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ABSTRACT Chemical industrial processes involve numerous multivariable nonlinear systems. Nonlinear
Muli-InputMuli-Output (MIMO)models seemmore suitable to representmost systems and control problems
in industrial processes. Furthermore, the outputs of the real systems might be corrupted with the colored
noises, which do not satisfy the assumption of the white noises. In order to solve the impact of the
colored noises, an Amplitude-Limiting Variational Bayesian (ALVB) method combined with multivariable
nonlinear model (Hammerstein model) working in over-sampling closed-loop structure is proposed in this
article. This method is the improvement of the Variational Bayesian (VB) method combining Hammerstein
model and over-sampling closed-loop structure. Simulation experiments show that for the nonlinear model
(Hammerstein model), the proposed algorithm not only overcomes the unidentifiable disadvantage of the
traditional structure but also contributes to a higher identification accuracy. Furthermore, even under situation
that the processes output noise is a colored noise, the proposed algorithm still maintains and converges to
the achieved accuracy.

INDEX TERMS Over-sampling closed-loop structure, hammerstein model, variational Bayesian (VB)
method, amplitude-limited variational Bayesian (ALVB) method, colored noise.

I. INTRODUCTION
In current chemical industrial processes, the performance
of the controller is determined by the accuracy of the
process models [1]. An industrial process involves a class of
multivariable nonlinear systems. The problems of the mul-
tivariable nonlinear plants operating in industrial processes
have not received a lot of attention so far. According to
industrial demands and relative theory, we choose to replace
the nonlinear model with a linear model for research, it is
just an approximation which is easier for process analysis.
This method to describe nonlinear models requires additional
numerous restrictive conditions, and the description is still
not correct [2]. Therefore, it is necessary to do the further
research on multivariable nonlinear model identification to
meet the needs of practical industrial processes.

In the field of multivariable nonlinear model identification,
a Hammerstein model which consists of a static nonlinear
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module and a dynamic linear module is the focus of the
nonlinear modelling [3]. The Hammerstein model has less
computational complexity and represents the characteristics
of a process [4], which is always used for industrial
nonlinear process analysis, such as continuous reactors [5],
PH neutralization processes [6], and pressurized boilers [7].
There are lots of methods of Hammerstein models, such as
the traditional iterative method [8], over-parameter identi-
fication method [10], subspace identification method [11],
blind identification method [13], neural network [15], and
particle swarm algorithm [16]. In the identification methods
above, the extra excitation should be applied to ensure the
informative data for the system parameter estimate [17]-[18].
In the large industrial chemical process, the extra excitation is
generally limited to ensure that the identification experiments
do not cause the unqualified products and the emergency
shutdown [19]. The extra excitation might not only cause a
huge cost for identification procedure, but also produce an
effect on the industrial processes regularly operating [20].
In order to solve the practical problems above, this article
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provides a new method to obtain an accurate model at a low
cost.

There have been a lot of researches on the model
structure identifiability. Sun first proposed the over-sampling
closed-loop structure and proved that the over-sampling
closed-loop structure identification could ensure the iden-
tifiability without extra excitation [21]. Wang proved the
identifiability of the linear over-sampling closed-loop struc-
ture without input signal in the frequency domain [22], [23].
By analyzing the asymptotic variance expression of linear
over-sampling structure, Zhu concluded the high-frequency
parts in the output noise can be converted into persisting
exciting with the over-sampling structure [24].

With the deep study of the over-sampling structure,
a series of traditional identification methods, such as the
least square method [25], the prediction-error [26] method
and the asymptotic variance method [27], are improved
by the combination with the over-sampling structure. The
researches above are most based on the univariate linear
models, less on the multivariate models. A new identifi-
cation method, the Variational Bayesian (VB) method can
greatly improve the accuracy of the model and widely
used in the industrial identification experiments with the
fast convergence. The Variational Bayesian (VB) methods
based on several model types have been proposed, such
as multi-switched model [28], multi-switched model under
gamma noise distribution, time-varying model [29], and
autoregressive exogenous (ARX)model with randommissing
output data [30]. In the practical industrial processes,
the Variational Bayesian (VB) methods above require extra
excitation to ensure the informativity of the identification
experiments, which might cause a large cost for the normal
plant operation. There is also a problem that the original
VB method might not converge with the colored noise.

In order to obtain an accurate dynamic model at a low cost,
this article provided a VB method based on the multivariable
nonlinear model with over-sampling which combines the
Hammerstein models and over-sampling closed-loop struc-
ture. An Amplitude-Limited Variational Bayesian (ALVB)
method combined with the over-sampling closed-loop struc-
ture with colored noise for multivariable nonlinear models
is proposed. This algorithm is improved from the traditional
VB method and applicable to the condtion of colored noise.
Simulations show that the Amplitude-Limited Variational
Bayesian (ALVB) method combined with the over-sampling
closed-loop structure overcomes the shortcoming of the
traditional closed-loop structure identifiability and achieves
higher accuracy. Simulations also prove the algorithm
convergences in the condtion of colored noise.

II. MULTIVARIABLE NONLINEAR OVER-SAMPLING
CLOSED-LOOP STRUCTURE
In the large-scale industrial processes, the continuously oper-
ated plants are always nonlinear Multi-Input Multi-Output
(MIMO) systems, the frequency in the operating system is
much lower than that in the DCS sampling system, which

is suitable for the multivariable nonlinear over-sampling
structure identification. Therefore, multivariable nonlinear
oversampling structure can be used for the large-scale
industrial process modelling.

Fig.1 displays how the Hammerstein model over-sampling
structure operated in closed-loop identification. The Ham-
merstein model basically consists of a nonlinear static
multivariable block F(•) and a dynamic linear multivariable
blockGc(s). There exists a multivariable controller K(z−1) of
the control period T , and z−1 is the backward shift operator
that corresponds to T , i.e, z−1y(t) = y(t − 1). K(z−1)
generates piecewise model input U(m) through a zero-order
holder. In the over-sampling closed-loop structure, the output
is sampled at a period of 1 = T/p to generate Y1(m)
for identification, while the sampling time for output in
conventional identification is T , p is the positive integer
indicating the over-sampling rate.

In the Hammerstein model over-sampling structure shown
in Fig.1, U(m) = [u1(m) · · · un(m)]T is the nonlinear part
input and ζ (m) = [ζ 1(m) · · · ζ n(m)]

T is the nonlinear part
output. R(m) = [r1(m) · · · rn(m)]T is the system input and
Y1(k) = [y11(k) · · · y1n(k)]

T is the system output. V1(k) =
[v11(k) · · · v1n(k)]T is a white zero mean noise or colored
noise vector.

It is assumed that the nonlinear static multivariable block
F(•) can be expressed as

ζi(m) = Fi (ui(m))

= di1fi1 (ui(m))+ di2fi2 (ui(m))+ · · · dind find (ui(m))

=

nd∑
l=1

dil fil (ui(m)) . (1)

Denote the plant model Gc1(s) with respect to sampling
time 1 as

Y1(k) = Gc1

(
q−1

)
ζ1(k)+ V1(k), (2)

then the specific forms ofGc1(q−1) andV1(k) are separately
as follows

Gc1

(
q−1

)
=

B1
(
q−1

)
A1

(
q−1

)
=

1

A1
(
q−1

)
B111

(
q−1

)
· · · B11n

(
q−1

)
...

. . .
...

B1n1
(
q−1

)
· · · B1nn

(
q−1

)
 ,

V1(k) = H1
(
q−1

)
v1∗(k)

=
C1

(
q−1

)
A1

(
q−1

) v1∗(k)
=

1

A1
(
q−1

)
C11

...

C1n

 v1∗(k) (3)
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FIGURE 1. Over-sampling structure in closed-loop identification.

where H1(q−1) is the stable minimum phase transfer
function. v1∗(k) is a white noise with zero mean and δ−1

variance. B1(q−1) is the n × n numerator of the trancfer
function Gc1(q−1) and C1(q−1) is the n × 1 numerator of
the transfer function Hc1(q−1). A1(q−1) is the denominator
of the transfer function Gc1(q−1).
In (3), A1(q−1), B1(q−1), and C1(q−1) are separately

expressed as

A1
(
q−1

)
= 1+ a1,1q−1 + · · · + a1,naq

−na ,

B1ij
(
q−1

)
= b1ij,1q−1−τb1ij + · · · + b1ij,nbq

−nb−τb1ij ,

C1i
(
q−1

)
= 1+ c1i,1q−1 + · · · + c1i,ncq

−nc (4)

where a1,1 · · · a1,na are the parameters of the A1(q−1) and
na is the number of A1(q−1) parameters. b1ij,1 · · · b1ij,nb are
the parameters of B1ij(q−1) and nb is the number of B1ij(q−1)
parameters. τb1ij is the time delay of B1ij(q−1). c1,1 · · · c1,nc
are the parameters of C1i(q−1) and nc is the number of
parameters of C1i(q−1).

In the over-sampling closed-loop structure, the input
U1(k) is also over-sampled. Due to the zero-order holder,
the input U1(k) for identification is actually generated as

U1(k1) = U(mT ), k = mp,m p+ 1, . . . , (m+ 1)p− 1.

(5)

Referring to (1) - (5), we can obtain the following

Y1(k) = −
na∑

qa=1

a1,qaY1 (k − qa)

+

nb∑
qb=1

B1,qbF (U1 (k − qb))

+

nc∑
qc=1

c1,qce1 (k − qc)+ e1(k), (6)

B1,qb =

 b111,qb · · · b11n,qb
...

. . .
...

b1n 1 qb · · · b1nn,qb

 ,

c1,qc =

 c11,qc
...

c1n,qc

 . (7)

(8) can be obtained as

Y1(k) = 81(k)θ1 + e1(k) (8)

where 81(k) is the matrix composed of the model input and
output data shown as

81(k) =

 y11(k) F (U1(k)) · · · 0
...

...
. . .

...

y1n(k) · · · 0 F (U1(k))

 . (9)

In (8) - (9), the specific forms of y1i(k) and F(U1(k)) are
as follows

y1i(k) = [−y1i(k − 1) · · · − y1i (k − na)] ,

F (U1(k)) = [F1 (u11(k)) · · · Fn (u1n(k))]T ,

e1(k) = A1
(
q−1

)
V1(k)

= [e1i(k) · · · e1i (k − nc)]T (10)

where

Fi (u1i(k)) =
[
Fi1 (u1i(k)) · · · Find (u1i(k))

]T
,

Fij (ui(k)) =
[
fij
(
u1i

(
k − 1− τb1ij

))
· · ·

fij
(
u1i

(
k − nb − τb1ij

))]
. (11)

θ1 is the parameter vector of the 1 model shown as

θ1 = [a1 b1i · · · b1n]T ,

a1 =
[
a11 · · · a1,na

]
,

b1i =
[
b1i,1 · · · b1i,nb

]
,

b1ij =
[
b1ij,1 · · · b1ij,nd

]
,

b′1ij,l =
[
b1ij,1 × dil · · · b1ij,n × dil

]
. (12)

θ1 can be obtained from the input data U1 and output
data Y1 of the 1 model by using identification algorithm,
such as recursive least squares and prediction error method.
We assumed di1 = 1 to ensure the identification uniqueness,
then the dil = 1 and b1ij,l can be separated by the mean value
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method. d̂il is the mean value of d̂il,qb , calculated and used as
the accurate parameters estimate

d̂il =
1
nb

nb∑
q=1

d̂il,qb (13)

where

d̂il,qb =
b̂1ij,l (qb)

b̂1ij,qb
,

b̂1ij,qb = b̂′1ij,1. (14)

Denote the plant model Gc(z−1) with respect to sampling
time T as

Gc

(
z−1

)
=

B
(
z−1

)
A
(
z−1

)
=

1

A
(
z−1

)
B11

(
z−1

)
· · · B1n

(
z−1

)
...

. . .
...

Bn1
(
z−1

)
· · · Bnn

(
z−1

)
 (15)

where A(z−1) and Bij(z−1) are the n × n denominator and
numerator of the transfer function Gc(z−1), respectively.
In (15), A(z−1) and Bij(z−1) are separately expressed as

A(z−1) = 1+ a1z−1 + · · · + anaz
−na ,

Bij(z−1) = bij,1z−1−τbij + · · · + bij,nbz
−nb−τbij (16)

where parameters a1 · · · ana are the parameters of the A(z−1).
bij,1 · · · bij,nb are the parameters of Bij(z−1). τbij is the time
delay of the Bij(z−1). To achieve the relationship between
the T model and the 1 model, the Multi-Input Multi-Output
(MIMO) system can be divided into Multiple-Input and
Single-Output (MISO) subsystems shown as

y1i(k) = −
na∑

qa=1

a1,qay1i (k − qa)

+

n∑
j=1

nb∑
qb=1

b1ij,qbζ1j (k − qb − τb1i) . (17)

Referring to (17), each subsystem can be converted into the
state-space model structure

X i(k) = AX i(k − 1)+ Biζ1(k − 1− τb1i),

y1i (k) = CX i(k) (18)

where the A, Bi, and C are as follows

A =


−a1,1 1 0 0

−a1,2 0
. . . 0

...
... 0 1

−a1,nmax 0 . . . 0

 ,

Bi =

 b1i,1 . . . b1in,1
...

. . .
...

b1i,nmax · · · b1in,nmax

 ,
C =

[
1 0 · · · 0

]
,

τ b1i =

 τb11
...

τb1in

 (19)

where nmax = max(na, nb). When nmax = nb, a1,qa = 0.
When nmax = na, b1ij,qb = 0.
Referring to (18), we can get the following expression

X i(k) = ApX i(k − p)+
p−1∑
t=0

AtBiζ1(k − 1− t − τb1i).

(20)

Referring to (1), (6) - (7), ζ1(k − 1 − t − τb1i) can be
obtained as

ζ1 (k − 1− t − τb1i) =

F1 (u1(k − 1− t))
...

Fn (un(k − 1− t))


=

F1 (u1(k − p))...

Fn (un(k − p))


= ζ1(k − p− τb1i). (21)

Referring to (17) - (21), we can obtain that

X i(k) = ApX i(k − p)+
p−1∑
t=0

AtBiζ1(k − 1− t − τb1i),

y1i (k) = CX i(k). (22)

Due to q−p = z−1 and k1 = mT , the (k−p)1 = (m−1)T .
The model Gi(z−1) of the subsystem obtained from (22) is

Gi(z−1) = C(I − Apz−1)
p−1∑
t=0

AtBiz
−
τb1i
p . (23)

Therefore, the A(z−1) and Bi(z−1) can be expressed as
A
(
z−1

)
= det

(
I − Apz−1

)
Bi
(
z−1

)
= Cadj

(
I − Apz−1

) p−1∑
t=0

AtBiz
−
τbs
p .

(24)

III. VARIATIONAL BAYESIAN (VB) METHOD FOR
NONLINEAR MULTIVARIABLE OVER-SAMPLING
CLOSED-LOOP STRUCTURE
The V1(k) is a white noise with zero mean and the variance
δ−1, θ1 is the normal distribution with the variance λ, then
the probability density of θ1 can be expressed as

P (θ1 | λ) = N
(
0, λIdim(θ1)

)
. (25)

The V1(k) is the normal distribution, assuming the
variance λ is the Gamma distribution, then the probability
density of λ can be expressed as

P(δ | α, β) = gamma (α, βIn×n) (26)

where α is the shape parameter and β is the scale parameter.
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Referring to (25) - (26), the prior probability distribution
of2 =

{
θ1, δ

−1
}
can be expressed as

P(2) = P(θ1 | λ)P(δ | α, β). (27)

Through the Variational Bayesian (VB) method, the poste-
rior probability distribution of2 can be expressed as

F(Q(2))

=

∫
Q(2) logP(Y1 | 2)d2

+

∫
Q(2) log

P(2)
Q(2)

d2

=

∫
Q(2) logP(Y1 | 2)d2

+

∫
Q(2) logP(2)d2−

∫
Q(2) logQ(2)d2.

(28)

By taking the first-order partial derivative of (28) with
respect to θ1, referring to (27) the posterior probability
distribution Q(θ1) can be achieved as

Q(θ1)

= P(Y1 | 2)P(2)

= P(Y1 | 2)P(θ1 | λ)P(δ | α, β)

=
1
Cθ

exp
(
−

1
2λ
θT1Iθ1

)
exp

(
N∑
k=1

−
δ
(
Y1(k)−8T

1(k)θ1
)2

2

)

=
1
Cθ

exp


−

1
2θ1

T
[
λ−1I +

N∑
k=1

81(k)δ81T (k)
]
θ1

+

N∑
k=1

δY1(k)81T (k)θ1


(29)

where P(Y1 | 2) is the normal distribution with mean value
8T
1(k)θ1 and variance δ−1. Cθ is a constant and

Cθ

=2π (δ−1λ)
1
2

[
βαδα−1

0(α)
exp

(
−βδ−

N∑
k=1

δ

2
Y1(k)Y1T (k)

)]−1
.

Based on (29), it is obtained that θ1 is a normal
distribution, the mean value θ1 and the variance Var(θ1) are
shown as follows

θ1 = Var(θ1)
N∑
k=1

δY1(k)8T
1(k), (30)

Var(θ1) =

[
λ−1I +

N∑
k=1

81(k)δ8T
1(k)

]−1
, (31)

θ
2
1 =

〈
θT1θ1

〉
Q(θ1)

= Var (θ1)+ θ1θT1. (32)

By taking the first-order partial derivative of (28) with
respect to δ, referring to (27) the posterior probability
distribution Q(δ) can be achieved as

Q(δ)

= P(Y1 | 2)P(2)

= P(Y1 | 2)P(θ1 | λ)P(δ | α, β)

=
1
Cδ

exp

[
N∑
k=1

1
2
ln(δ)−

1
2
δ
(
Y1(k)−8T

1(k)θ1
)2]

δα−1 exp (−βδ)

=
1
Cδ

exp

 N∑
k=1

1
2
ln(δ)−

1
2
δ


(Y1(k)YT1(k)
−Y1(k)θT181(k)
−8T

1(k)θ1Y
T
1(k)

+81(k)T θ
2
18

T
1(k))




δα−1 exp (−βδ)

=
1
Cδ
δα+

1
2N−1

exp

−δ
βI + 1

2

N∑
k=1


(Y1(k)YT1(k)
−Y1(k)θT181(k)
−8T

1(k)θ1Y
T
1(k)

+81(k)T θ
2
18

T
1(k))




(33)

where Cδ is a constant and Cδ = 2π (λ)
1
2 [ β

α

0(α) exp(−
1
2λθ

T
1

Iθ1)]−1.
(33) shows that δ is a Gamma distribution with

δ̄ = (2α + N )(2βI + γ )−1 (34)

where γ is expressed as

γ =

N∑
k=1

(
Y1(k)YT1(k)− Y1(k)θ

T
181(k)

−8T
1(k)θ1Y

T
1(k)+8

T
1(k)θ

2
18

T
1(k)

)
. (35)

Referring to (30) - (32), (34), and (35), where k is the
lable such as U1(k), h is the iteration number, the recursive
steps of the multivariate Variational Bayesian (VB) method
are obtained as follows:

1.Initialization: when k ≤ 0, define 81(k) = 0, U1(k) =
0, and a non-negative number ε0.

2.Define initial parameter 2, the initial iteration number
h = 1, and non-negative numbers λ, α, β.
3.Update θ

h+1
1 , Var (θ1)h+1, and

〈
θ1θ

T
1

〉h+1
Q(θ1)

by (30) - (32).
4.Update δ̄h+1 by (34) - (35).
5. If

∥∥∥θh+11 − θ
h
1

∥∥∥ ≤ ε0, then θh+11 is the estimated value
of θ1. Otherwise, h = h+ 1, and repeat step 3.

IV. AMPLITUDE-LIMITED VARIATIONAL
BAYESIAN (ALVB) METHOD FOR NONLINEAR
MULTIVARIABLE OVER-SAMPLING STRUCTURE
A. AMPLITUDE-LIMITED VARIATIONAL BAYESIAN (ALVB)
METHOD FOR COLORED NOISE
When V1(k) is a colored noise, the matrix 81(k) contains
the unknown noise e1(k). The estimate of the e1(k) can be
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expressed as

ê1(k) = Y1(k)−81(k)θ̂1. (36)

In the algorithm iteration, the estimated value ê1 might not
converge caused by the huge difference between the initial
value θ̄1 and the true value θ1. Therefore, define the ê1
satisfy an amplitude limiting rule

ê1(k) =

 ê11(k)
...

ê1n(k)

 (37)

where

ê1i(k) =


κ, ê1i(k) ≥ κ
ê1i(k), −κ < ê1i(k) < κ

−κ, ê1i(k) ≤ −κ.

(38)

In (38), κ is defined as a large positive number.
According to (30) - (38), where k is the lable such asU1(k),

h is the iteration number, the recursive steps of the mul-
tivariable Amplitude-Limited Variational Bayesian (ALVB)
method for colored noise are obtained as follows:

1. When k ≤ 0, define 81(k) = 0, U1(k) = 0, and a
non-negative number ε0.
2. Define initial parameter 2, the initial iteration number

h = 1, and non-negative numbers λ, α, β.
3. ê1 is estimated by (36) - (38).
4. Update θ

h+1
1 , Var (θ1)h+1, and

〈
θ1θ

T
1

〉h+1
Q(θ1)

by (30) - (32).
5. Update δ̄h+1 by (34) - (35).
6. If

∥∥∥θh+11 − θ
h
1

∥∥∥ ≤ ε0, then θh+11 is the estimated value
of θ1. Otherwise, h = h+ 1, and repeat step 4.

B. ERROR EXPRESSION OF NOISE ESTIMATION
ε is defined as the error between the true value θ1 and
the initial value θ

1
1, meaning ε = θ1 − θ

1
1. The

Multi-input Multi-Output (MIMO) system can be divided
into Multiple-Input and Single-Output (MISO) subsystems,
ê1i(k) can be estimated in each subsystem when h = 1. The
relationship between ê1i and e1i satisfies

I1ij(k) =


0, k 6= na + (n× nb × nd + nc) (i− 1)
+ (na + nb + j)

1, k = na + (n× nb × nd + nc) (i− 1)
+ (na + nb + j) ,

(39)

1e1i(k) = ê1i(k)− e1i(k). (40)

The relationship between 81i(k) and 8̂1i(k) satisfies

8̂1i(k) = 81i(k)+
nc∑

qc=1

1e1i(k − 1)I1ij. (41)

Referring to (8), (37), and (39) - (41), when k = 1, (40)
can be expressed as

ê1i(1) = y1i (1)−81i(1)θ̄
1
1

= y1i (1)−81i(1) (θ1 − ε)

= e1i(1)+81i(1)ε, (42)

1e1i(1) = 81i(1)ε. (43)

Referring to (8), (37), and (42) - (43), when k = 2, (40)
can be expressed as

ê1i(2)

= y1i(2)− 8̂1i(2)θ̄
1
1

= y1i(2)− 8̂1i(2) (θ1 − ε)

= y1i(2)− (81i(2)+1e1i(1)I1i1) (θ1 − ε)

= e1(2)+81i(1)ε2I1i1 + (81i(2)− c1i181i(1)) ε,

(44)

1e1i(2)

= 81(1)ε2I1i1 + (81i(2)− c1i181i(1)) ε

= 81i(1)ε2I1i1 + R1i(2). (45)

Therefore, based on iteration above, (40) can be expressed
as

1e1i(k) = 81i(1)ε (I1i1ε)k−1 + R1i(k)

= 81i(1)εk (I1i1)k−1 + R1i(k). (46)

(46) shows that if the initial error εin > 1 and when k →
∞, e1i(k) might not converge, shown as

lim
k→∞
|1e1i(k)| ≥ |81i(1)ε‖εin|k−1 − |R1i(k)|

≈ |81i(1)ε| |εin|k−1 = +∞. (47)

Referring to (47), ê1i(k), 8̂1i(k), and θ1 might not
converge to the achieved accuracy during the whole algorithm
iteration. To solve the problem above, ê1i(k) would be
defined in a certain range, which ensures the algorithm
operate well, the θ

h
1 and ê1i(k) converge to the achieved

accuracy.

V. SIMULATIONS
The benchtop neutralization system studied by Henson and
Seborg is taken as an example for simulation. The base
stream Q1 is NaOH of 0.003 mol/L, the buffer stream Q2
is NaHNO3 of 0.03 mol/L, and the acid stream Q3 is HNO3
of 0.003 mol/L. Lakshminarayanan proposed that the process
above can be expressed by a 2 × 2 Hammerstein model.
The outputs of the model are the liquid level h(y1) and the
PH value PH (y2), the inputs are the base stream Q1 (u1)
and the acid stream Q3 (u2). The process above operated in
the over-sampling closed-loop structure, and the controllers
are K1 and K2. Experiments for Model-1 and Model-2 are
conducted. The specific experimental parameters are as
follows:

ζ1(k) = u1(k)+ 0.2735u21(k)+ 2.347u31(k),

ζ2(k) = u1(k)− 2.0381u22(k)+ 10.869u32(k). (48)

Model-1 is (49) as shown at the bottom of the next page.
Model-2 is (50) and (51) as shown at the bottom of the next

page.
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Example of white noise:

K1

(
z−1

)
=

0.1− 0.06 z−1

1+ 0.6 z−1
,

K2

(
z−1

)
=
−0.012− 0.06 z−1

1− 0.9 z−1
,

H
(
z−1

)
=

 1
1− 1.8656z−1 + 0.8717z−2

1
1− 1.8656z−1 + 0.8717z−2

 . (52)

Example of colored noise:

K1

(
z−1

)
= 0.1+ 0.06z−1,

K2

(
z−1

)
= −0.012− 0.06z−1,

H
(
z−1

)
=


1+ 1.5z−1 + 2z−2

1− 1.8656z−1 + 0.8717z−2
1+ z−1 + 3z−2

1− 1.8656z−1 + 0.8717z−2

 . (53)

A. VARIATIONAL BAYESIAN (VB) METHOD IN
MULTIVARIABLE NONLINEAR OVER-SAMPLING
CLOSED-LOOP STRUCTURE FOR WHITE NOISE
When V1(k) is white noise, Variational Bayesian (VB)
method and Recursive least squares (RLS) are separately
used to achieve the multivariable nonlinear over-sampling
closed-loop structure model parameters. Here first Model-1
is taken as the experimental model. The relative errors of
RLS and VB are shown in Fig. 2 and Fig. 3, respectively.
The parameter estimates of the two algorithms are shown
in Tables 1 and 2. The probability distributions of the
parameter estimates are shown in Fig. 4 and Fig. 5. The
above identification experiments are repeated for Model-1
and Model-2. The statistical results are shown in Fig. 6.

Fig. 2 and Fig. 3 show that the identification experiments
of multivariate nonlinear over-sampling closed-loop structure
model can achieve the accuracy of the parameter estimates,
without the extra excitations and the controller order is
lower than the model order. The structure widens the
identifiability of multivariable nonlinear models. Fig. 6 and
Tables 1 and 2 shows that the experiment results of the
multivariate nonlinear over-sampling closed-loop structure

FIGURE 2. Relative error of RLS.

FIGURE 3. Relative error of VB.

model, the error of VB is smaller than that of RLS under the
same conditions. Fig. 4 and Fig. 5 show that the probability
density reaches the maximum at the true value θ1.

B. AMPLITUDE-LIMITED VARIATIONAL BAYESIAN (ALVB)
METHOD IN MULTIVARIABLE NONLINEAR
OVER-SAMPLING CLOSED-LOOP STRUCTURE FOR
COLORED NOISE
When V1(k) is colored noise, Amplitude-Limited Varia-
tional Bayesian (ALVB) method, Variational Bayesian (VB)

Gc

(
z−1

)
=


0.0699z−1 − 0.0632z−2

1− 1.8656z−1 + 0.8717z−2
0.0069z−2

1− 1.8656z−1 + 0.8717z−2
0.0042z−2

1− 1.8656z−1 + 0.8717z−2
−0.1748q−1 + 0.1679q−2

1− 1.8656z−1 + 0.8717z−2

 . (49)

Gc

(
z−1

)
=


0.0599z−1 − 0.0732z−2

1− 1.8656z−1 + 0.8717z−2
0.0069z−2

1− 1.8656z−1 + 0.8717z−2

0.0042z−2

1− 1.8656z−1 + 0.8717z−2
−0.1848z−1 + 0.1579z−2

1− 1.8656z−1 + 0.8717z−2

 . (50)

R(k) =
[
0
0

]
, p = 4. (51)
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TABLE 1. θ11 With the White Noise as the Output Noise.

TABLE 2. θ12 With the Colored Noise as the Output Noise.

FIGURE 4. Probability distribution of parameter θ11.

FIGURE 5. Probability distribution of parameter θ12.

method, and Recursive least squares (RLS) are separately
used to achieve the multivariable nonlinear over-sampling
closed-loop structure model parameters. Here first Model-1
is taken as the experimental model. The relative errors of
RLS and ALVB are shown in Fig. 7 and Fig. 8, respectively.
The parameter estimates of the three algorithms are shown

FIGURE 6. Relative errors of repetitive experiments for Model-1 and
Model-2.

FIGURE 7. Relative error of RLS.

in Table 3 and Table 4. The probability distributions of the
parameter estimates are shown in Fig. 9 and Fig. 10. The
above identification experiments are repeated for Model-1
and Model-2. The statistical results are shown in Fig. 11.
Table 3 and Table 4 show the ALVB method overcomes
the shortcomings that the traditional VB method might not
converge, which satisfies the situation that the output is
colored noise. Fig. 7, Fig.8, Table 3, Table 4, and Fig. 11 show

VOLUME 8, 2020 224709



B. Xu et al.: Over-Sampling ALVB Method for the Identification of Hammerstein Model

TABLE 3. θ11 With the White Noise as the Output Noise.

TABLE 4. θ12 With the Colored Noise as the Output Noise.

FIGURE 8. Relative error of ALVB.

FIGURE 9. Probability distribution of parameters θ11.

that the over-sampling closed-loop structure ALVB method
not only does not need extra excitation but also achieve high
parameter estimates accuracy compared with that of RLS.
Fig. 4 and Fig. 5 show that the probability density reaches
the maximum at the true value θ12.

FIGURE 10. Probability distribution of parameters θ12.

FIGURE 11. Relative errors of repetitive experiments for Model-1 and
Model-2.

VI. CONCLUSION
This article proposes a multivariable nonlinear over-sampling
closed-loop structure model when the multivariable non-
linear traditional closed-loop structure model cannot be
identifiable. A Variational Bayesian (VB) method based
on the multivariable over-sampling closed-loop structure
Hammerstein model is proposed, which improved the
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traditional VB method. Also, in this article, we pro-
pose an Amplitude-Limited Variational Bayesian (ALVB)
method based on the multivariable nonlinear over-sampling
closed-loop structure model which is applicable for colored
noise. The simulations show that the VB method based on
multivariable nonlinear over-sampling closed-loop structure
model satisfy the identifiability, but also has a higher
identification accuracy than RLS. Under the situation that
the traditional VB method might not converge caused by
the colord output noise, the ALVB method satisfy the
convergence and has a higher accuracy advantage over
the traditional VB method. Therefore, the VB and ALVB
methods based on the multivariable nonlinear over-sampling
closed-loop structure model are suitable for the large plant
process identification.
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