-LS outperforms sig-
nificantly the different assemblers in terms of the number of
contigs, whilst being competitive for the overlap score with
CSA-P2M*Fit, and superior to P2M*Fit and GA-P2M*Fit.
Finally, DWOA-LS is shown to be the best approach. Despite
its superiority, the proposed algorithm did not achieve better
overlap scores than CSA-P2M*Fit on some instances, which
is a limitation of the proposed approach, in addition to its time
complexity.

Future work aims to apply DWOA to other existing prob-
lems such as travelling salesman problem, task scheduling,
and the knapsack problem. Additionally, a new evaluation
function can be considered for tackling DFAP to judge and
guide the solutions inside the search space. Parallelization of
the proposed algorithm can also achieve better results and to
exploit the processing power of new computers.

CONFLICT OF INTEREST
Authors declare that there is no conflict of interest about the
research.

FUNDING
This research has no funding source.

ETHICAL APPROVAL
This article does not contain any studies with human partici-
pants or animals performed by any of the authors.

REFERENCES

[1] G. Phillips-Wren, P. Sharkey, and S. M. Dy, ‘““Mining lung cancer patient
data to assess healthcare resource utilization,” Expert Syst. Appl., vol. 35,
no. 4, pp. 1611-1619, Nov. 2008.

VOLUME 8, 2020

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

IEEE Access

[2]

[3]

[4]

[5]
[6]
[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

N. Maleki, Y. Zeinali, and S. T. A. Niaki, ““A k-NN method for lung cancer
prognosis with the use of a genetic algorithm for feature selection,” Expert
Syst. Appl., vol. 164, Feb. 2021, Art. no. 113981.

Q. Wang, Y. Zhou, W. Zhang, Z. Tang, and X. Chen, “Adaptive sam-
pling using self-paced learning for imbalanced cancer data pre-diagnosis,”
Expert Syst. Appl., vol. 152, Aug. 2020, Art. no. 113334,

Y.-M. D. Lo, R. W. K. Chiu, R. W. Y. Chan, and L. S. Tam, “Sequencing
analysis of circulating DNA to detect and monitor autoimmune diseases,”
U.S. Patent 10 174 375, Jan. 8, 2019.

M. A. Farley, Forensic DNA Technology. Boca Raton, FL, USA: CRC
Press, 2019.

A.O. Amankwaa and C. McCartney, ‘“The effectiveness of the UK national
DNA database,” Forensic Sci. Int., Synergy, vol. 1, pp. 45-55, Jan. 2019.
A. Ghosh, S. Basu, H. Khatri, K. Chandra, and M. Thakur, “Ascertaining
species of origin from confiscated meat using DNA forensics,” Mitochon-
drial DNA B, vol. 4, no. 1, pp. 329-331, Jan. 2019.

G. C. Oatley and B. W. Ewart, “Crimes analysis software: ‘Pins in maps’,
clustering and Bayes net prediction,” Expert Syst. Appl., vol. 25, no. 4,
pp. 569-588, Nov. 2003.

Z.J. Li, Y. H. Chen, D. J. Zhang, G. F. Zhang, and B. X. Lu, “Genetic
diversity analysis and DNA fingerprinting of the main japonica rice vari-
eties in heilongjiang province,” Qual. Assurance Saf. Crops Foods, vol. 11,
no. 1, pp. 23-29, Feb. 2019.

R. Lal, Genetic Engineering of Plants for Crop Improvement. Boca Raton,
FL, USA: CRC Press, 2020.

A. M. Anter, A. E. Hassenian, and D. Oliva, “An improved fast
fuzzy c-means using crow search optimization algorithm for crop iden-
tification in agricultural,” Expert Syst. Appl., vol. 118, pp. 340-354,
Mar. 2019.

J. Kubalik, P. Buryan, and L. Wagner, “Solving the DNA fragment assem-
bly problem efficiently using iterative optimization with evolved hypermu-
tations,” in Proc. 12th Annu. Conf. Genet. Evol. Comput. (GECCO), 2010,
pp. 213-214.

Z. Ezziane, “Applications of artificial intelligence in bioinformatics:
A review,” Expert Syst. Appl, vol. 30, no. 1, pp.2-10,
Jan. 2006.

M. Abdel-Basset, V. Chang, and R. Mohamed, “HSMA_WOA: A hybrid
novel slime mould algorithm with whale optimization algorithm for tack-
ling the image segmentation problem of chest X-ray images,” Appl. Soft
Comput., vol. 95, Oct. 2020, Art. no. 106642.

S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime mould
algorithm: A new method for stochastic optimization,” Future Gener.
Comput. Syst., vol. 111, pp. 300-323, Oct. 2020.

M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir, A. Jolfaei, and
N. Kumar, “Energy-aware marine predators algorithm for task scheduling
in IoT-based fog computing applications,” IEEE Trans. Ind. Informat.,
early access, Jun. 11, 2020, doi: 10.1109/TI1.2020.3001067.

M. Abdel-Basset, R. Mohamed, M. Elhoseny, R. K. Chakrabortty, and
M. Ryan, “A hybrid COVID-19 detection model using an improved marine
predators algorithm and a ranking-based diversity reduction strategy,”
IEEE Access, vol. 8, pp. 79521-79540, 2020.

A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, ‘“Marine
predators algorithm: A nature-inspired metaheuristic,” Expert Syst. Appl.,
vol. 152, Aug. 2020, Art. no. 113377.

E. H. Houssein, M. E. Hosney, D. Oliva, W. M. Mohamed, and
M. Hassaballah, “A novel hybrid harris hawks optimization and support
vector machines for drug design and discovery,” Comput. Chem. Eng.,
vol. 133, Feb. 2020, Art. no. 106656.

Q. Askari, M. Saeed, and I. Younas, ‘“Heap-based optimizer inspired by
corporate rank hierarchy for global optimization,” Expert Syst. Appl.,
vol. 161, Dec. 2020, Art. no. 113702.

I. Ahmadianfar, O. Bozorg-Haddad, and X. Chu, “Gradient-based opti-
mizer: A new metaheuristic optimization algorithm,” Inf. Sci., vol. 540,
pp. 131-159, Nov. 2020.

S. Mirjalili and A. Lewis, ““The whale optimization algorithm,” Adv. Eng.
Softw., vol. 95, pp. 51-67, May 2016.

C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and
P. N. Suganthan, “Benchmark generator for CEC 2009 competition on
dynamic optimization,” Univ. Leicester, Univ. Birmingham, Birmingham,
U.K,, Tech. Rep., 2008.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and
S. Tiwari, “‘Problem definitions and evaluation criteria for the CEC 2005
special session on real-parameter optimization,” Nanyang Technol. Univ.,
Singapore, Tech. Rep., 2005.

VOLUME 8, 2020

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(36]

(371

(38]

(391
[40]

[41]

[42]

(43]

[44]

(45]

[46]

(47]

K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and M. J. Ryan,
“Improved multi-operator differential evolution algorithm for solving
unconstrained problems,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2020, pp. 1-8.

M. Abdel-Basset, R. Mohamed, S. Mirjalili, R. K. Chakrabortty, and
M. J. Ryan, “Solar photovoltaic parameter estimation using an improved
equilibrium optimizer,” Sol. Energy, vol. 209, pp. 694-708, Oct. 2020.
A. G. Hussien, A. E. Hassanien, E. H. Houssein, M. Amin, and
A. T. Azar, “New binary whale optimization algorithm for discrete opti-
mization problems,” Eng. Optim., vol. 52, no. 6, pp. 945-959, Jun. 2020.
M. M. Mafarja and S. Mirjalili, “Hybrid whale optimization algorithm
with simulated annealing for feature selection,” Neurocomputing, vol. 260,
pp- 302-312, Oct. 2017.

R. K. Agrawal, B. Kaur, and S. Sharma, “Quantum based whale optimiza-
tion algorithm for wrapper feature selection,” Appl. Soft Comput., vol. 89,
Apr. 2020, Art. no. 106092.

M. Abdel-Basset, D. El-Shahat, and A. K. Sangaiah, “A modified
nature inspired meta-heuristic whale optimization algorithm for solving
0-1 knapsack problem,” Int. J. Mach. Learn. Cybern., vol. 10, no. 3,
pp. 495-514, Mar. 2019.

J. Nasiri and F. M. Khiyabani, “A whale optimization algorithm (WOA)
approach for clustering,” Cogent Math. Statist., vol. 5, no. 1, Jun. 2018,
Art. no. 1483565.

M. Abdel-Basset, D. El-Shahat, and 1. El-Henawy, “A modified hybrid
whale optimization algorithm for the scheduling problem in multimedia
data objects,” Concurrency Comput., Pract. Exper.,vol. 32,n0.4,p.e5137,
Feb. 2020.

T. Jiang, C. Zhang, and Q.-M. Sun, “Green job shop scheduling prob-
lem with discrete whale optimization algorithm,” IEEE Access, vol. 7,
pp. 43153-43166, 2019.

T. Jiang, C. Zhang, H. Zhu, J. Gu, and G. Deng, ‘‘Energy-efficient schedul-
ing for a job shop using an improved whale optimization algorithm,”
Mathematics, vol. 6, no. 11, p. 220, Oct. 2018.

M. Allaoui, B. Ahiod, and M. El Yafrani, “A hybrid crow search algorithm
for solving the DNA fragment assembly problem,” Expert Syst. Appl.,
vol. 102, pp. 44-56, Jul. 2018.

H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A. M. Al-Zoubi,
S. Mirjalili, and H. Fujita, “An efficient binary salp swarm algorithm with
crossover scheme for feature selection problems,” Knowl.-Based Syst.,
vol. 154, pp. 43-67, Aug. 2018.

A. B. Ali, G. Luque, E. Alba, and K. E. Melkemi, “An improved problem
aware local search algorithm for the DNA fragment assembly problem,”
Soft Comput., vol. 21, no. 7, pp. 1709-1720, Apr. 2017.

E. Alba and G. Luque, “A new local search algorithm for the DNA
fragment assembly problem,” in Proc. Eur. Conf. Evol. Comput. Combinat.
Optim. Berlin, Germany: Springer, 2007, pp. 1-12.

L. Li and S. Khuri, “A comparison of DNA fragment assembly algo-
rithms,” in Proc. METMBS, vol. 4, 2004, pp. 329-335.

X. Huang, “CAP3: A DNA sequence assembly program,” Genome Res.,
vol. 9, no. 9, pp. 868-877, Sep. 1999.

H. Chen, W. Li, and X. Yang, “‘A whale optimization algorithm with chaos
mechanism based on quasi-opposition for global optimization problems,”
Expert Syst. Appl., vol. 158, Nov. 2020, Art. no. 113612.

N. Neggaz, A. A. Ewees, M. A. Elaziz, and M. Mafarja, ‘“Boosting salp
swarm algorithm by sine cosine algorithm and disrupt operator for feature
selection,” Expert Syst. Appl., vol. 145, May 2020, Art. no. 113103.

E. Rodriguez-Esparza, L. A. Zanella-Calzada, D. Oliva, A. A. Heidari,
D. Zaldivar, M. Pérez-Cisneros, and L. K. Foong, “An efficient harris
hawks-inspired image segmentation method,” Expert Syst. Appl., vol. 155,
Oct. 2020, Art. no. 113428.

A. Zareie, A. Sheikhahmadi, and M. Jalili, “Identification of influential
users in social network using gray wolf optimization algorithm,” Expert
Syst. Appl., vol. 142, Mar. 2020, Art. no. 112971.

M. Abdel-Basset, D. El-Shahat, I. El-Henawy, V. H. C. de Albuquerque,
and S. Mirjalili, “A new fusion of grey wolf optimizer algorithm with a
two-phase mutation for feature selection,” Expert Syst. Appl., vol. 139,
Jan. 2020, Art. no. 112824.

S. Balochian and H. Baloochian, “Social mimic optimization algorithm
and engineering applications,” Expert Syst. Appl., vol. 134, pp. 178-191,
Nov. 2019.

Y. Zhang, M. Ma, and Z. Jin, “Backtracking search algorithm with com-
petitive learning for identification of unknown parameters of photovoltaic
systems,” Expert Syst. Appl., vol. 160, Dec. 2020, Art. no. 113750.

222165

http://dx.doi.org/10.1109/TII.2020.3001067

IEEE Access

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. J. Parsons, S. Forrest, and C. Burks, “Genetic algorithms, operators,
and DNA fragment assembly,” Mach. Learn., vol. 21, nos. 1-2, pp. 11-33,
1995.

A. J. Nebro, G. Luque, F. Luna, and E. Alba, “DNA fragment assembly
using a grid-based genetic algorithm,” Comput. Oper. Res., vol. 35, no. 9,
pp. 2776-2790, Sep. 2008.

J. A. Hughes, S. Houghten, and D. Ashlock, “Restarting and recentering
genetic algorithm variations for DNA fragment assembly: The necessity of
a multi-strategy approach,” Biosystems, vol. 150, pp. 35-45, Dec. 2016.
D. Bucur, “De novo DNA assembly with a genetic algorithm finds accurate
genomes even with suboptimal fitness,” in Proc. Eur. Conf. Appl. Evol.
Comput. Cham, Switzerland: Springer, 2017, pp. 67-82.

M. Rathee, K. Dilip, and R. Rathee, “DNA fragment assembly using
quantum-inspired genetic algorithm,” in Exploring Critical Approaches
of Evolutionary Computation. Hershey, PA, USA: IGI Global, 2019,
pp. 80-98.

G. Minetti and E. Alba, ‘“Metaheuristic assemblers of DNA strands: Noise-
less and noisy cases,” in Proc. IEEE Congr. Evol. Comput., Jul. 2010,
pp. 1-8.

1. Rajagopal and U. Sankareswaran, ““An adaptive particle swarm optimiza-
tion algorithm for solving DNA fragment assembly problem,” Current
Bioinf., vol. 10, no. 1, pp. 97-105, Mar. 2015.

K.-W. Huang, J.-L. Chen, C.-S. Yang, and C.-W. Tsai, ““A memetic particle
swarm optimization algorithm for solving the DNA fragment assembly
problem,” Neural Comput. Appl., vol. 26, no. 3, pp. 495-506, Apr. 2015.
G. M. Mallen-Fullerton and G. Fernandez-Anaya, “DNA fragment assem-
bly using optimization,” in Proc. IEEE Congr. Evol. Comput., Jun. 2013,
pp. 1570-1577.

K.-W. Huang, J.-L. Chen, and C.-S. Yang, ‘A hybrid PSO-based algorithm
for solving DNA fragment assembly problem,” in Proc. 3rd Int. Conf.
Innov. Bio-Inspired Comput. Appl., Sep. 2012, pp. 223-228.

P. Vidal and A. Olivera, “Solving the DNA fragment assembly problem
with a parallel discrete firefly algorithm implemented on GPU,” Comput.
Sci. Inf. Syst., vol. 15, no. 2, pp. 273-293, 2018.

A. B. Ezzeddine, S. Kasala, and P. Navrat, “Applying the firefly
approach to the DNA fragments assembly problem,” Annales Univ. Sci.
Budapest., Sect. Comp., Tech. Rep., 2014, pp. 69-81. [Online]. Available:
http://ac.inf.elte.hu/Vol_042_2014/069_42.pdf

A.B. Ali, G. Luque, and E. Alba, “An efficient discrete PSO coupled with
a fast local search heuristic for the DNA fragment assembly problem,” Inf.
Sci., vol. 512, pp. 880-908, Feb. 2020.

K.-W. Huang, J.-L. Chen, C.-S. Yang, and C.-W. Tsai, “A memetic grav-
itation search algorithm for solving DNA fragment assembly problems,”
J. Intell. Fuzzy Syst., vol. 30, no. 4, pp. 2245-2255, Mar. 2016.

E. D. Ulker, “Adaptation of harmony search algorithm for DNA fragment
assembly problem,” in Proc. SAI Comput. Conf., Jul. 2016, pp. 135-138.
R. Indumathy, S. U. Maheswari, and G. Subashini, *“Nature-inspired
novel cuckoo search algorithm for genome sequence assembly,” Sadhana,
vol. 40, no. 1, pp. 1-14, Feb. 2015.

P. Meksangsouy and N. Chaiyaratana, “DNA fragment assembly using an
ant colony system algorithm,” in Proc. Congr. Evol. Comput. (CEC), vol. 3,
2003, pp. 1756-1763.

J. S. Firoz, M. S. Rahman, and T. K. Saha, “Bee algorithms for solving
DNA fragment assembly problem with noisy and noiseless data,” in Proc.
14th Int. Conf. Genet. Evol. Comput. Conf. (GECCO), 2012, pp. 201-208.
Z.Zhou, B. Yang, and W. Hou, ‘““Association classification algorithm based
on structure sequence in protein secondary structure prediction,” Expert
Syst. Appl., vol. 37, no. 9, pp. 6381-6389, Sep. 2010.

G. M. Mallén-Fullerton, J. A. Hughes, S. Houghten, and
G. Fernandez-Anaya, “Benchmark datasets for the DNA fragment
assembly problem,” Int. J. Bio-Inspired Comput., vol. 5, no. 6,
pp- 384-394, 2013.

Y. Ling, Y. Zhou, and Q. Luo, “Lévy flight trajectory-based whale
optimization algorithm for global optimization,” IEEE Access, vol. 5,
pp. 6168-6186, 2017.

G. Kaur and S. Arora, “Chaotic whale optimization algorithm,” J. Comput.
Des. Eng., vol. 5, no. 3, pp. 275-284, Jul. 2018.

S. M. Bozorgi and S. Yazdani, “IWOA: An improved whale optimization
algorithm for optimization problems,” J. Comput. Des. Eng., vol. 6, no. 3,
pp. 243-259, Jul. 2019.

S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization
problems,” Knowl.-Based Syst., vol. 96, pp. 120-133, Mar. 2016.

K. Helsgaun, “An effective implementation of the Lin—Kernighan traveling
salesman heuristic,” Eur. J. Oper. Res., vol. 126, pp. 106—130, Oct. 2000.

222166

(73]

[74]

[75]

[76]

R. Tanabe and A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2014, pp. 1658-1665.

W. Haynes, “Wilcoxon rank sum test,” in Encyclopedia of Sys-
tems Biology. New York, NY, USA: Springer, 2013, pp. 2354-2355,
doi: 10.1007/978-1-4419-9863-7.

E. Alba, A. Nakib, and P. Siarry, Metaheuristics for Dynamic Optimization.
Bristol, U.K.: IEEE, 2013.

L. Qin, Q. Jiang, Z. Zou, and Y. Cao, “A queen-bee evolution based
on genetic algorithm for economic power dispatch,” in Proc. 39th Int.
Universities Power Eng. Conf. (UPEC), vol. 1, 2004, pp. 453-456.

MOHAMED ABDEL-BASSET (Senior Member,
IEEE) received the B.Sc., M.Sc., and Ph.D.
degrees in operations research from the Faculty
of Computers and Informatics, Zagazig Univer-
sity, Egypt. He is currently an Associate Professor
with the Faculty of Computers and Informatics,
Zagazig University. He has published more than
200 papers in international journals and confer-
ence proceedings. His current research interests
are optimization, operations research, data min-

ing, computational intelligence, applied statistics, decision support systems,
robust optimization, engineering optimization, multi-objective optimization,
swarm intelligence, evolutionary algorithms, and artificial neural networks.
He is working on the application of multiobjective and robust metaheuristic
optimization techniques. He is also an/a editor/reviewer in different interna-
tional journals and conferences.

REDA MOHAMED received the B.Sc. degree
from the Department of Computer Science, Fac-
ulty of Computers and Informatics, Zagazig Uni-
versity, Egypt. His research interests include
robust optimization, multiobjective optimization,
swarm intelligence, evolutionary algorithms, and
artificial neural networks. He is working on the
application of multiobjective and robust meta-
heuristic optimization techniques in computational
intelligence.

KARAM M. SALLAM received the Ph.D.
degree in computer science from the University
of New South Wales at Canberra, Australian
Force Academy, Canberra, Australia, in 2018.
He is currently a Lecturer at Zagazig University,
Zagazig, Egypt. His current research interests
include evolutionary algorithms and optimization,
constrained-handling techniques for evolutionary
algorithms, operation research, machine learning,
deep learning, cybersecurity, and the IoT. He was

the winner of the IEEE-CEC2020 Competition. He serves as an organizing
committee member for different conferences in the evolutionary computation
field and a reviewer for several international journals.

VOLUME 8, 2020

http://dx.doi.org/10.1007/978-1-4419-9863-7

M. Abdel-Basset et al.: Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem I E E EACC@SS

RIPON K. CHAKRABORTTY (Member, IEEE)
received the B.Sc. and M.Sc. degrees in indus-
trial and production engineering from the
Bangladesh University of Engineering and Tech-
nology, in 2013 and 2009, respectively, and
the Ph.D. degree in computer science from the
Bangladesh University of Engineering and Tech-
nology, in 2017. He is currently a Lecturer in
system engineering and project management with
the School of Engineering and Information Tech-
nology, The University of New South Wales (UNSW), Canberra, Australia.
He has written two book chapters and over 50 technical journal and con-
ference papers. His research interests include a wide range of topics in
operations research, optimization problems, project management, supply
chain management, and information systems management.

VOLUME 8, 2020

MICHAEL J. RYAN (Senior Member, IEEE) is
currently the Director of the Capability Systems
Centre, The University of New South Wales,
Canberra. He lectures and regularly consults in
a range of subjects, including communications
systems, systems engineering, requirements engi-
neering, and project management. He is the
author/coauthor of twelve books, three book chap-
ters, and over 250 technical articles and reports.
He is a Fellow of the Engineers Australia, a Fellow
of the International Council on Systems Engineering, and a Fellow of the
Institute of Managers and Leaders. He is the Co-Chair of the Require-
ments Working Group in the International Council on Systems Engineering
(INCOSE).

222167

