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ABSTRACT AVirtual Power Plant (VPP) is a network of distributed power generating units, flexible power
consumers, and storage systems. A VPP balances the load on the grid by allocating the power generated
by different linked units during periods of peak load. Demand-side energy equipment, such as Electric
Vehicles (EVs) and mobile robots, can also balance the energy supply-demand when effectively deployed.
However, fluctuation of the power generated by the various power units makes the supply power balance
a challenging goal. Moreover, the communication security between a VPP aggregator and end facilities is
critical and has not been carefully investigated. This paper proposes anAI-enabled, blockchain-based electric
vehicle integration system, named AEBIS for power management in a smart grid platform. The system is
based on an artificial neural-network and federated learning approaches for EV charge prediction, in which
the EV fleet is employed as a consumer and as a supplier of electrical energy within a VPP platform. The
evaluation results show that the proposed approach achieved high power consumption forecast with R2 score
of 0.938 in the conventional training scenario. When applying a federated learning approach, the accuracy
decreased by only 1.7%. Therefore, with the accurate prediction of power consumption, the proposed system
produces reliable and timely service to supply extra electricity from the vehicular network, decreasing the
power fluctuation level. Also, the employment of AI-chip ensures a cost-efficient performance. Moreover,
introducing blockchain technology in the system further achieves a secure and transparent service at the
expense of an acceptable memory and latency cost.

INDEX TERMS AI-enabled, blockchain-based, EVs, power-management, AI-chip, virtual power plant.

I. INTRODUCTION
In recent years, the utilization of renewable resources
in the energy matrix has been increasing. At the end
of 2019, global renewable generation capacity reached
2536 gigawatts [1]. Variants of renewable resource providers,
e.g., wind power [2], photovoltaic power [3], and hydro-
power [4], serve as the power suppliers and transmit elec-
trical energy from the generating sites to a power grid [5].
The power grid then distributes electric power to all the
consumers, including residential areas, hospitals, commercial
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areas, administrative areas, and Electric Vehicle (EV) fleets.
Aiming to achieve efficient dispatch and utilization of renew-
ables, the Virtual Power Plant (VPP) has been proposed to
act as an intermediary between distributed energy resources
(DERs), power grid, controllable loads, and EVs [6]–[9].

Many VPP projects have been proposed over the last
decade [10]–[13]. The current VPP demonstrations target
efficient integration and distribution of resources. Neverthe-
less, they also need to consider the potential security risk of
the communication between the aggregator, power grid, and
consumers. In addition, the VPP offers demand-side manage-
ment technology to energy consumers, which helps achieve
intelligent storage and consumption on the client-side.
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FIGURE 1. Virtual Power Plant (VPP): (a) Conventional approach, (b) Proposed method, including the AEBIS system. Compared to the conventional
VPP demonstration, the proposed approach deploys EV fleets as energy consumers and suppliers. An AI-enabled battery power consumption system
is used for timely energy management, which has not been developed in the current V2G network. A blockchain network is integrated to replace the
conventional VPP aggregator, ensuring a more robust and cost-efficient environment for collaborative training.

The efficient utilization of electricity remains a challenge
in conventional VPP demonstrations. There have been many
studies on the optimal supply and demand-side management
of DERs. For the supply side, authors in [14]–[19] stud-
ied the optimal strategy against the inherent unpredictabil-
ity of renewables, while there was a lack of discussion on
the integration of the power consumers. For the demand
side, the efficient management of consumers, which involves
EVs in the vehicle-to-grid (V2G) network, was proposed
in [20]–[26]. Such strategies only tailor the vehicles in the
parking area to the VPP aggregator. A considerable number
of moving cars, which experience power consumption fluc-
tuation, have not been well addressed.

Artificial intelligence (AI) has proven to be effective in
numerous applications in VPP studies. Economic dispatch
and strategic bidding were investigated in EV and electric-
ity markets [27]–[30]. Works in [31]–[34] employed deep
learning techniques for energy generation and consumption
forecast. In [35]–[39], intelligent integrated approaches were
proposed for efficient demand response. However, the con-
ventional aggregator in these approaches is equipped with a
multi-GPU cluster, which requires high-power consumption
and long-term maintenance [31], [35]–[37]. Also, there is
limited computing capability on local devices [38], [39],
which remains a bottleneck for high-speed training. Although
it is possible to have a custom-built system for local comput-
ing, it comes at a high expense and is not portable.

Cyber-physical security is another concern in VPP sys-
tems [40]–[45]. One primary focus is on the vulnera-
bilities of conventional centralized control algorithms in
smart grids [40]–[42]. With the increasing number of dis-
tributed energy resources integrated into the power system,
researchers have progressed to the exploration of the robust
distributed scheme against cyber-attacks [43]–[45]. However,
the conventional aggregator in the VPP is still susceptible to

malicious attacks, through which information can easily be
tampered with. Also, data leakage could happen during the
transmission of raw data.

To the best of our knowledge, none of the previous
works considered the participation of EVs with electric-
ity consumption forecasting, efficient computation for local
devices, and secure communication between VPP aggrega-
tor and EV nodes simultaneously. In this work, we propose
an AI-enabled blockchain-based electric-vehicle integration
system for power management in smart grid platforms to
solve the challenges mentioned above. First, we present a
neural-network-based EV charge prediction system for power
management in VPP. The learning process is based on feder-
ated learning (FL) technology [46], which enforces raw data
protection and improves communication efficiency. We then
establish a novel communication mechanism between the
aggregator and each EV node, in which an AI system based
on reconfigurable hardware (FPGA) is used to predict the
amount of available electricity an EV could supply when
idle to mitigate storage during peak load. The reconfigurable
AI system, with high-speed computation and low-power
consumption, can be packaged into an extended electronic
control unit (ECU) connected to the controller area net-
work (CAN) bus of a car [47], [48], as shown in Fig. 2.
To elevate the security level, we further integrate blockchain
technology [49] into the system.

A. CONTRIBUTIONS
The main contributions of this work are summarized as fol-
lows:
• An AI-enabled electric vehicle integration system based
on an artificial neural-network (AI-Chip accelerator)
and federated learning approach for EV charge predic-
tion, where the EV fleet is employed as a consumer and
as a supplier of electrical energy in VPP. The AI-Chip is
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FIGURE 2. The integration of the proposed AEBIS system into the built-in
Controller Area Network (CAN) of Electrical Vehicles (EVs). A CAN bus is a
robust vehicle interconnect standard allowing microcontrollers and
devices to communicate with each other. Each blue box indicates a
built-in electronic controller unit (ECU), which shares with other ECUs its
data via the CAN bus. The green box on the left shows a customized ECU
for data storage, collecting and processing the data from other ECUs. The
data storage ECU then transmits the data to the AEBIS ECU hardware for
training and inference.

prototyped on FPGA and can be packaged in the CAN
bus.

• A novel algorithm of data exchange between the power
grid and EV fleet for electrical supply. Whenever the
power grid needs electricity and requests vehicular net-
works, the amount of electrical supply from each EV can
be calculated based on its extra electricity and driving
status.

• A fully-decentralized architecture based on the
blockchain technology to robustly consolidate all
the distributed nodes and form a substantial smart
power-storage facility.

The rest of this paper is organized as follows. In Section II,
we discuss the related works on optimal operations,
AI deployments, and security strategies in VPP. In Section III,
we present the proposed AEBIS system. Section IV gives the
performance evaluation of the proposed system. Section V
highlights and discusses issues, that also need to given
attention, and in Section VI, a conclusion of the paper is
presented. The nomenclature used in this paper are listed
in Table 1.

II. RELATED WORK
In this section, we survey related works on VPP demon-
strations, focusing mainly on conventional optimal strategy,
AI deployment and security in VPP.

A. OPTIMAL OPERATIONS IN VPP
Distributed energy resources and variants of consumer
participation are increasingly integrated into current VPP
platforms. The fluctuation of resource generation and unpre-
dictable electricity consumption presents a challenge of
power balance and economic benefit in VPP. Therefore,
the related studies focused on optimal operations in VPP
together with efficient integration of DERs and participation
of end facilities.

TABLE 1. Nomenclature.

Authors in [14] developed an optimal control and bidding
strategy for VPP with renewable energy generations and
inelastic demand, in which the problem is formulated as a
bilevel stochastic optimization. In [15], a quantile regression
forest model was applied to the forecast of wind and photo-
voltaic energy production. In [16]–[19], the information gap
decision theory was used to study the uncertainty of wind
energy integrated with electricity and natural gas systems.
While these studies mainly focused on the power generation
and electricity markets, the participation of end consumers
was barely investigated.

Some works addressed the importance of participation of
EV fleets [20]–[26]. In [20], the optimal operations were
proposed for the participation of EV aggregator in day-ahead
energy and regulation markets. In [21], the authors proposed
optimal scheduling algorithms for V2G energy sales and
multiple ancillary services. Authors in [22] investigated the
trade-off between energy and reserve markets and proposed
an optimal operation for uncertain EV battery degradations.
In [23], a look-ahead power scheduling algorithm, was pro-
posed to manage the revenue risk of EV aggregations against
fluctuating energy generation and electricity price. However,
these studies barely stressed the practical power consumption
of EV, which could be forecasted given the static and dynamic
information (e.g., the behavior of drivers, duration of use,
and weather condition). In [25], [26], a solution to prefer-
ence quantification based on unknown EV types was studied.
However, since the aggregator has to wait for interaction until
a set of EVs arrive at the parking area rather than predict the
power consumption of the EVs in advance, there exists an
unavoidable delay of energy trading, which also affects the
utilization of EVs in car-sharing markets [50].
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B. AI-BASED VPP ARCHITECTURE
Recent years have witnessed the continuous rise in AI
technologies in various VPP applications. The works in
[27], [28] approached the economic dispatch using reinforce-
ment learning (RL) or non-dominated sorting genetic algo-
rithm. Variants of intelligent energy management methods
have also been proposed based on RL [35]–[37], [51], [52]
and recurrent neural network (RNN) [31], [32]. The works
in [33] employed explainable AI tools and artificial neural
networks for solar photovoltaic power prediction, while [34]
proposed an ensemble learning-based model for wind energy
prediction. In [53], demand-side energy management with a
price forecast was proposed based on amultilayer perceptron.
Authors in [29] integrated RL method for EV bidding strat-
egy. A novel centralized energy demand learning algorithm
for EV energy demand prediction was introduced in [39].
Considering that most of these works carry out the exper-
iments on a single centralized server, the system faces the
following problems unavoidably. First, a latency and cost
bottleneck could appear when the center collects all the dis-
tributed data and performs learning. Second, the stability of
the entire system greatly relies on the centralized server. That
is, once the server breaks down, the requests from all dis-
tributed nodes will no longer be responding.
Moreover, once attackers access the centralized server,
the private data is easily fetched or modified. On the contrary,
in some edge computing paradigms [39], [51], the computa-
tion is moved from data centers towards the local devices.
Nevertheless, there remain limitations in the storage and
speed of the edge nodes.

C. SECURE VPP ARCHITECTURE
The security in both centralized and distributed VPP
has been investigated using different approaches [25], [26],
[40]–[45]. In the centralized architecture of the conventional
VPP platform [40]–[42] as shown in Fig. 1(a), there remains
two key issues of the security and stability of the VPP sys-
tem. First, the main server is still prone to data leakage.
In addition, the stability of the system extremely relies on
the main server. That is, if the central database becomes
corrupt, the entire system will face a big challenge. For the
robust distributed schemes proposed in [43]–[45], the agents
were restricted to communicate only with their neighbors.
The communication activity is limited, and thus the global
optimization is hard to achieve. Authors in [25], [26] pro-
posed a consortium blockchain-based secure energy trading
mechanism for EV-based distributed resources, where the
preference of an EV towards discharging is quantified by the
available energy and expected traveling distance in the next
future. In this scenario, the blockchain network records only
the electricity transaction; however, the communication secu-
rity between the aggregator and EV node was not considered.

III. AEBIS SYSTEM
This section presents a detailed description of the proposed
AI-Enabled Blockchain-based Electric Vehicle Integration

System (AEBIS) for power management in the smart grid
platform.

Fig. 1(b) depicts the overall architecture. The conventional
aggregator is replaced with a decentralized FL-based virtual
power-aggregator. The power grid collects and stores the
electrical energy (renewable and non-renewable) and delivers
it to the consumers afterward. When the provided renew-
able resource becomes insufficient, the power company will
inform the power grid to supply extra power through tra-
ditional resources. Together with charging stations, the EV
fleets offer a solution to provide energy back to the power
grid. The interaction between the proposed aggregator, power
grid, renewable energy providers, and vehicular network
aims to utilize energy and secure communication efficiently.
A blockchain network is used to implement the decentralized
VPP aggregator. In this work, we mainly focus on two main
key issues: 1) the communication between the decentralized
VPP aggregator and EV fleets, whereby the FL training
for battery charge prediction is performed, 2) introducing
a blockchain network that replaces the conventional VPP
aggregator.

In Fig. 1(b), the solid lines indicate the communication on
the blockchain. The dashed lines indicate the rest of the com-
munication activities. For each EV on the client-side, an AI
system based on reconfigurable hardware (FPGA) is used to
compute the expected power consumption during the next
period. Therefore, given the current remaining power of an
EV and the power grid’s request, we can calculate the amount
of electricity an EV should supply (discharge). When there
is insufficient energy on the power grid, the communication
between the aggregator and clients will help determine the
amount of electrical supply.

A. EV BATTERY POWER CONSUMPTION PREDICTION
The expected remaining electricity is required from each
EV node for the system’s accurate and timely energy man-
agement. In practice, the power consumption of an EV is
determined by the following factors: (1) weather condi-
tions, (2) characteristics of the vehicle, (3) driving style, and
(4) geography [54]. Given all the input features, the expected
power consumption is predicted via a fully-connected neural
network. The detailed experiment of the power consumption
prediction will be introduced in Section IV.

B. EV BATTERY CHARGE MECHANISM
A battery should be charged when there is no reservation or
no request from the power grid to provide the electricity back.
Therefore, the main task is to predict the amount of electrical
supply (discharge) from the EV fleet to the power grid. Fig. 3
describes the proposed algorithm for calculating the energy
that each EV should provide back to the power grid when
needed.

At first, the current remaining power for each vehicle is
calculated given the maximum battery capacity and its state
of charge (SoC) beforehand. After that, we compare the cur-
rent remaining power with the expected power consumption,
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FIGURE 3. Flowchart for calculating the electrical supply from the EVs to
power grid. In stage I, the available electricity of the EVs is output.
In Stage II, the electrical supply from each EV is then calculated.

which is acquired in Section III-A. If the remaining power is
less than the expected consumption or the EV is on the way,
it cannot supply the electricity at the given moment. Thus,
Eavailable, which denotes the maximum electricity the EV can
provide, is set to zero. Nevertheless, the remaining power is
useful information for the next driver to make a reservation.
In contrast, if the vehicle is parked in the charging station and
the energy will remain until it is consumed during the next
period, the available energy is calculated as:

Eavailable = RP− ECP (1)

where RP denotes the remaining power, and ECP denotes the
expected consumed power.

At some point, we have the information of the available
energy of each EV in the EV fleet, which is referred to as{
Eavailablei

}
i∈RN , where i denotes the identification (ID) of the

vehicle, and N is the number of EVs. The total power that the
EV fleet can supply is simply described as the summation of{
Eavailablei

}
i∈RN :

Esupply =
N∑
i=1

Eavailablei (2)

Following that, a decision rule is needed to decide the
amount of electricity the power grid should request. A param-
eter, ρ, is used to denote the discharge rate for each EV.When
there is an extra electrical load (EEL) on the power grid’s
side, a request to the EV fleet is made. If Esupply 6 EEL, then
all the remaining power is required as the countermeasure
against the power shortage, in which case the discharge rate
ρ is set to 100%. If Esupply > EEL, it means the available
power from the EV fleet is sufficient for electrical supply, and
the vehicles do not need to supply 100% of their remaining
electricity. The proportion of the supply will be:

ρ = EEL/Esupply (3)

After that, each EV’s amount of electrical discharge is the
multiplication of the discharge rate and the available power:

Edischargei = ρ × Eavailablei . (4)

C. FL-BASED FRAMEWORK
In the conventional neural network model, the aggregator
collects the uploaded data sets from the EV nodes and then
performs the training task as illustrated in Fig. 4(a). However,
the frequent raw data exchange leads to high communication
overhead and potential data leakage. The federated learn-
ing (FL) architecture offers a solution to this issue, in which
each EV node shares and improves the local model via the
aggregator, as shown in Fig. 4(b). The whole procedure is
comprised of multiple training rounds until convergence.
Each round mainly consists of the following four steps:

1) At first, each EV node trains its local model using
the collected data set. In each local model, the gradi-
ent ∇gL is calculated using adaptive moment estima-
tion (Adam) optimizer [55] as shown by the following
formula:

∇gL =
δE(W )
δW

(5)

where W denotes a set of weights, and E(W ) denotes
the loss function with respect to W . E(W ) is used
for measuring the model error and finding an optimal
solution. Also, δ indicates partial derivatives.

2) Each client uploads the local gradients to the
aggregator.

VOLUME 8, 2020 226413



Z. Wang et al.: AEBIS: AEBIS for Power Management in Smart Grid Platform

FIGURE 4. Comparison of conventional scheme, FL-based scheme and the proposed decentralized FL-based scheme. In the conventional scheme, each
client uploads the data set to the aggregator and then downloads the trained model after the training process. In the FL-based scheme, the aggregator
collects the uploaded models instead of the raw data set and then performs the local models’ aggregation. In comparison with these two frameworks,
the decentralized scheme’s entire process is broken down into four main steps: (1) The hashed local model is uploaded to the blockchain network. (2) In
the blockchain network, the entire process involves broadcasting, verification, mining, etc., after which the distributed ledgers are generated, (3) Each
edge node receives a corresponding ledger with a set of hashed models, which is used to ask Swarm platform for accessing the models stored by other
nodes. (4) As soon as an edge node collects the models, the local model will be updated. The whole process for each node is repeated until local
convergence is obtained.

3) The aggregator collects the group of the local gradients
and then outputs a global gradient ∇gL :

∇gG =
1
n

n∑
i=1

∇giL (6)

4) Once the edge nodes receive the global gradient from
server site, they update the parameters as follows:

W r+1
= W r

− η∇gG (7)

br+1 = br − η∇gG (8)

where W r and br denote the weights and biases in the
rth training round, respectively. η denotes the learning
rate.

D. SECURE DECENTRALIZED FL-BASED FRAMEWORK
As illustrated in Fig. 4(c), in the decentralized architec-

ture, there is no interaction with the conventional aggregator.
Each node has the same public ledger in the blockchain
network that records all the trained local models stored in
the transactions. However, considering that the size of the
model can sometimes be large and thus lead to a significant
workload on the blockchain, we use the Swarm – a distributed

storage platform [56] to store the models. In this way, only
the model’s address is uploaded on the blockchain, giving us
a more efficient system. The whole procedure is summarized
in Alg. 1.

1) BLOCKCHAIN AND SWARM PLATFORM
To realize the blockchain network, we begin with creating
user accounts on Ethernet. We then initialize the nodes on
Swarm, which is used to allocate memory for each client
to store the data, as shown in Fig. 5. In the Swarm cluster,

FIGURE 5. The communication between the blockchain network and the
Swarm platform. The distributed storage platform is used to record user
information and the updated files. TX : Transaction.
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FIGURE 6. The process of verification using digital signatures. The original transaction is fed to a hash function, which is then encrypted using the signer’s
private key. The signed message, the original message, and the signer’s public key will be broadcasted in the network. A receiver will decode the signed
message using the public key. By comparing the result with the original message’s hash value, the receiver is informed of any tampering.

Algorithm 1 Decentralized FL-Based Learning Scheme
Require: real-time data collected from EV
Ensure: Predicted Power Consumption
1: Initialize the aggregator to wait for collecting local mod-

els when r = 0
2: while r ≤ T and do not converge do
3: Train local model in edge AI system
4: ∇giL ←

δE(Wi)
δWi

/* Calculate local gradient
5: Upload ∇giL from AI system to Swarm for stor-

ing, obtain hashed value hi(addr) with respect to the
address of stored model

6: Record each collection of hi(addr), its signed message
and a pubilc key of node as a whole transaction from
node i to j, which is denoted by TXij

7: Broadcast a request to the whole blockchain network
8: As soon as TXij is verified, it will be added to the

mempool
9: All transactions in a mempool is packaged and then

added to the block
10: Mining begins. A successful mined block is added to

the public ledger
11: Participants download local models from the

public ledger to update the global model as
∇gG← 1

n

∑n
i=1 ∇g

i
L

12: W r+1
← W r

− η∇gG /* Update local model
13: br+1 = br − η∇gG /* Update local model
14: end while
15: For each EV, the predicted power consumption is output

each client is allocated discontinuous storage space. Every
time a client uploads data, it will be partitioned into many
segments, which are then stored in different volumes. After
that, the cluster will generate a hash code representing the
address that corresponds to the collection of data fragments.

The complete data is accessible given the information of the
user account and this hash code. In this work, the data refers
to the training model containing parameters of the network.

At the blockchain side, when a client, C1, uploads a file to
Swarm and obtains the encrypted hash code, it will send the
hash value to another node, C2, through which a new trans-
action is automatically generated. However, to ensure that
this transaction is trusted, the digital signatures are adopted
for verification. Fig. 6 illustrates the verification procedure.
At first, the client feeds the transaction data to the hash func-
tion and generates the hash of data. After that, the hash value
is fed to the signature algorithm with the client’s private key,
whereby an encrypted, signed message is produced. After
that, the new transaction will be broadcasted to all nodes,
which contains the original information of the transaction (the
signed message and the public key in regard to C1). Each
receiver can thus perform an easy operation of verification.
First, one will use the same hash function and generate the
hash value of the original message. Since the hash mapping
always results in the same output, this value is unique and
should be identical to those produced by C1. The signed
message will then be decrypted using the public key, through
which the resulting value should match the previous hash
value. If the decrypted hash matches the re-computed hash
given the same data, the digital signature is proven to be
valid. Therefore, this transaction is considered trusted and
will be added to each node’s transaction pool. Otherwise,
the different values of the hash will reveal that the message
has been tampered with. In this case, the message will be
rejected by the receivers.

The transaction pool is where all the valid transactions
wait to be confirmed by the blockchain network. However,
with the increase of unconfirmed transactions, memory con-
sumption and computational efficiency become challenging.
To tackle this problem, Merkle tree [57] is introduced to sig-
nificantly reduce the requirement concerning both memory
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TABLE 2. Comparison among centralized (conventional and FL-based) and decentralized (blockchain-based) system.

FIGURE 7. Illustration of Merkle tree structure with eight nodes. Each
node represents a transaction that is fed into a hash function, and the
hashed transaction is denoted by h(A) to h(H) in the figure. Then a
bottom-to-up operation is performed, in which h(AB) = h(h(A)) + h(h(B)),
h(CD) = h(h(C)) + h(h(D)), etc. The operation ends up with a single hash
value, which is referred to Merkle root. In this case, the Merkle root is
h(ABCDEFGH).

and computation as shown in Fig. 7. Given a sequence of
transaction TX1, TX2, . . . ,TXn, each of them is hashed to
form a leaf node of the Merkle tree. The collection of these
leaf nodes are denoted by h(TXi)i∈n. Following that, a binary
implementation is used to merge every two nodes into a
new one which belongs to the next layer as described by
equation 9.

h(TX1 + TX2) = h(H (TX1)+ h(TX2))

h(TX3 + TX4) = h(H (TX3)+ h(TX4))

. . .

h(TXn−1 + TXn) = h(H (TXn−1)+ h(TXn)) (9)

If n is odd, then h(TXn) is added to the next layer without
binary operation. Recursively, each pair of new nodes in the
next layer are hashed until the root node is reached, which is
a single hash value of all the nodes below it.

The entire process of building a Merkle tree will result in
a single hash value referred to as the Merkle root. The block
header consists of a 32-Byte previous block hash, 32-Byte
Merkle root, 4-Byte timestamp, 4-Byte difficulty target, and
4-Byte nonce. We denote the set of metadata except for nonce
by M . Given a pre-determined value n; the target is to find a
nonce that satisfies the requirement shown in equation 10.

Hash(M + nonce) = 0 . . . 0︸ ︷︷ ︸
n bits

x . . . x (10)

Once a perfect nonce is found, it will be added to the hashed
block. The block header will be rehashed along with the
successful nonce, then the block, including header and body,
will be added to the chain. It is worth noting that, in our case,

a relatively high frequency of information exchange among
ledgers is required. Therefore, n is chosen to be small so as
to smoothen the way for mining. With the public information
in the blockchain, each node can quickly get the data that are
used to access Swarm. Thus they can download the up-to-
date models and update their own. A comparison among the
conventional centralized model, federated learning model,
and federated learning with blockchain architecture is sum-
marized in Table 2.

2) WRITING METADATA IN TRANSACTIONS
In general, the return operator (OP_RETURN), which is
part of the Bitcoin script language, is used to allow saving
metadata on the blockchain [58]. However, the limit of stor-
ing data in an OP_RETURN has a maximum of 83 bytes
according to release 0.12.0 [58]. This reveals a key advantage
of using Swarm for data storage. It is also comparatively
short and saves time for writing metadata in a transaction.
Each time a model is stored in Swarm, it produces a hash
value with a fixed length of 32 Bytes regardless of the size
of the model. Therefore, it can always be written in a sin-
gle OP_RETURN. Next, we implement the communication
between blockchain and client, where the trained model is
uploaded. For the fully-connected network in our experi-
ment, which has 11 input neurons, two hidden layers (8 and
6 neurons, respectively), and one output, the total amount of
parameters is the sum of the number of weights and biases,
which is 11× 8+ 8× 6+ 6× 1+ (8+ 6+ 1) = 157. Each
parameter in the floating-number format occupies 4 Bytes;
therefore, when we extract only the parameters from the
model, the data size is 157×4 = 628 Bytes. For each model,
at least eight transactions are required. With an enormous
model size, the increased amount of transactions leads to a
considerable deterioration of efficiency regarding storage and
computation. An alternative way of data storage is to utilize
distributed cloud storage instead of Swarm. However, it is
still at high risk of data leakage while benefiting from the
apparent simplicity. A comparison of the above methods is
summarized in Table 3.

IV. EVALUATION
A. EVALUATION METHODOLOGY
The data set for the power consumption prediction contains
the features of weather, geography, and user information as
explained in the previous section. We collected the weather
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TABLE 3. Comparison of three data storage methods on the blockchain.

TABLE 4. Data set for vehicle energy consumption.

information from January 2020 to July 2020 in Fukushima,
Kanagawa, and Tokyo area in Japan [59]. The starting time
of the car reservation was set from 0:00 to 23:00, and the
duration of use was set from 0 to 24 hours. We consid-
ered the driver’s age range according to the requirements
of Class 2 license [60]. The daily power consumption was
measured, given the input features and the measurement
model [61]. We summarize the detailed information of the
data set in Table 4.

We considered the scenario where each client’s data is
independent and identically distributed (IID). We allocated
the entire data set to three clients; each subset contains
1000 samples following a similar distribution. However,
in most practical cases, the local data on each EV node is
usually non-IID, which comes from the fact that the data is
collected at a different time or by other drivers. Therefore,
we investigated the impact of non-IID data distributions on
the performance. One interesting case is when each EV is
reserved at different times of a day, i.e., morning, afternoon,
evening, and night. We considered a set of four clients, each
of whom is associated with the period ranging from 6:00 to
11:59, 12:00 to 17:59, 18:00 to 23:59, 0:00 to 5:59, respec-
tively. Besides, we are interested in the scenario where the
EVs are reserved by users in a different age range. Five clients
are included in this case, each of whom is associated with
the age ranging from 21 to 29, 30 to 39, 40 to 49, 50 to 59,
60 to 69, respectively. For each FL training, the simulation
was repeated 50 times. We used the R2 Score to measure the
performance of the model.

For the blockchain solution, we used Geth [62] which
is a Golang implementation of the Ethereum protocol. The
Swarm platform was used for data storage and distribution.
We conducted the experiments on Ubuntu 18.04.3. We also
used Geth to set up a private Ethereum blockchain net-
work, whereby a genesis file was created for each node.
A genesis file contains the whole configuration of initial
states, of which the information of several vital parameters
is described in Table 5.

TABLE 5. Key configurations in a genesis file.

B. EVALUATION RESULTS
1) CONVENTIONAL VS FL-BASED APPROACHES
For the first experiment, where each client’s data is indepen-
dent and identically distributed, the result is shown in Fig. 8.
We observe that the performance of the FL approach is
0.922 in the R2 Score on average, which is less than the
conventional model (0.938). The slightly imbalanced data
distribution explains the accuracy degradation.

FIGURE 8. Comparison between the conventional model, individual
learning model, and the FL-based model using IID data distribution.

Figures 9 and 10 show experiments of the FL model on
non-IID data distributions. From this evaluation, we observe

VOLUME 8, 2020 226417



Z. Wang et al.: AEBIS: AEBIS for Power Management in Smart Grid Platform

FIGURE 9. Comparison between the conventional model, individual
learning model, and the FL-based model using non-IID data distribution.

FIGURE 10. Comparison between the conventional model, individual
learning model, and the FL-based model using non-IID data distribution.
There are five clients in the experiment; each client is associated with a
data set concerning ages ranging from 20 to 69. The FL-based model has
proven to be robust in the non-IID setting.

that the single client’s performance deteriorates significantly
compared to the conventional model due to highly-skewed
non-IID data. However, the FL-based model has proven to be
robust in both cases. For the current EV sharing community,
the accurate power forecasting allows drivers to know the
remaining electricity of EVs in advance; thus, the reservation
management becomes more efficient.

2) BLOCKCHAIN NETWORK ON SWARM PLATFORM
For each node, multiple accounts are created along with a pair
of the private and public key of which the first account is for
mining and is associated with the node’s address. The address
is derived as the last 20 bytes of the public key. We created
two blockchain nodes, each containing two accounts. Each
account address is used to create a node on Swarm. After that,
a local directory is automatically generated with a specific
Swarm ID. When both services on blockchain and Swarm
have been established, the communication between clients,
Swarm, and blockchain starts correctly (refer to III-D1).

TABLE 6. Hardware complexity of power consumption prediction system.

3) HARDWARE COMPLEXITY
Table 6 shows the hardware complexity of the fully connected
network on the Zynq-7010 FPGA. The system utilized 3% of
the FF, 11% of the LUT, 6% of the DSP48, and approximately
1% 18k BRAM. Table 6 also shows the memory cost for
storing the weights, biases, and input features in the format
of a single-precision floating-point. The required BRAM is
672 Bytes in total (568-Byte weights + 60-Byte biases +
44-Byte inputs). We conclude that the hardware complexity
of the system is small as it occupies only a fraction of the
available FPGA resources.

V. DISCUSSION
A review of three learning architectures is illustrated in Fig. 4.
Compared to the conventional learning scheme that requires
the raw data exchange between server and clients, the FL-
based approach achieves excellent performance while signif-
icantly reducing the total training and communication time.
The evaluation of hardware complexity offers a possibility to
improve the time and cost-efficiency further. The FL-based
model can satisfactorily address the issues due to non-IID
distributed data and partial device participation. Besides,
the mechanism where models are shared without revealing
the raw data set is considered to protect user data privacy
to some extent. The results indicate that our FL-based net-
work could provide an accurate prediction for EV power
consumption, which is necessary for either upcoming elec-
tricity supply or EV reservation. However, there are still
existing potential pitfalls due to malicious clients and hijack-
ing. Therefore, a trusted decentralized blockchain network
is proposed to take the place of a conventional aggregator,
guaranteeing the high-level security as well as the stability of
the system. Nonetheless, for the decentralized architecture,
there are several remaining challenges. With the increase
of blocks, the system will suffer from performance dete-
rioration due to enormous memory requirements and slow
transaction or mining speed. Also, the very initial transac-
tions, which contain the historical models, are permanently
preserved in the network and becomes an extra load to the
system.
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VI. CONCLUSION
This paper proposed an AI-enabled blockchain-based electric
vehicle integration scheme (AEBIS) for power management
in the smart grid platform. The core software and hard-
ware components of the proposed approach are presented
in detail. We showed that a reliable prediction network for
power consumption could help reduce energy monitoring and
management delay. Also, accurate power forecasting pro-
vides the necessary information to the car-sharing market,
making reservation management more efficient. While the
FL-based framework achieves nearly equivalent performance
compared to the conventional model, it protects the user’s
raw data and speeds up the learning stage. We carried out
the training process on a customized AI processor with low
power consumption and low latency. Moreover, it is more
portable and cost-efficient. Besides, the simulation of a sim-
ple blockchain platform is conducted. In practice, the current
blockchain network provides a secure and transparent service
at the expense of memory and time cost. In our future work,
the efficiency of deploying the blockchain network will be
improved by investigating the blockchain protocol’s storage
and communication mechanism.
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