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ABSTRACT Degradation reliability analysis incorporating two-phase or even multi-phase features has
become a research focus in recent years. Motivated by the fact that a practical multi-phase degradation
procedure may probably involve both linear phases and nonlinear phases, a multi-phase degradation
model is constructed that can consider the phase-varying nonlinear property. The unit-to-unit variability
is incorporated. Meanwhile, the reliability function based on the first passage time (FPT) conception is
derived, where the solution for the two-phase situation is first obtained, and the one for the multi-phase
circumstance is constructed via a reclusive scheme. To verify the reasonability of the proposed reliability
function, a simulation study has been complemented. Then two real applications are given to demonstrate
the validity and the effectiveness of the proposed method.

INDEX TERMS Multi-phase degradation, phase-varying nonlinearity, reliability evaluation, unit specific
property.

I. INTRODUCTION
For highly reliable complex systems, degradation data-based
methods have been recognized as one of the most feasible
schemes to assess the reliability [1]. There is considerable
interest on the part of scientists and engineers in construct-
ing a reasonable model to properly describe the degradation
mechanism. Most literatures have focused on single-phase
deterioration problems, where the whole degradation proce-
dure can be governed by a single mechanism or regulation,
and then can be depicted by a single mathematical model.
Extensive studies have been implemented and twomain mod-
els have been proposed andwidely adopted, including general
pathmodels [2] and stochastic processmodels [3]. Because of
the uncertainties or dynamics of the deterioration progression
over time, stochastic process-based methods have been well
recognized and commonly applied.

Various stochastic processes have been incorporated in
degradation modeling according to the literature. Due to
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the good mathematical properties and clear physical expla-
nations, Wiener processes (WPs) [4], [5] have become the
most commonly adopted one for modeling non-monotonous
degradations. In addition, Markov chain [6], Gamma pro-
cesses [7] and inverse Gaussian processes [8] have also been
investigated for various circumstances. It is worth noticing
that extensive researches have been implemented to settle
the nonlinear degradation problems which are commonly
encountered in real applications [9]–[13].

Recent literatures have demonstrated that two-phase or
evenmulti-phase properties have been shown bymany practi-
cal degradation procedures where every two adjacent phases
are divided by a so-called change point. To the best of
our knowledge, the phase transformation can be caused by
incomplete burn-in of devices, the change of inner physi-
cal mechanism and external working conditions. Thereafter,
multiple degradation phases may probably illustrate different
regulations and dynamics inherent properties. Consequently,
two-phase degradation modeling has become a great con-
cern to analyze the failure procedures. Two-phase WP mod-
els have also been commonly adopted, where most current
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studies suppose a same linear WP model form for all stages
and different parameters are involved as distinctions. A series
of researches can be found in Refs. [14]–[21].

In two-phase circumstances, one of the biggest challenges
lies in the reasonable modeling of the nonlinear deteriora-
tion characteristics which may be probably caused by the
integrity and complexity of the system itself or the multiple
missions for more and more modern products and systems.
Particularly, one should note that the nonlinearity property
of a multi-phase deterioration procedure may demonstrate
two situations. First, all degradation stages illustrate a similar
nonlinear regulation and different parameters are introduced
for the multiple phases. Meanwhile, based on extensive prac-
tical investigations, we found that a more common circum-
stance lies in the phase-varying nonlinearity which means
that both linear stages and nonlinear stages are involved in a
whole deterioration procedure. For example, some electronic
devices initially experience a rapid and nonlinear decrease
stage in the case of incomplete burn-in [22]–[24], and the
degradation rate in this initial phase gradually decreases
and then a nonlinear characteristic is illustrated [14], [17],
[19], [25]. Second, there is also another class of devices with
a stable first phase and a rapid second phase, because a defect
may have been initiated [26], [27]. It may keep in a normal
operation stage in the early time and then become defective
rapidly [8], [26]–[32].

FIGURE 1. Degradation measurements of accelerometers [25], where the
sample averages illustrate a nonlinear (power law) regulation in the first
phase and a linear one for the second stage.

To illustrate a better understanding, two representative
test datasets are given. Fig. 1 shows the two-phase degra-
dation measurements of accelerometers tested by Wei and
Chen [25], where a fast and nonlinear first phase and a
linear second phase are demonstrated. Fig. 2 illustrates the
gyros’ drift test result in Ref. [9], where the first degradation
phase is linear, and the second one is nonlinear. It is worth
mentioning that the red lines are obtained through the piece-
wise curve fitting of the sample average values (blue dots).
It can be also seen from Fig. 1 and Fig. 2 that heterogeneities
(including change point location and degradation rate) do
exist among a batch of units.

FIGURE 2. Degradation investigations of gyros [9], where the sample
averages illustrate a linear regulation in the first phase and a nonlinear
(power law) one in the second stage.

It is well known that the proper description of phase-
varying nonlinearity regulation is very important to guarantee
an effective two-phase degradation reliability analysis. This is
because the precision of reliability assessment over working
time and the reliability prediction depends on the proper
description of the degradation characteristics in all the multi-
ple phases. However, few researches have been reported in the
literature regarding this issue. Therefore, the first objective
of the current study is to construct a generalized two-phase
WP degradation model with random effects (where the com-
mon degradation characteristics can be depicted by the fixed
model parameters and the unit specific properties can be
captured by the random ones), which can be easily extended
to multi-phase model if necessary. It can reasonably consider
the phase-varying nonlinearity and heterogeneity.

To complement an effective degradation reliability anal-
ysis, it is very necessary to derive the reliability function
based on the FPT conception for a WP deterioration model.
However, the two-phase degradation property brings enor-
mous challenges for the derivation, that is, the reliability of
the second phase has to be accessed on the precondition that
the product does not fail in the first phase. It is very hard
to derive the conditional reliability function considering FPT
concept, because the distribution property of the degradation
state at the change point (i.e., the distribution property of the
performance index at the change point) is unknown. Further-
more, the random effects existing in the devices of the same
batch should also be considered in reliability evaluation.

According to the literature, only a few studies regarding
two-phase linear WP model have been reported. A feasi-
ble scheme to simplify the derivation was constructed by
assuming the change point as the FPT when the degradation
value exceeds a change-point value [34], i.e., the degradation
value at the change point is prefixed. To reasonably consider
the randomness property of the degradation value at change
point, studies were conducted for the two-phase linear WP
situation and a closed form reliability function was pro-
posed [35]. Furthermore, Ref. [36] gave a reclusive reliability
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function for the more complex circumstance involving three
ormore linearWP degradation phases. To this end, the second
objective of the current study is to construct a reliability
function under the concept of FPT for the proposed two-phase
nonlinear WP model and extend it to multi-phase situation.

The remainder of paper is organized as follows.
In Section 2, a generalized multi-phase WP degradation
model that can properly consider the phase-varying nonlin-
earity property is proposed. Then, analytical reliability anal-
ysis methods for the proposed model are derived in Section 3.
For practical applications, the approach of model identi-
fication and initial guesses for optimization algorithm are
given in Section 4. Simulation studies considering two-phase
and multi-phase degradation cases are given to illustrate
the rationality in Section 5, and two real applications are
given to demonstrate the effectiveness in Section 6. Finally, a
conclusion and summary are given in Section 7.

II. DEGRADATION MODEL FORMULATION
This section focuses on constructing a generalized
multi-phase WP degradation model to reasonably consider
the phase-varying nonlinearity and unit specific properties.
To this end, the following effective multi-phase degradation
model can be constructed by developing the mean degrada-
tion path as a more generalized form.

X (t) =



x0 + µ131(t)+ σ1B(t),
0 < t ≤ τ1

xτ1 + µ232(t − τ1)+ σ2B(t − τ1),
τ1 < t ≤ τ2

. . .

xτk−1 + µk3k (t − τk−1)+ σkB(t − τk−1),
t > τk−1

(1)

where X (t) denotes the performance value at time t;
B(t) is standard Brownian motion with drift coefficients
µ1, µ2, . . . , µk and diffusion coefficients σ1, σ2, . . . , σk for
the k phases; τ1, τ2, . . . , τk−1 are change points where τi
denotes the one dividing the i-th phase and (i + 1)-th phase,
i = 1, 2, . . . , k − 1; x0 is the initial degradation state (degra-
dation value at the initial test point), and xτi is the degradation
state at the change point τi, i = 1, 2, . . . , k−1;3i(t) denotes
the transformed time scale for the i-th phase, and all of them
can be linear or nonlinear functions, i = 1, 2, . . . , k .
Based on extensive studies in the literature, one can

see that many practical degradation procedures demonstrate
a two-phase deterioration mechanism involving nonlinear
phases. From this view point, without loss of generality,
a two-phase degradation model considering phase-varying
nonlinearity is focused as a typical representative, denoted as

X (t) =

{
x0 + µ131(t)+ σ1B(t), 0 < t ≤ τ1
xτ + µ232(t − τ )+ σ2B(t − τ1), t > τ1

(2)

for the commonly encountered two-phase situation.

Remark 1: The two-phase model of Eq. (2) can be consid-
ered as a generalized one: 1) it can become the conventional
two-phase linear WP model when 31(t) = 32(t) = t;
2) it can reasonably depict a degradation process involv-
ing a linear phase and a nonlinear phase by setting a lin-
ear transformed time scale and a nonlinear one; 3) it can
also model a deterioration procedure involving two nonlinear
stages when both 31(t) and 32(t) are nonlinear. It is worth
noticing that the transformation functions can be obtained by
engineering experience (see the log-transformation depicting
fatigue crack growth data), mechanistic knowledge (see the
wearing theory in Wang and Dan [37]), or data plotting (see
the complex logarithmic transformation in Zuo et al. [38]).
To further capture the heterogeneity within a population,

a common scheme is to let the fixedmodel parameters capture
the common characteristics while the random ones describe
the unit specific properties. From this viewpoint, the degra-
dation rates µ1, µ2 are assumed to be normally distributed
as µ1 ∼ N

(
µ1,0, σ

2
1,0

)
and µ2 ∼ N

(
µ2,0, σ

2
2,0

)
, and

the change point τ1 is supposed as a Gamma distributed
variable with shape parameter α1 and scale parameter β1.
The schemes of random effects and Gaussian assumptions on
degradation rates have been widely recognized in degrada-
tion modeling. Meanwhile, the assumption that the change
point τ1 follows a Gamma distribution is because the chang-
ing time has to be positive. In addition, Gamma distribu-
tion encompasses a number of important distributions, and
when the shape parameter is large enough (approximately
α1 > 10), a Gamma distribution can approximate a normal
distribution [35].

As we know, the lifetime is usually defined as the FPT
when the performance index reaches a pre-specified thresh-
old D; i.e., failure time (lifetime) T can be defined as

T = inf {t|X (t) ≥ D} (3)

Then, the reliability can be defined as

R(t) = Pr {T > t} (4)

Since p-percentile lifetime of the failure time distribution
(FTD) is a great concern in practical engineering, the calcula-
tion of tp is further focused. Suppose tp as 100pth percentile
of FTD, which means an average of 100(1 − p)% for the
population of the products will not fail before tp. Then tp can
be obtained by solving R(t) = 1− p with respect to t .

III. RELIABILITY FUNCTION DERIVATION
From the model introduced in Section 2, it can be concluded
that the derivation of reliability function is very impor-
tant. For a multi-phase degradation, two aspects of random-
ness have to be considered: first is the randomness of the
change-point degradation state which comes from the change
of degradation phase; second is the unit-to-unit variability
where the degradation drifts and change points are ran-
dom variables. To this end, necessary lemmas and inference
are introduced in Part A. Then the solution of Eq. (4) for
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the two-phase circumstance is derived in Part B. Finally,
the multi-phase situation (3 or more phases are involved) is
further focused in Part C.

A. BASIC LEMMAS AND STATISTICAL INFERENCE
For a single-phase linearWP situation, it has been recognized
that the failure time follows an Inverse Gaussian distribu-
tion [39] under the concept of FPT. Regarding the nonlinear
circumstance, Ref. [40] obtained the distribution of FPT from
the extreme value distribution of nonlinear drift Brownian
motion, which was applied in Refs. [41] and [42] for single-
phase nonlinear WP. Then the following Lemma 1 gives
the expression without considering the unit specific
properties.
Lemma 1 [40]: For the degradation process given by

X (t) = x0 + µ3(t) + σB(t), if 3(t) is a one-dimensional,
continuous and derivable function of time t in [0,+∞), then,
under the concept of FPT, the reliability function can be
obtained with an explicit form as

R(t) = H (t|x0, µ,3(·), σ,D)

= 8

(
D− x0 − µ3(t)

σ
√
t

)
− exp

[
2µ3(t)(D− x0)

σ 2t

]
×8

(
−D+ x0 − µ3(t)

σ
√
t

)
(5)

As discussed above, the reliability of a later phase has to be
derived considering the precondition the device does not fail
in all the former stages. For a two-phase situation, therefore,
the probability distribution function (PDF) of degradation
state xτ conditional on X (t) < D(0 ≤ t ≤ τ ) has to
be obtained. Then Lemma 2 based on measure theory is
introduced to derive the analytical form of the PDF of xτ .
Lemma 2 [36]: For a Brownian process X (t) whose start

point x0, end point xτ and diffusion coefficient σ are con-
stants, supposeMX

[0,τ ] is the maximum value of X (t) in [0, τ ],
then we have

Pr
{
MX

[0,τ ] ≤ D|x0, xτ
}
= 1− exp

[
−
2(xτ − D)(x0 − D)

σ 2τ

]
(6)

Furthermore, the unit-to-unit variability has to be reason-
ably considered in real applications. Therefore, the following
Lemma 3 focusing on integration problem is given.
Lemma 3 [43]: If Y ∼ N (µY , σ 2

Y ), A,B,C ∈ R, then the
following holds

EY
[
exp(AY ) (8(B+ CY ))

]
= exp

[
AµY +

A2

2
σ 2
Y

]
8

B+ CµY + ACσ 2
Y√

1+ C2σ 2
Y

 (7)

Based on Lemma 3, considering the unit-to-unit variabil-
ity in nonlinear degradation model X (t) = x0 + µ3(t) +
σB(t), i.e., µ ∼ N (µ0, σ

2
0 ), the reliability function given

by Lemma 1 can be rewritten as the following explicit

form.

R(t)

= G(t|x0, µ0, σ
2
0 ,3(·), σ,D)

= 8

D− x0 − µ03(t)√
σ 2t + σ 2

03
2(t)


= exp

[
2µ03(t)(D− x0)

σ 2t
+

2σ 2
03

2(t)(D− x0)2

σ 4t2

]

×8

− (D− x0 + µ03(t)) σ 2t + 2(D− x0)σ 2
03

2(t)

σ 2t
√
σ 2t + σ 2

03
2(t)


(8)

Eq. (8) can be achieved by setting A = 23(t)(D−x0)/σ 2t ,
B = (−D + x0)/σ

√
t , C = −3(t)/σ

√
t , and taking the

expectation of Eq.(5) with respect to µ.
Based on above lemmas and inference, the reliability func-

tions for the proposed two-phase and multi-phase models can
be derived respectively.

B. RELIABILITY ANALYSIS FOR THE TWO-PHASE MODEL
In this subsection, we begin without considering random
effects of the parameters for the two-phase model, which
means that all parameters of the proposed model are fixed.
Based on Lemma 1, the reliability function of the first phase
can be easily expressed as

R(t) = H (t|x0, µ1,31(·), σ1,D), 0 < t ≤ τ1 (9)

For the second phase, the reliability function can be defined
by

R(t) = Pr {T > t} = Pr
{
MX

[0,τ1] < D,MX
[τ1,t] < D

}
= Pr

{
MX

[0,τ1] < D
}
Pr
{
MX

[τ1,t] < D|MX
[0,τ1] < D

}
= H (τ1|x0, µ1,31(·), σ1,D)

×

∫ D

−∞

H (t − τ1|u, µ2,32(·), σ2,D)

× fxτ1 (u|x0,M
X
[0,τ1] < D)du, t > τ1 (10)

whereMX
[0,τ1]

andMX
[τ1,t]

denotes the maximum value of X (t)
among time period [0, τ1] and [τ1, t], separately. It is worth
noticing that R(τ1) is the reliability at change point τ1.
The conditional PDF fxτ1 (u|x0,M

X
[0,τ1]

< D) of the change
point state xτ1 can be rewritten as [36]

fxτ1 (u|x0,M
X
[0,τ1] < D)

=

∫ D

−∞

fxτ1 (u|x0,M
X
[0,τ1]=v)fMX

[0,τ1]
(v|x0,MX

[0,τ1] < D)dv

=

∫ D

−∞

fxτ1 (u|x0)fMX
[0,τ1]

(v|x0, xτ1=u)

fMX
[0,τ1]

(v|x0)

fMX
[0,τ1]

(v|x0)

Pr
{
MX

[0,τ1]
< D|x0

}dv
223192 VOLUME 8, 2020
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=

∫ D

−∞

fxτ1 (u|x0)fMX
[0,τ1]

(v|x0, xτ1=u)

Pr
{
MX

[0,τ1]
<D|x0

} dv

=

fxτ1 (u|x0) Pr
{
MX

[0,τ1]
< D|x0, xτ1=u

}
Pr
{
MX

[0,τ1]
< D|x0

} (11)

Substitute Eq. (11) into Eq. (10), the reliability function of
the second phase can be simplified as

R(t) = H (τ1|x0, µ1,31(·), σ1,D)

×

∫ D

−∞

H (t − τ1|u, µ2,32(·), σ2,D)

×

fxτ1 (u|x0) Pr
{
MX

[0,τ1]
< D|x0, xτ1 = u

}
H (τ1|x0, µ1,31(·), σ1,D)

du

=

∫ D

−∞

H (t − τ1|u, µ2,32(·), σ2,D)

× fxτ1 (u|x0) Pr
{
MX

[0,τ1] < D|x0, xτ1 = u
}
du, t > τ1

(12)

where, based on the property of WP, the form of fxτ (u|x0) can
be obtained as

fxτ1 (u|x0) =
1√

2πσ 2
1 τ1

exp

[
−
(u− µ131(τ1)− x0)2

2σ 2
1 τ1

]
(13)

Pr
{
MX

[0,τ1]
≤ D|x0, xτ1 = u

}
can be given by Lemma 2.

Therefore, by substituting Eq. (6) and Eq. (13) into Eq. (12),
the reliability function of the two-phase model with fixed
parameters can be presented as the following Proposition 1.
Proposition 1: Given a generalized two-phase WP degra-

dation model as Eq. (2) with fixed parameters, the reliability
function under the concept of FPT can be written as

R(t)=



H (t|x0, µ1,31(·), σ1,D), 0 < t ≤ τ1∫ D

−∞

H (t − τ1|u, µ2,32(·), σ2,D)

×

 1√
2πσ 2

1 τ1

exp

[
−
(u− µ131(τ1)− x0)2

2σ 2
1 τ1

]
×

(
1− exp

[
−
2(u− D)(x0 − D)

σ 2
1 τ1

])
du, t > τ1

(14)

In the above derivation, all model parameters are supposed
as constants. In the next step, the variability of degradation
rates is first considered, and then the distribution function
fxτ1 (u|x0) can be obtained as

fxτ1 (u|x0) =
1√

2π (σ 2
1 τ1 + σ

2
1,0τ

2
1 )

× exp

[
−

(
u− µ1,031(τ1)− x0

)2
2(σ 2

1 τ + σ
2
1,0τ

2
1 )

]
(15)

Then the reliability function can be further presented by
the following Proposition 2.
Proposition 2: Given a generalized two-phase WP degra-

dation model as Eq. (2) with random degradation rates and
fixed change-point τ1, the reliability function under the con-
cept of FPT can be expressed as

R(t) =



G(t|x0, µ1,0, σ
2
1,0,31(·), σ1,D), 0 < t ≤ τ1∫ D

−∞

G(t − τ1|u, µ2,0, σ
2
2,0,32(·), σ2,D)

×

 1√
2π (σ 2

1 τ1 + σ
2
1,0τ

2
1 )

× exp

[
−

(
u− µ1,031(τ1)− x0

)2
2(σ 2

1 τ1 + σ
2
1,0τ

2
1 )

])

×

(
1− exp

[
−
2(u− D)(x0 − D)

σ 2
1 τ1

])
du, t > τ1

(16)

In general, the expressions of reliability functions given by
Eqs. (14) and (16) still contain integrals. Fortunately, only
univariate integrals need to be calculated, which can be easy
to calculate via numerical integration methods.

The above presented results can deal with the reliability
evaluation well for the two-phase degradation processes with
deterministic change points, when the two-phase features
may cause by operation state switches or when we evaluate
the reliability for a certain product. In a further step, the ran-
domness of change point is considered for a group of the
same products with different change points. Based on the total
probability law, the reliability function can be represented by

R(t) =
∫
+∞

t
G(t|x0, µ1,0, σ

2
1,0,31(·), σ1,D)fτ1 (v)dv

+

∫ t

0

∫ D

−∞

G(t − v|u, µ2,0, σ
2
2,0,32(·), σ2,D)

×

 1√
2π (σ 2

1 v+ σ
2
1,0v

2)

× exp

[
−

(
u− µ1,031(v)− x0

)2
2(σ 2

1 v+ σ
2
1,0v

2)

]
×

(
1− exp

[
−
2(u− D)(x0 − D)

σ 2
1 v

])
fτ1 (v)dudv

(17)

where fτ1 (v) denotes the PDF of change point τ1.
In practical, the integrals in Eq. (17) is intractable due to the

randomness of change point, thus a natural way is to use the
Monte Carlo method by getting enough change point samples
from its distribution. And so on, the reliability for each change
point sample can be calculated by Eq. (16), then the reliability
can be approximated by the mean value of reliability for all
samples.
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C. RELIABILITY ANALYSIS FOR THE MULTI-PHASE MODEL
Considering the multi-phase degradation situation, the ana-
lytical results in Section 3.2 can be utilized for the first
two phase. Similarly, the multi-phase degradation model is
considered with no random effects first for simplicity. Then
a recursive scheme is adopted; i.e., the reliability of the
k-th phase can be derived based on the reliability of the
(k-1)-th phase by

R(t) = Pr {T > t} = Pr
{
MX

[0,τk−1] < D,MX
[τk−1,t] < D

}
= Pr

{
MX

[0,τk−1]<D
}
Pr
{
MX

[τk−1,t]<D|M
X
[0,τk−1]<D

}
= R(τk−1)

∫ D

−∞

H (t − τk−1|u, µk ,3k (·), σk ,D)

× fxτk−1 (u|x0,
⋂k−1

i=1
MX
[τi−1,τi] < D)du, t > τk−1

(18)
where MX

[τi−1,τi] is the maximum value of X (t) in [τi−1, τi]
and R(τk−1) is the reliability at change point τk−1.
Then the following recursive formulation can also be con-

structed to represent the change-point state xτk−1 distribu-
tion (19), as shown at the bottom of the page.

By substituting Eq. (19) into Eq. (18), the recursive rela-
tionship of reliability function for multi-phase model can be
presented by the following Proposition 3.
Proposition 3:Given a generalized multi-phase WP degra-

dation model as Eq. (1) with change-points τ1, τ2, . . . , τk−1,
the recursive formulation of reliability function under the
concept of FPT can be expressed as (20), shown at the bottom
of the page, where, based on the property of WP, the form of
fxk−1 (u|xτk−2 = v) can be obtained as
fxτk−1 (u|xτk−2 = v)

=
1√

2πσ 2
k−1(τk−1 − τk−2)

× exp

[
−
(u− µk−13k−1(τk−1 − τk−2)− v)2

2σ 2
k−1(τk−1 − τk−2)

]
(21)

Pr
{
MX

[τk−2,τk−1]
< D|xτk−2 = v, xτk−1 = u

}
can be given

by Lemma 2. Besides, when k = 3,

fxτk−2 (v|x0,
⋂k−2

i=1
MX
[τi−1,τi]<D)= fxτ1 (v|x0,M

X
[0,τ1]<D),

which can be given by Eq. (11). Then, Eq. (20) contains
bivariate integrals which can be solved by numerical inte-
gration. However, when the number of phases increases, the
above PDF becomes a form of high-dimension integrals.
We can simplify the PDF via acceptable approximations. Par-
ticularly in practical engineering, most of failures occurred in
the last one or two phases. Hence, when the number of degra-
dation phases k > 3, assuming that the failure probability
before change point τk−2 is small, i.e.,

Pr
{⋂k−2

i=1
MX
[τi−1,τi] < D

}
≈ 1,

we have

fxτk−2 (v|x0,
⋂k−2

i=1
MX
[τi−1,τi] < D) ≈ fxτk−2 (v),

which is the unconditional PDF of xτk−2 . Then Eq. (20) can
be calculated by numerical integration. When unit-to-unit
variability is considered, we can utilize the law of the total
probability similar to Eq. (17). This section provides a feasi-
ble solution to evaluate the reliability of proposedmulti-phase
model. In current study, the two-phase model is focused
as a typical representative for frequently faced two-phase
degradation. Next, the identification of model parameters is
introduced.

IV. STATISTICAL INFERENCE
A. PARAMETER ESTIMATION
To evaluate the reliability, model parameters have to be
estimated based on measurements. A maximum likelihood
method is proposed. Without loss of generality, take the
two-phase model for example to demonstrate the estimation
procedure. All products are assumed to be inspected at a same
time sequence t = (t1, t2, . . . , tn)′ (n is the total observation
number). It is worthwhile noticing that this situation can be

fxτk−1 (u|x0,
⋂k−1

i=1
MX
[τi−1,τi] < D)

=

∫ D

−∞

fxτk−1 (u|xτk−2 = v,MX
[τk−2,τk−1] < D)× fxτk−2 (v|x0,

⋂k−2

i=1
MX
[τi−1,τi] < D)dv

=

∫ D

−∞

fxτk−1 (u|xτk−2 = v) Pr
{
MX

[τk−2,τk−1]
< D|xτk−2 = v, xτk−1 = u

}
H (τk−1 − τk−2|v, µk−1,3k−1(·), σk−1,D)

× fxτk−2 (v|x0,
⋂k−2

i=1
MX
[τi−1,τi] < D)dv (19)

R(t) = R(τk−1)
∫ D

−∞

H (t − τk−1|u, µk−1,3k−1(·), σk−1,D)

×

∫ D

−∞

fxτk−1 (u|xτk−2 = v) Pr
{
MX

[τk−2,τk−1]
< D|xτk−2 = v, xτk−1 = u

}
H (τk−1 − τk−2|v, µk−1,3k−1(·), σk−1,D)

× fxτk−2 (v|x0,
⋂k−2

i=1
MX
[τi−1,τi] < D)dvdu, t > τk−1 (20)
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easily extended to the circumstance involving different test
time sequences among units. Test data are denoted as xij =
xi(tj) where i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and m, n are
total number of test units and time points, respectively.

To construct the log-likelihood function (log-LF) of
unknown parameters, the two-phase test datasets have to
be discussed separately based on the change point position.
For degradation sequence xi = (xi1, xi2, . . . , xin)′ of unit i,
a most general circumstance lies in that the change point
τ1i locates between two sequential test time points (denoted
as tci and tci+1) which can vary from unit to unit, i =
1, 2, . . . ,m. Consequently, three segments have to be con-
sidered for degradation data xi = (xi1, xi2, . . . , xin)′. The
first segment is comprised of the observations before test
time point tci , denoted as x1i = (xi1, xi2, . . . , xici )

′. Then
the measurement after test time point tci+1 are considered
in the second segment. Since different degradation regula-
tions are demonstrated because of the two-phase property,
the measurement sequence of the second segment incor-
porated in the log-LF construction is denoted as x2i =(
xi(ci+2) − xi(ci+1), xi(ci+3) − xi(ci+1), . . . , xin − xi(ci+1)

)′.
Finally, the third segment is the performance increment from
tci to tci+1, denoted as x3i = xi(ci+1) − xici .
For the first segment, define

L1i = (31(t1),31(t2), . . . , 31(tci )
)′. According to the prop-

erties of WP, x1i follows a multivariate normal distribution
with mean µ1i = µ1,0L1i and covariance 61i = σ 2

1P1i +
σ 2
1,0L1iL

′

1i, where

P1i =


t1 t1 · · · t1
t1 t2 · · · t2
...

...
. . .

...

t1 t2 · · · tci

.
For the second segment, define L2i =

(
32(tci+1 − τ1i) −

32(tci − τ1i),32(tci+2 − τ1i) − 32(tci − τ1i), . . . , 32(tn −
τ1i)− 32(tci − τ1i)

)′. Also, x2i follows a multivariate normal
distribution with mean µ2i = µ2,0L2i and covariance 62i =

σ 2
2P2i + σ

2
2,0L2iL

′

2i, where

P2i=


tci+2−tci+1 tci+2−tci+1 · · · tci+2−tci+1
tci+2−tci+1 tci+3−tci+1 · · · tci+3−tci+1

...
...

. . .
...

tci+2−tci+1 tci+3−tci+1 · · · tn−tci+1

.
For the third segment, because change point τi locates

between tci and tci+1, increment x3i is normally distributed
with mean µ3i = µ1,0

(
31(τ1i)−31(tci )

)
+ µ2,032(tci+1 −

τ1i) and variance σ 2
3i = σ 2

1 (τ1i − tci ) + σ
2
2 (tci+1 − τ1i) +

σ 2
1,0 ( 31(tci+1)−31(τ1i)

)2
+ σ 2

2,03
2
2(tci+1 − τ1i).

To facilitate the estimation, we re-parameterize the param-
eters by σ̃ 2

1 = σ 2
1 /σ

2
1,0, σ̃

2
2 = σ 2

2 /σ
2
2,0, 6̃1i = 61i/σ

2
1,0 =

σ̃ 2
1P1i + L1iL′1i and 6̃2i = 62i/σ

2
2,0 = σ̃ 2

2P2i + L2iL′2i.
Let θ1 and θ2 denote the unknown parameter vector in 31(·)
and 32(·), respectively. Then we define 2 as the unknown
parameters vector to be estimated. The log-LF of i-th unit can

be constructed as

lnL(µ1,0, σ
2
1,0, σ

2
1 , θ1, µ2,0, σ

2
2,0, σ

2
2 , θ2, τ1i|xi)

= −
n
2
ln(2π )−

1
2

(
ln
∣∣∣6̃1i

∣∣∣+ ci ln(σ 2
1,0)

)
−

1

2σ 2
1,0

(x1i − µ1i)
′(6̃1i)−1(x1i − µ1i)

−
1
2

(
ln
∣∣∣6̃2i

∣∣∣+ (n− ci − 1) ln(σ 2
2,0)

)
−

1

2σ 2
2,0

(x2i − µ2i)
′(6̃2i)−1(x2i − µ2i)

−
1
2
ln(2π )−

1
2
ln σ 2

3i −
(x3i − µ3i)

2

2σ 2
3i

(22)

Therefore, the maximum likelihood estimation (MLE) of
unknown parameters2 can be derived by

2̂ = argmax
2

m∑
i=1

lnL(µ1,0, σ
2
1,0, σ

2
1 , θ1, µ2,0, σ

2
2,0,

σ 2
2 , θ2, τ1i|xi) (23)

By taking the first order partial derivatives of
6m
i=1 lnL(µ1,0, σ

2
1,0, σ

2
1 , θ1, µ2,0, σ

2
2,0, σ

2
2 , , θ2, τ1i|xi) with

respect to µ1,0, µ2,0, σ 2
1,0, σ

2
2,0 and let them equal to zero,

we have

µ1,0 =

m∑
i=1

L′1i(σ̃
2
1P1i + L1iL

′

1i)
−1x1i

m∑
i=1

L′1i(σ̃
2
1P1i + L1iL

′

1i)
−1L1i

µ2,0 =

m∑
i=1

L′2i(σ̃
2
2P2i + L2iL

′

2i)
−1x2i

m∑
i=1

L′2i(σ̃
2
2P2i + L2iL

′

2i)
−1L2i

(24)

and

σ 2
1,0

=

m∑
i=1

(x1i − µ1,0L1i)′(σ̃ 2
1P1i + L1iL

′

1i)
−1(x1i − µ1,0L1i)

m∑
i=1

ci

σ 2
2,0

=

m∑
i=1

(x2i − µ2,0L2i)′(σ̃ 2
2P2i + L2iL

′

2i)
−1(x2i − µ2,0L2i)

m∑
i=1

(n− ci − 1)

(25)

By substituting Eq. (24) and Eq. (25) into Eq. (23), we can
obtain the profile log-LF of θ1, θ2, σ̃ 2

1 , σ̃
2
2 , τ1i, and then the

corresponding estimates can be obtained by maximizing this
profile log-LF. After that the estimates of µ1,0, µ2,0, σ 2

1,0,
σ 2
2,0 can be obtained by substituting estimation results θ̂1,

θ̂2, ˆ̃σ 2
1 ,
ˆ̃σ 2
2 , τ̂1i in Eq. (24) and Eq. (25). It is reasonable to
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consider estimates τ̂11, τ̂12, · · · , τ̂1m as the observations of
the random point τ , and hence the corresponding distribu-
tions can be obtained by statistical analysis. Finally, with the
identified parameters, the reliability of a batch of devices can
be assessed.

In real applications, however, it is still very tough for
direct constrained optimization of the profile log-LF func-
tion. The genetic algorithm (GA) provides a possible solu-
tion for this problem, and it is adopted in the current
study. A more comprehensive overview of GA can be found
in Ref. [44].

B. INITIAL GUESSES
When GA is applied to numerically maximize the profile
log-LF, reasonable initial guesses for decision variables are
necessary. First, the rough estimates of change point are
obtained separately for each test unit. Then, motivated by the
three-step procedure given in Refs. [12] and [45], a similar
method is developed to obtain an educated guess for the
range of each decision variable. The detailed procedure is as
follows.

1) For i-th test unit, suppose a series of rough change
point locations as

{
τ ∗1i = t3, τ ∗1i = t3, · · · , τ ∗1i = tn−3

}
and

construct a corresponding series of two-phase deterioration
models by maximizing a corresponding series of log-LF{
log-LFi|τ∗1i=t3 , log-LFi|τ∗1i=t4 , · · · , log-LFi|τ∗1i=tn−3

}
. Then

the rough estimate of the change point is τ ∗1i corresponding to
maximum value among the log-LF sequence. Then the moni-
toring data sequence xi can be divided into two subsequences
by this rough result τ ∗1i, denoted as x∗1i = (xi1, xi2, . . . , xic∗i )

′

and x∗2i =
(
xi(c∗i +1) − xic∗i , xi(c∗i +2) − xic∗i , . . . , xin − xic∗i

)′
,

where c∗i is the serial number of the rough result τ ∗1i.
2) Based on the least square method, the rough estimates

(µ11, µ12, . . . , µ1m and θ1 for phase 1, µ21, µ22, . . . , µ2m
and θ2 for phase 2), can be obtained by minimizing the mean
squared error (MSE), respectively.

MSE1 =

m∑
i=1

(
x∗1i − µ1iL∗1i

)′ (x∗1i − µ1iL∗1i
)

(26)

MSE2 =

m∑
i=c∗i +1

(
x∗2i − µ2iL∗2i

)′ (x∗2i − µ2iL∗2i
)

(27)

where L∗1i = (31(t1),31(t2), . . . , 31(τ ∗1i)
)′ and L∗2i =(

32(tc∗i +1 − τ
∗

1i) ,32(tc∗i +2 − τ
∗

1i), . . . , 32(tn − τ ∗1i)
)′.

3) The rough estimates of µ1,0, σ 2
1,0 and µ2,0, σ 2

2,0, can be
calculated by fitting the estimations µ11, µ12, . . . , µ1m and
µ21, µ22, . . . , µ2m, respectively.

4) Based on the estimates ofµ1,0, σ 2
1,0, θ1 for phase 1,

and µ2,0, σ 2
2,0, θ2 for phase 2, the rough estimates of σ 2

1 and
σ 2
2 can be obtained by maximizing the profile log-LF of σ 2

1
and σ 2

2 .
Therefore, the range of each decision variable for maxi-

mizing the log-LF via GA is determined.

V. SIMULATION STUDY
In this section, a comprehensive simulation study is con-
ducted to verify the reasonability of the reliability func-
tion proposed in Section 3. Without loss of generality,
two cases for two-phase situation (defined as Case 1) and
three-phase circumstance (as a representative of three-phase
situation and defined as Case 2) are presented. According
to empirical studies, power law can be considered as a
commonly encountered degradation regulation [7]. To this
end, the transformed time scale for the k-th phase is sup-
posed as 3k (t) = tbk , which becomes a linear one when
bk = 1.
Case 1 incorporates a nonlinear first phase and a linear sec-

ond phase with both random drift and random changing point.
The parameters are set as µ1,0 = 10, σ1,0 = 0.1, b1 = 0.5,
σ1 = 2, µ2,0 = 1, σ2,0 = 0.1, b2 = 1, σ2 = 1, α1 = 400,
β1 = 0.01 and D = 20.
Case 2 involves a nonlinear first phase, a linear second

phase and a nonlinear third phase considering random effects.
The phase duration of the second phase is also assumed to
follow gamma distribution. The parameters are predefined as
µ1,0 = 10, σ1,0 = 0.1, b1 = 0.5, σ1 = 1, µ2,0 = 0.5, σ2,0 =
0.05, b2 = 1, σ2 = 1, µ3,0 = 1.5, σ3,0 = 0.1, b3 = 1.5,
σ3 = 2, α1 = 400, β1 = 0.01, α2 = 400, β2 = 0.01 and
D = 20.
Based on the datasets generated via above simulation mod-

els, reliability curves can be obtained by the Propositions pro-
posed in Section 3. To illustrate the reasonability of the
analytical results constructed in the current study, a numerical
method is adopted as a reference. It is an approximation
approach based on the Euler-Maruyama discretization policy,
which has been commonly applied in complex reliability
analysis [46]. The following four-step simulation procedure
is involved to generate a number of failure times based
on the above preset model parameters (including the initial
degradation value x0, change point distribution parameters
α1 and β1, drift coefficient distribution parameters µ1,0, σ1,0,
µ2,0, σ2,0, parameters b1, b2 for two phases, drift coefficient
σ 2
1 , σ

2
2 and failure thresholds D), and then the reliability can

be approximated.
1) Initialize the total number of sampling paths 10000 and

discretization step 1t .
2) For the i-th sampling path, generate parameters τ1,

µ1, µ2 based on the distributions, and let j = 0
indicating that it degrades from the initial time point
zero.

3) At time point j1t , calculate X (i)
(j+1)1t from X (i)

j1t using a

Euler approximation for sampling path i. If X (i)
(j+1)1t ≥

D holds for the first time, the FPT of the i-th sampling
path can be obtained as T (i)

= (j+ 1)1t , and sampling
path i terminated. Otherwise, set j = j + 1 and con-
tinue the i-th sampling path until X (i)

(j+1)1t exceeds D.
As such, set i = i + 1 and go back to Step 2 until
i = 10000.

4) Repeat Steps 2-3 until 10000 FPTs are simulated;
i.e., T =

{
T (1),T (2), · · · ,T (10000)

}
.
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5) The reliability at time point j1t can be calculated by

R(j1t) ≈
Nj1t
10000

(28)

where Nj1t is the number of T (i) satisfying T (i) > j1t at time
point j1t .
It can be seen from the above numerical simulation pro-

cedure, that the reliability curve is approximated by plot-
ing the reliability at a series of discrete time points with a
constant interval 1t . Consequently, a considerabye small 1t
is necessary to guarantee the reasonability and accuracy of
the numerical result. From this viewpoint, the discretization
step size is defined as 1t=0.01 in 103hours. It can be seen
that the FPTs T =

{
T (1),T (2), · · · ,T (10000)

}
are realizations

of the true FPT, and the histogram can reasonably approach
the PDF of the true FPT because the sample size 10000 is
large enough. To this end, the above numerical approach can
demonstrate the reasonability of the proposed method.

To illustrate a better understanding, the reliability curves
obtained by the proposed method constructed in Section 3
(defined as M0) and the reference numerical approach
described above (defined as M1) are shown in Fig. 3, where
Fig. 3(a) illustrates the two-phase situation and Fig. 3(b)
demonstrates the three-phase circumstance.

From Fig. 3, one can see that the reliability curves derived
from the two methods fit quite well for both the two cases.
According to the literature, Pearson Correlation [47] is
adopted to further quantify the agreement. Based on corre-
lation analysis, the two-phase case produces a correlation
coefficient of 0.99998, and the three-phase case gives a cor-
relation coefficient of 0.99994. Meanwhile, the p values of
both cases are almost zero. These results demonstrate that
the curves obtained from the two methods fit quite well;
i.e., the constructed reliability function can be numerically
verified.

VI. EMPIRICAL RESULTS
In this section, the two motivating examples shown
in Fig. 1 and Fig. 2 are reinvestigated to verify the validity
and effectiveness of the proposed method (denoted as M0) in
real applications. The failure threshold of accelerometers can
be predefined as D = 300 [25] and the failure threshold of
gyros can be pre-set as D = 0.6 [9].

A. APPLICATION TO ACCELEROMETERS
Due to the influences of material degradation and residual
stress changes inmachining andmanufacturing process, scale
factor of accelerometer changes with time, which influence
storage life and reliability of accelerometers [24]. To investi-
gate the behaviour of the accelerometers, a degradation test
was implemented [25]. 6 units were tested for 384 hours at
60 ◦C, and the measurements are shown in Fig. 1.

From Fig. 1, it can be found that the degradation trajec-
tories show an obvious two-phase property. Thus, Ref. [25]
utilized a two-phase linear WP model (denoted as reference
model M2) to fit the degradation data, which has also been

FIGURE 3. Comparative reliability curves for simulation study
(a) Two-phase situation (b) Three-phase situation.

studied by Wen et al. [48], Yan et al. [20] and Feng et al.
[49]. The main difference between M0 and M2 is the time
scale function, where M0 supposes 31(t) = tb1 , 32(t −
τ1) = t − τ1, and M2 assumes 31(t) = t , 32(t − τ1) =
t − τ1. To further emphasize the necessity of considering
the two-phase property, the single-phase nonlinear model
(denoted as reference approach M3 which was utilized by
Si et al. [9], Wang et al. [10], [11], and Li et al. [12]) is
also adopted as a reference. It can be represented as X =
µ3(t)+ σB(t), µ ∼ N (µ0, σ

2
0 ), 3(t) = tb.

It is worth noticing that, the proposed method M0 and the
reference approach M2 both consider the two-phase property
and the unit specific characteristics, and the difference lies in
that M0 can concern the nonlinearity whileM2 cannot. Mean-
while, models M0 and M3 both can consider the nonlinearity
of the degradation procedure, and the key difference lies in
that M0 can concern the phase variability while M3 cannot.
The model fitting goodness and accuracy of lifetime

indexes are two main considerations for comparisons.
To demonstrate the fitting goodness, log-LF and the cor-
responding Akaike information criterion (AIC) values are
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TABLE 1. Comparative results of model parameters and fitting goodness for accelerometers.

derived, where AIC can be defined as

AIC = −2× {max (log−LF)} + 2q (29)

where q is the number of unknow parameters in the adopted
model. A larger log-LF and a lower AIC indicate a better
fitting goodness. Comparative results including parameter
estimations and fitting goodness indexes are summarized
in Table 1.

From Table 1, one can see that the proposed method M0
illustrates a best fitting goodness in both terms of log-LF
and AIC. Based on the unknown parameter results derived
by M0 and M2, each of µk0, σ 2

k0, σ
2
k (k = 1, 2) shows sig-

nificant difference between the two values corresponding to
the two phases. This demonstrates the necessity to construct a
two-phase degradation model. It can then be understood why
reference model M3 derives a poorest fitting. Furthermore,
the similar estimations for α and β from methods M0 and
M2 illustrate the existence of the change point. Meanwhile,
results of parameter bk (for M0) and b (for M3) illustrate a
clear understanding of the nonlinearity property. Then it can
also be understood why M0 can guarantee a better fitting
than reference approach M2. To this end, the constructed
methodology M0 demonstrates a best modeling reasonability
because it can rationally depict the two-phase property and
phase-varying nonlinearity characteristic.

Furthermore, the mean degradation curve derived by M0 is
shown in Fig. 4(a). One can observe that the mean degrada-
tion curve estimated by M0 matches the sample average quite
well. From this viewpoint, M0 can give a better description
of the first phase, and this indicates the reasonability of
the nonlinear assumption. Meanwhile, the standard residuals
over time is further given in Fig. 4(b). Consequently, the
constructed model M0 can be considered as reasonable.

TABLE 2. Lifetime estimations of accelerometers by different models /
hours.

As previous discussed, median life t0.5 and FTD percentile
t0.1 are important indexes of great concern to support mainte-
nance schedules. The results from three methods M0, M2 and
M3 are obtained and listed in Table 2. From the rationality

FIGURE 4. (a) Mean degradation path of accelerometers derived by M0.
(b) Standard residual plot of accelerometers by M0.

and validity of the proposed method M0 demonstrated above,
the estimations from M0 can be considered as more reason-
able and reliable. Reference approach M3 gives a lowest life
prediction where both t0.5 and t0.1 are far lower than those
fromM0 andM2. This is because the initial rapid degradation
(nonlinear fast deterioration in phase 1) gives a significant
impact on the single-stage modeling of M3 and then leads to
an excessively conservative life prediction. Meanwhile, the
difference between the results of M0 and M2 is caused by
the phase-varying nonlinearity. To demonstrate an intuitive
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TABLE 3. Comparative results of model parameters and fitting goodness for gyros.

FIGURE 5. Comparative reliability curves of accelerometers by three
models M0, M2 and M3.

understanding, Fig. 5 shows the reliability curves derived by
the adopted three methods M0, M2 and M3.

B. DEGRADATION ANALYSIS FOR GYROS
To give a better understanding that phase-varying nonlin-
earity commonly exist in practical engineering and also to
further demonstrate the efficiency of the proposed method,
the drift coefficient in an inertial navigation platforms given
by Si [9] is utilized for verification. The inertial platform
is a key component in the inertial navigation systems of
weapon systems and space equipment. Its operating state has
a direct influence on navigation precision. The degradation
data, including 5 tested items (9 measurements for each item)
were obtained from inertial platforms’ precision tests, where
the conditions were similar to a field setting. The investiga-
tions are shown in Fig. 2.

Because the two-phase linear model M2 does not match
the degradation paths apparently, only the nonlinear WP
model M3 is adopted to fit the degradation dataset for
comparison. The proposed parameter estimation method
is applied, and the MLE estimations of model parame-
ters and fitting goodness are obtained and summarized
in Table 3.

From Table 3, it is obvious that model M0 derives a bet-
ter fitting in both terms of Log-LF and AIC. Although the
reference model M3 adopts a nonlinear function to describe
the degradation process, it cannot perform well without con-
sidering the phase-varying nonlinearity. The fitting goodness

FIGURE 6. (a) Mean degradation path of gyros derived by M0.
(b) Standard residual plot of gyros by M0.

can be also shown in Fig. 6, which shows that the mean
degradation path of M0 matches the sample average better
than M3. And the residual plots over time for model M0
(shown in Fig. 6) demonstrates that it can appropriately
describe the drift of gyros.

The results of median life t0.5 and FTD percentile t0.1 from
methodsM0 andM3 are obtained and listed in Table 4, and the
corresponding reliability curves are shown in Fig. 7. From the
rationality and validity of the proposed method M0 demon-
strated above, the estimations from M0 can be considered
as more reasonable and reliable. Based on the experiment,
the real t0.5 is about 21.5 hours. Then the relative errors for
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TABLE 4. Lifetime estimations of gyros by different models / hours.

FIGURE 7. Comparative reliability curves of gyros by two models
M0 and M3.

lifetime prediction can be obtained. The proposed method
M0 can give a more accurate lifetime estimation because the
multi-phase variety can be considered.

VII. CONCLUSION
Motivated by the degradation property of accelerometers and
gyros, a generalized two-phase degradation model which can
properly describe the phase-varying nonlinearity characteris-
tic is proposed, which can be extended to multi-phase one
if necessary. Unit-to-unit heterogeneity is depicted by ran-
domly distributed model parameters to demonstrate the unit
specific properties. Then an MLE method is constructed to
effectively solve the parameter estimation problem. There-
after, a novel analytical reliability analysis method is pro-
posed, which can give theoretical reliability solutions for
multi-phase degradations.

The modeling reasonability and reliability assessment
rationality of the proposed method are demonstrated via a
comprehensive simulation study and two real applications.
The widely applied two-phase linear and single-phase non-
linear model are adopted as references to demonstrate a better
understanding. Based on the results, the proposedmethod can
guarantee a reasonable modeling and an effective reliability
inference.

Regarding future research, one issue is worth notic-
ing. In real application, sometimes measurement errors
are inevitable because of imperfect inspection, thus the
multi-phase degradation with measurement errors needs to be
studied.
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