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ABSTRACT The Internet of Things (IoT) devices are being widely deployed and have been targeted
and victimized by malware attacks. The mathematical modelling for an accurate prediction of malicious
spreads of botnets across IoT networks is of great importance. Suppose the spread of IoT botnets can be
predicted using mathematical models, the security community can then take the necessary steps to deter an
outbreak of botnet attacks and minimize the damage caused by malware. This paper surveys mobile malware
epidemiological models to understand the mechanisms and dynamics of malware spread for IoT botnets.
We describe the characteristics of IoT botnets based on the Susceptible-Infection-Recovery-Susceptible and
Susceptible-Exposed-Infection-Recovery-Susceptible epidemic models. These models extend the traditional
SIR (Susceptible-Infection-Recovery) model by adding extra states and parameters specific to the epidemic
spread of IoT botnets. We use mathematical modelling to simulate complex spreading processes of IoT
botnets and interpret the influence of an epidemic on distributed denial of service attacks. We use MATLAB
and R to illustrate the use of a stochastic IoT botnet transmission model in the identification and mitigation
of challenges towards minimizing the impact of devastating IoT botnet epidemics.

INDEX TERMS IoTmalware, botnet, Mirai, propagation modeling, information-theoretic security, malware
detection and mitigation

I. INTRODUCTION
Interests of cyber criminals are diversifying to a widespread
adaption of technologies for malicious activities. They are
constantly adapting and maliciously evolving their meth-
ods of using modern technologies, including the Internet
of Things (IoT) and its industrial variant that is referred
to as IIoT. IoT devices have evolved with many business
sectors due to the convergence of real-time analytics and
integrated sensors and data collection systems, which collect
and transmit data from on-site devices to the above layers
for edge and fog computing. Since most standards governing
IoT networks are de facto and applied to many industries
today, IoT and IIoT devices are amongst systems targeted by
malware developers. IoT sensors are generally connected to
other edge devices across heterogeneous networks, including
small/macro base stations. As edge computing becomes more
widely distrusted, IoT and IIoT devices becomemore suscep-
tible to malware infections that spread to the rest of network
devices.
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The majority of IoT and IIoT devices, due to their lim-
ited processing and memory resources, lacks basic security
and protection mechanisms [1]. The Mirai botnet malware
[2] has proved that IoT devices, including IIoT and Social
Internet of Things (SIoT) devices, can be compromised by
a basic password attack [3]. Mirai is an IoT botnet attack
that targeted French Web-Host and cloud service providers.
Mirai manipulates millions of IoT systems to trigger the most
complex decentralized Distributed Denial of Service (DDoS)
attack known to date, with data traffic spikes of 1.1 ter-
abytes per second [2]. A combination of factors, such as the
use of free and powerful Internet-wide scanning tools and
the widespread practice of weak default passwords on IoT
devices, simplifies the operation of the botnet and causes
numerous heterogeneous devices to be infected. Mirai has
produced many variants that are still unknown to the security
communities [4].

DDoS attacks on IoT networks have reached an unprece-
dented level [2], [5], and therefore, the demand for detecting
IoT botnet attacks in a minimal time has become crucial to
minimize the risks associated with such advanced attacks.
Advanced hybrid peer-to-peer IoT botnets have been a threat
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to all connected mobile devices [6], [7]. The combination of
IoT devices and other wireless-enabled devices that use short
or long-range wireless technologies such as Bluetooth (BT)
or LoRa enables a mixture of heterogeneous devices to com-
municate. This can result in a four-time faster spread of botnet
malware than a classic mobility model for homogeneous
systems, such as botnet spreading presented in [8] and [9]
that applied the random walking model for the launch of an
attack. Immediate detection help to increase network secu-
rity by triggering alerts and disconnecting infected devices
such as internet-accessible video cameras from the network,
which may prevent the botnet from spreading, thereby lim-
iting network outbound attacks. But is it possible to imme-
diately detect the spread of botnets and disconnect infected
devices?

IoT-based botnets evolve in a series of operating phases
for communicating and fetching malicious packages [2]:
(1) reconnaissance, (2) report, (3) initial infection, (4) spread,
(5) control of command and control (C&C) servers, and
(6) execution of attacks. Most previous studies on botnet mal-
ware detection applied supervisedmachine learning to predict
malicious traffic [10]. IoT botnets C&C servers, however, use
a variety of communications protocols, including HTTP/S,
Internet relay chat (IRC), and peer-to-peer protocols, which
do not necessarily contain traits of malicious traffic. Also,
modern IoT botnets use various resilience techniques such
as cryptographic algorithms, obfuscation, mutation, fast-flux
technique [11] and algorithms that generate a significant
number of domain names, i.e., Domain Generation Algo-
rithm [12]. These techniques can be fetched to actual IoT
botnet malware as a payload by a C&C server. The C&C
servers can then remotely manage the operations of the bot-
net malware. To minimize threats of IoT botnet malware,
an effective detection method with high precision is required.
Such a detection method must also be adaptable for low-cost
computational devices and take no time to detect malicious
operations. For early detection, though it is vital to investigate
and understand how botnet malware is spread.

The aim of this study is to critically review the
mathematical models borrowed from biology to illustrate
the spread of malware. Biological models have played
an important role in identifying strong and weak mal-
ware attributes for the elimination of outbreaks. In this
study, we also adopt the Susceptible-Infection-Recovery-
Susceptible (SIRS) and Susceptible-Exposed-Infection-
Recovery-Susceptible (SEIRS) models for determining
(alternative) future lines of investigation as a possible coun-
termeasure of initial infection of IoT botnet malware and
its spread. In general, we aim to investigate the following
research challenges with the spread of IoT botnets: given the
presence of an initial botnet in uncertain locations, how do
we predict post-initial infection and minimize the severity of
the DDoS attack?

Prior research including [13] has applied deterministic
models for accurate prediction of malicious propagation over
networks. However, in the case of Layer-3 IoT botnets,

FIGURE 1. Mirai looking for Random IP addresses globally.

the initial infection and propagation are not deterministic as
IoT botnets aggressively scan for IP addresses to randomly
find their victims. We consider the application of the stochas-
tic differential equation (SDE) to find optimal control strate-
gies for future outbreaks of IoT botnet malware. Specifically,
we investigate the time required for detecting malicious traf-
fic and disconnecting infected devices from networks (Hon-
eyBot). The remainder of the paper is structured as follows.
Section II describes the Mirai botnet and its new variants.
Section III presents an analysis of mathematical models and
their related literature. Section Section IV formalizes the
IoT malware propagation. Section V simulates predictions
of the IoT botnet outbreak. Finally, Section VI summarizes
and provides concluding remarks and directions for future
research.

II. MIRAI BOTNET AND ITS NEW VARIANTS
Mirai is worm-like malware designed to contaminate IoT
devices and has begun to infect IoT devices in major attacks
since August 2016 [2]. Mirai made international headlines in
September 2016 with massive DDoS attacks targeting Krebs-
On-Security and OVH [14]. Mirai spreads by first entering
into a quick scanning phase where it scans pseudo-random
IPv4 addresses on different application protocols such as
Telnet. Once Mirai detects a vulnerable (exposed) device,
it initiates a brute-force attack through a Telnet connection
using ten (10) username and password pairs selected ran-
domly from a pre-configured set of 62 passwords. Mirai is
equipped with free Linux utilities as an arsenal of weapons
to find random IP addresses (scanner) to plan brute-force
attacks by the botnet. Figure 1 illustrates Mirai’s function
of finding random IP addresses globally. The process of
discovering random IP addresses of IoT devices indicates
that Mirai behaves stochastically and not deterministically
[15]. The goal of the Mirai botnet is to spread an initial
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FIGURE 2. Mirai conceptual model in a finite-state machine. P0: Initial
infection, P1:Quick scanning, P2: Reporting open ports back to C&C
server, P3: Updating the list of enslaved devices, P4: Reporting vulnerable
devices, P5: Loading malicious package, P6: Uploading and executing
malware package and P7: Collecting slaves.

infection tomisconfigured apps and devices and then to attack
a target server as soon as it receives a corresponding com-
mand from the botnet that is controlled by the author or the
bot-master.

After the first successful authentication, Mirai sends the
victim’s IP address and related password to a defined
report server. A different loader software infects the iden-
tified exposed IoT devices asynchronously through logging
in, evaluating the underlying machine environment, and
finally by uploading and executing the malware package [3].
Through an effective infection, Mirai tries to hide its exis-
tence by deleting the uploaded malware file and obfuscating
its malicious process name in a pseudo-random alphanumeric
sequence. The major IoT devices thatMirai has compromised
include but are not limited to routers, IP camera/DVR, storage
and firewall over the CWMP, Telnet, HTTPS, FTP and SSH
protocols. Mirai had infected more than 65,000 IoT devices
by the end of its first day of being active [3]. In epidemiology,
this means that the transmission coefficient of Mirai infection
was 0.75231 devices per second. However, during its peak
infection, Mirai has globally spread and compromised more
than 600,000 IoT devices. Figure 2 illustrates a conceptual
model of Mirai in a finite-state machine.

Once Mirai’s source code was released to the research
community, it quickly led to the development of some effec-
tive detection and defensemechanisms. However, within only
two months of the release of the source code, the number of
botnet instances increased and a wide range of Mirai variants
emerged [2]. As of the time of writing of this article, Mirai
continues to exploit new vulnerabilities in configurations for
the same or cross-platform types of IoT devices. A new
Mirai variant called Mukashi has used new vulnerabilities of
CVE-2020-9054 and has infected Zyxel’s network-connected
storage (NAS) devices [16]. This remote code execution
vulnerability of CVE-2020-9054 received a critical rating
of 9.8 out of 10, which has since been patched. It is not
surprising that the malicious actors were taking advantage of
this vulnerability to wreak havoc on the IoT domain. It was

originally discovered after the selling of its exploit code as a
0-day attack.

III. A SHORT REVIEW ON MALWARE SPREAD AND
MATHEMATICAL MODELS
The aim of mathematical modeling is to transfer problems
that arise within a real world domain to mathematical lan-
guages so that the conceptual and numerical analyses can be
carried out on the issues. In reality, mathematical modeling is
the best solution when trying to gain knowledge from experi-
ments that are either very expensive to perform or that would
require an excessive amount of time. The main objective of
usingmathematical models of the spread ofmalware is to pro-
vide a critical analysis to identify weaknesses and strengths
of the malware and, from there, to identify feasible future
defense lines. Themajority of proposedmathematical models
are based on differential equations, which explain the behav-
ior of malware spread [17]. Analytical epidemic models have
been considered by many technology researchers to investi-
gate and describe traditional malware propagation behaviors
[13], [18], [19]. In that respect, traditional epidemic models
applied to cyber security problems include SI (Susceptible-
Infection), SIS (Susceptible-Infection-Susceptible), and SIR
(Susceptible-Infection-Recovery).

In short, the SI model assumes that mobile devices are
susceptible to malware infections after successful commu-
nications with an initially infected mobile device, and that
the newly infected device can not be immunized. The SIS
model assumes that a susceptible mobile device would
change its condition after an initial contact with an infected
device, which makes it becomes infected. The newly infected
device could not develop an infection immunization and
would become susceptible to new infections. As per the SIR
model, a susceptible device becomes infected from previ-
ously infected devices and then the system develops immu-
nity and recovers from the infection, i.e., this state is called R.
In fact, IoT devices are less likely to gain immunity and are
continuously vulnerable to new infections, and are threatened
by either a zero-day botnet or new versions of a current
botnet. Think of this as the flu season during which everyone
is susceptible to the flu virus, irrespective of having a flu
vaccine. The stochastic epidemic model differs according to
the basic concepts of the time unit and the status of random
variables. For illustration, the model in the stochastic differ-
ential equation (SDE) focuses on a diffusion method where
both state and time variables are assumed to be constant.
The rest of this section provides the details of several models
employed to predict the spread of mobile malware.

A. BLUETOOTH WORM YAN ANALYTICAL MODEL
A theoretical model that characterizes the transmission
dynamics of Bluetooth (BT) worms has been thoroughly
studied by Yan and Eidenbenz [9], [20]. In the proposed
system, the influence of mobility patterns on the spread of
BT worms can be reviewed by adopting input parameters,
such as the average node degree, the average node rate and
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the distribution of the link duration. The authors claimed
that their simulation results show that their model precisely
predicts the complex distribution of BT worms. The formula
is used to accurately estimate the distribution curve of BT
worms in large cities like Los Angeles. For this model,
the average number of infected mobile devices is denoted by
i(t) in the period (t), the user population density is denoted
by p(t) at time t and the infection rate is denoted by i(tk ),
where the tk (k ≥ 0). The next mobile infections because of
the BT worm spread is denoted by tk+1 and i(tk+1). Hence,
the slope of a curve of the spread of the BTworm is calculated
as follows:

i(tk + 1) =
i(tk )p(tk )

i′(tk )+ (p(tk )− i′(tk ))e−ψ
(1)

a(t) = � (t, 1,Ting(t), < 0, 0, 0, 1, 0 >), (2)

where ψ = −α (tk ).p(tk )/(p(tk ) − i′(tk )), p(tk ) indicates the
average density of infected devices at time tk . This model is
limited to the large number of population and it is unlikely to
present heterogeneous IoT devices.

B. RHODES AND NEKOVEE WIRELESS WORM MODEL
The impact of demographic factors and node behavior on
dynamic outbreaks of BT worms, which use the SIP math-
ematical model, has been considered in [21]. Considering the
SIP model with a population of N , where ρ is the number
of active individuals residing in different areas and v is the
mean of communications speeds, it is said that a BT worm
can spread with a probability of p to other susceptible nodes
within the BT range (R) if there exists a single infected node
in each area. Therefore, when a BT worm is spread to a
network, each node can be in any of the following states: (S :)
susceptible, (I :) infected, or (P :) recovered. Therefore, in a
fixed size population, the spread of BT worms is defined as
the following equations:

SIP =



ds
dt
= −2 Rpvp SIN

dI
dt
=2 Rpvp SIN − δI

dP
dt
= δI

(3)

C. MARTIN SIS MODEL
Martin et al. [22] presented a SIS epidemic model that mea-
sured the propagation of a mobile worm. In this model, let I
be the number of mobile devices infected by other infected
devices in its vicinity. As a result of the infection, a newly
infected device is moved from the susceptibility state to the
infection state. Let S be a set of unprotected mobile devices
within a total population of N devices where N equals to
S + I . The transition parameters between the states are α
and β, where α reflects the rate at which infected devices are
recovered and returned to the state of susceptibility over a
period of t , and the β parameter represents the transmission
of infections among susceptible and infected mobile devices
based on discrete contacts. Therefore, a model of SIS is given

in Equation 4.

SIS =


dS(t)
dt
=
βS(t)I (t)

N
dI (t)
d(t)
=
αS(t)I (t)

N

(4)

D. THE PROBABILISTIC QUEUING MODEL (MICKENS
MODEL)
A deterministic queuing system to illustrate the spread of
smart-device worms through a short-range wireless network
is presented in [23]. The authors argued that classical epi-
demiological models fail to show the unique characteristics of
mobile networks. Node mobility presents non-homogeneous
communications distributions that cannot be depicted using
simple mobile environments and networks, because previous
models ignore node velocity and the non-homogeneous con-
nectivity. Therefore, they introduced a new infectious mobile
worm spread framework using a probabilistic queue predic-
tionmodel (for abstract data type) to of infected nodes. IfP(k)
shows the distribution of cellular connectivity, the queuing
system is computed by placing Nk = P(k)N networks within
each Qk queuing system. Therefore, the general homoge-
neous characteristics of each probabilistic queue infection are
modeled as follows.

dIk
dt
= βKiIk (1− Ik )− δIk (5)

The individual node infection in the population is derived
by
∑N−1

k=0 [IkNk ]. The researchers demonstrated the influence
of node speeds on the constant-state level of network infec-
tions and described a conceptual stochastic equivalent to the
deterministic model.

E. TWO-LAYER PREDICTION MODEL OF SMARTPHONE
MALWARE PROPAGATION BY HUMAN BEHAVIORS
A two-layer geographical model to illustrate the spread
of BT/SMS (Short Message Service) based mobile worms
within a limited geographical area, consisting of cellular
towers and a practical communications channels consisting
of mobile devices is studied in [24], [25]. The inner layer
of the model is defined as a mobile network allowing the
recognization of geographical distributions of nodes. The BT
worms can propagate through this layer using location data
of mobile nodes. The outer layer of the model is a logical
network that relays each phone’s contact list. In this model,
G[N ][N ] represents a two-dimensional network with respect
to the geographical network, therefore a network node Ti
is represented using a tuple list < r, p(x, y), ntp,Tlink >

in which r is defined as the coverage area of the network
node, p(x, y) is an infection vector drives form Ti, ntp is
defined as the total number of mobile devices connecting to
Ti, and Tlink is a set of connections Ti establishes within its
vicinity.

In the logical network, an individual vi device is defined
as < Tid , l(x, y), on(1) − off /0, ton, pclick , Plink > in
which Tid is the ID of the cellular tower that extends a
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cellular/wireless communications service of the provider for
vi, l(x, y) is the location of vi, on or off is a binary function
used to validate whether or not vi is available, ton logs the time
when vi is available, pclick is the likelihood of a user clicking
and opening an email, and Plink is the contact list of vi. In this
model, the impacts of human behavior and their interactions
are measured for propagation of SMS and BT-based mobile
worms using the SIR epidemic model. However, this model
is not truly random and cannot handle the large number of
nodes and spreading IoT botnet malware.

F. SI ANALYTICAL MODEL FOR HYBRID MOBILE
MALWARE
An SI mathematical model to examine the propagation veloc-
ity and severity of hybrid mobile worms targeting wire-
less communications channels, such as Commwarrior worm,
was introduced in [26]. In this research, authors considered
Multimedia Messaging Service (MMS) communications for
spreading a mobile worm fromNode A to Node B as an initial
infection at the time t . The BT communications may then be
used to propagate the worm to Node C who is in the vicinity
of Node B. The differential equation in 6 represents anMMS/
BT epidemic.

dIMMS (t)
dt

= βMMS
S(t)(ηMMS − 1)

N
I (t) (6)

The authors assumed that an individual infection period
may start at time r by being in the locality of an origin
infection by MMS and it continues to infect other Node
toward S time units. However, The incremental spatial node
infection at time t of all infection periods presents in the
following equation:

dIBT (t)
dt
=

∫ 0

t
I ′MMS (τ )G

′(τ, t − τ )dr (7)

The SI analytical model is based on Node vicinity and
it assumed that malware spread through MMS and BT, this
infection method is not compatible for the large population
specially in case of IoT botnet.

G. RAMACHANDRAN AND SIKDAR’S SEIR MODEL
Ramachandran and Sikdar [27] studied the SEIR analytical
model to investigate the influence of different spread meth-
ods, like downloading a virus package from either the Internet
or peer-to-peer (P2P) network channels, and transferring via
BT, Wi-Fi, infrared, MMS, or SMS. The proposed model
consists of four equations which have been used to character-
ize each location where the individual with smartphone may
visit. The location are denoted by P (patches), letmpq denotes
the transfer frequency from the state patch q to patch p.Where
the Sp, Ep, Ip, and Rp denote the rate of location changing
from susceptible to exposed, exposed to infected or to the
recovered state of the populations from the patch state p(1 ≤
p ≤ P). This SEIR model is described in Equation 10. The
newmalware are mutating and they can be susceptible to new

variant of the same malware family.

dSp
dt
= dp(Np − Sp)− pponγp(t) Sp − p

p
onβpSp

Ip
Np

−

P∑
i=1

α(1− p)Sp
It
Nt
+

P∑
q=1

mpqSq −
P∑
q−1

mpqSp

dEp
dt
=

i=1∑
P

α(1− p)Sp
It
Nt
+

q=1∑
P

mpqSq − mpqEq

dIp
dt
= Ponp γp(t) Sp + P

p
onβpSp

Ip
Np
− (dp + δp)Ip

+ εpEp +
P∑
q=1

mpqIq −
P∑
q=1

mpqIp

dRp
dt
= δpIp − dpRp +

P∑
q=1

mpqRq −
P∑
q=1

mpqRp

(8)

where Np = Sp + Ep + Ip + Rp; Sp,Ep, Ip,Rp ≥ 0 at t = 0

H. XIA’S SEIRD MODEL
Xia et al. [28] studied a mathematical model for MMS and
BT hybrid malware spread, i.e., Commwarrior. They argued
that mobile devices can fall into one of five states of Sus-
ceptible (S), Exposed (E), Infected (I ), Recovered (R), and
Dormancy (D). The authors defined 12 transitions between
states: S H⇒ I , I H⇒ D, D H⇒ I and E H⇒ I (β)
in the case of BT spread; S H⇒ E , E H⇒ S, E H⇒ R,
R H⇒ E and E H⇒ Iµ in the case of MMS/SMS
propagation, and S H⇒ R, I H⇒ S and I H⇒ R for both
SMS/MMS and BT spread modes. The following equation
describes the SEIRD model.

dS(t)
dt
= PESE(t)+ PIS I (t)− βkS(t)I (t)− λ(t)S(t)

−PSRS(t)
dE(t)
dt
= λ(t) S(t)− βkE(t) I (t)− (µ+ PES + PER)E(t)

dI (t)
dt
= βK (S(t)+ E(t))I (t) + µE(t)+ θD(t)

−(γ + PIS + ε)I (t)
dR(t)
dt
= γ I (t)+ PERE(t)+ PSRS(t)

dD(t)
dt
= εI (t)− θD(t)

N = S(t)+ E(t)+ I (t)+ R(t)+ D(t)

κ = σ ( ν
√
4r2 − (1t)2v2 + πr2 −

π

4
(1t)2v2)− 1

λ(t) = ωη
I (t)
N

S(t)
S(t)+ I (t)

(9)

where β is the rate of malware infection; κ is the average
of the number of mobile nodes; η is the likelihood that an
infected node propagates a wireless worm to its contact list;
γ is the likelihood that an infected mobile phone receives
security support to eliminate the infection; µ is the likeli-
hood that an exposed mobile phone will transition to the
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infected state; ε is the likelihood that an infected phone
moves to the dormancy state when the battery is exhausted
by the BT module for example, and θ is the possibility
that a dormant mobile node becomes infected after being
recharged.

I. FAN’S SEIR MODEL
A SEIR mathematical model, i.e., Susceptible (S), Exposed
(E), Infected (I) andRecovered (R), for hybrid SMS/MMS/BT
malware propagation was studied in [29]. Their framework
primarily focuses on a preventive immunization mechanism
and the mutation of mobile malware. Also, the authors
discussed the impact of transmission parameters, such as
preventive immunity for users of smart devices, virus repli-
cation, immune composition of MMS/SMS communications
network, and average rate of spreading virus across BT
network.

Smart devices can be in four states, which enables eight
categories of state transitions: S H⇒ E , E H⇒ Iβ2,
and E H⇒ R are the transitions for the SMS/MMS spread
mode, S H⇒ I and E H⇒ I(β1) for the BT spread
mode, and S H⇒ R, RimpliesS, and I H⇒ R for
hybrid malware that use both BT and SMS/MMS communi-
cations modes. Accordingly, the SEIR model is described in
Equation 10.

dS(t)
dt
= −β1κS(t) I (t)− PSES(t)− µ1 S(t)+ PRSR(t)

dE(t)
dt
= PSES(t)− β1κE(t)I (t)− (µ2 + β2)E(t)

dI (t)
d(t)
= β1κ(S(t)+ E(t))I (t)+ β2 E(t)− δI (t)

dR(t)
dt
= µ1 S(t)+ µ2 E(t)+ δI (t) − PRSR(t)

N = ρπγ 2(1− α)+ ρ[31tν

√
r2 −

1
4
(1t)2ν2

+ 2 r2 arccos(
1
21tν
r )]α − 1

PSE = γ (t) = ωη
I (t)
N

S(t)
S(t)+ I (t)

PRS = f (t − t0)ε
(10)

where k is the average of the number of nodes; β1 is the
frequency at which vulnerable or unprotected smartphones
are compromised by BT malware; η is the likelihood that
a contaminated mobile device can transmit malware to its
contact list; β2 is the frequency at which exposed smart-
phones become infected by SMS / MMS; δ is the likeli-
hood that infected devices will be protected from viruses
using security software applications and patches; µ1 is the
probability at which susceptible smart devices would achieve
pre-immunity utilizing security techniques such as upgrading
their anti-virus signature database or patching server; µ2 is
the possibility that infected devices can achieve pre-immunity
by security software, such as upgrading their virus registry
and patching.

J. TWO-DIMENSIONAL (2D) CELLULAR AUTOMATA
MODEL
A two-dimensional cellular automata describing the dynam-
ics of worm spreading from a single node to an entire net-
work was analyzed in [30], [31]. The model incorporates an
infection parameter that calculates the degree of the spread
amongst infected nodes, and an immunity parameter that
provides an approximation of the protection for susceptible
nodes. Let Nu represents the number of vicinity for the u
node. Let 8Cij and Ckl denote the coefficients of interactions
between cellular Cij and its vicinity, that described the proba-
bility of infections between cells vicinity. Let δ be an infection
factor where calculate by the ratio of communication factors
between cellular Cij and its vicinity to the resistance factor
(i.e.,communication detected as malicious), Whereas 8Cij ,
Ckl and δ are listed as continues to follow:

8Cij ,Ckl =
v=1∑
v=Nu

IFvu√
(i− k)2 + (i− l)2

(11)

δ =
8Cij ,Ckl
RF

(12)

where IFvu is the infection parameter that represents the rate
of infections from the node v to the node u (0 ≤ IF ≤
1); and RF is the defense factor that represents the level
of immunity of a node to an infection from another node
(0 ≤ RF ≤ 1).

K. WANG’S SI MODEL
In addition to the mobile malware propagation hybrid model,
i.e., Bluetooth and MMS communications, Wang et al. [32]
described the SI epidemic model for mobile malware prop-
agation and its initial infection. Let I represents infected
mobile users and S susceptible mobile users where (t) is the
total number of mobile users infected over the entire time.
The SI model is defined as follows:

dI
dt
=
βSI
N

(13)

where β =< k > is an effective rate (i.e., successfully con-
tact and infect mobile devices) of infecting mobile devices of
N population; m = 1 is the number of individuals situated in
the vicinity of the mobile tower; < k >= RA = NA/Atower
is the total number of contact mobile devices. A = pr2

denotes the BT mobile contact in the area and the population
density in a transmitter’s coverage area is denoted by r =
N/Atower .

When an infectedmobile user travels to a newmobile tower
zone, this appears as a source of BT infection at the new
location. The researchers suggested more functional spread
models should be considered to evaluate MMS and mobile
viruses by analyzing and predicting the communications con-
nectivity channel in the real-world example.

L. PENG’S DTMC STOCHASTIC MODEL
A discrete stochastic process model for analyzing the
propagation of SMS/MMS based mobile malware was
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presented in [33], which employed the semi-Markov pro-
cesses model and the social relationship graphs. The
researchers identified a state transition framework to under-
stand the nature and complexity of the spread of the
mobile malware, where the semi-Markov method and
an active empiric derivation demonstrates how to inte-
grate human interactions and the semi-Markov process,
i.e., stochastic process, by using a conceptual probabil-
ity limitation analysis. The researchers also implemented
an updated program to receive messages from existing
mobile networks. They obtained a large range of real-world
data-set of mobile communications of the main mobile
service providers in Mainland China. The data-set was
created from 20,000,000 SMS/MMSmessages obtained from
400,000 mobile users in three weeks.

M. LIU’S WSIS MODEL
The research presented in [34] demonstrated that the propa-
gation of mobile malware is heterogeneous rather than homo-
geneous, and therefore should not be seen as an individual
susceptible state of infections as per the past models. The
authors claimed that seeing mobile malware spreading as a
simplistic homogeneous pattern could not explain the effect
of different levels of anti-virus protection on a computer
system. Based on this fact, the authors introduced a theo-
retical WSIS model to illustrate malware spreads through-
out a mobile population. In the WSIS model, additional
states including strongly-protected and weakly-protected are
defined. It is assumed that mobile devices with up-to-date
security software packages are in a strongly-protected state
while devices with no security protection are assumed to be
in a weakly-protected state.

WSIS =



dW (t)
dt
= −εW (t)+ αS(t)− βwW (t)i(t)

dS(t)
dt
= εW (t)− αS(t)− βsS(t)i(t)+ γ i(t)

di(t)
dt
= βwW (t)i(t)+ βsS(t)i(t)− γ i(t)

(14)

N. LIU’S WSI MODEL
A theoretical and numerical simulation of networks with high
degree of heterogeneity leading to the propagation of mobile
malware and diverse networks with lower power exponents
was studied in [34], [35]. The authors introduced a WSI
epidemicmodel 15 for mobile malware propagation, in which
W indicates poorly protected susceptible nodes, S indicates
highly protected susceptible nodes, and I indicates infected
nodes.

In this model, the details of smartphonemalware infections
have been neglected and the total size of the networks are
considered to be fixed. The authors assumed for propagating a
malware in complex networks where the nodes in the network
are considered to be asymptotically, malware can propagates
from one node to another node based on power law distribu-
tion. Figure 3 depicts the conceptual transition diagram of the

FIGURE 3. WSIS transition model.

WSI model in a complex-network.

dWk (t)
dt

= εWk (t)+ αSk (t) − βwkWk (t)2(i(t))

dSk (t)
dt
= εWk (t)− αSk (t)− βskSk (t)2(i(t))− γ Ik (t)

dIk (t)
dt
= βwkWk (t)2(i(t))+ βsKSk (t)2(i(t))− γ Ik (t)

(15)

whereby the preliminary states are Wk (0), Sk (0), Ik (0) ≥
0, k = 1, 2, . . . ,1.
The SEIRS model has been studied for mobile malware

spread in [36]. The author presented a time-space frame-
work to model the spread of mobile malware based on local
Boolean rules that fix the evolution of nodes placed in a
square grid. Relationships between entities are defined by dif-
ferent types of relations, such as the Moore or Von Neumann
models. The author claimed that their method was effective
in achieving the same behavior patterns as the ordinary dif-
ferential equation (ODE) simulation framework.

Traditionally, the Android App market is one source of
mobile malware spread. Meng et al. [39] studied malware
spread between Android markets. This study borrowed the
SI biological model to illustrate malware spread between
android markets such as GooglePlay, QQ, ANZHI, GetJar,
Xiaomi, Mumayi, and APPCHINA with a focus on Chinese
app markets. They have used the Gillespie algorithm for pre-
dicting infection orders. The Gillespie algorithm indicates the
next infection occurrence, and the period until another event
occurs dynamically, based on a sequence of inclination values
e1 . . . en. In each step, the algorithm generates two-interval
random numbers r1, r2 ∈ [0, 1]. r1 is used to evaluate
the next α infected market by testing markets depending
on their inclination, where

∑α−1
x=1 ex < r1

∑i=1
n ei <∑α

x=1 ex . r2 is used to predict a time (t) for the next infec-
tion, with ratio of

∑
ex which ex is the likelihood of the

event e.

IV. FORMALIZING THE PROPAGATION OF IOT BOTNET
MALWARE
A summary of the previous research papers considered in
the previous section is given in Table 1 with their important
infection parameters being highlighting. Previous studies of
malware epidemic have rarely dealt with the spread of botnet
amongst IoT devices using stochastic models. One of the
commonly used models in previous studies is the random
walkmodel. Generally, randomwalkmodels can be classified
into restricted and unrestricted models. In a restricted random
walk model at least there is one boundary so that either
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TABLE 1. The infection, immunity, and population parameters used to simulate epidemiological models in different research.

the state space of the chain is finite, {0, 1, 2, · · · ,N } with
a boundary of 0 and N , or semi-finite, {0, 1, 2, · · · } with a
boundary of 0. In an unrestricted random walk, the model
has no boundaries, but random walking models use all the
nodes fairly (1/|N |). Thus, in the case of the IoT bot mal-
ware, the spread is random, and that’s because of the botnet
scanning mechanism. In the literature, most studies used
deterministic models to present malware propagation, while
in this type of models randomness is not factored in for the
development of the future states of the system under study.
Stochasticmodels are on the other hand considered promising
to randomly determine the IoT botnet infection system. The
blow subsection considers a stochastic model based on which
we will present the results of a series of simulation studies in
the subsequent section.

A. A STOCHASTIC SIRS MODEL
To consider a stochastic SIRS model, we assume the growth
of IoT deployments continues and will never end and
hereafter new IoT malware, developed or mutated, would
continue to infect new deployments or current operational
devices within the IoT population. Amongst IoT devices,
low-power devices may be particularly compromised by IoT
malware since bot-based malware would heavily and quickly
drain their batteries. Considering biological models, such
devices can be considered dead.

Let {M (time) | time ∈ [1,∞)} be a set of discrete
random numbers that belong to the natural numbers set N =
{0, 1, 2, 3, . . .} and has theMarkov propertywhereM denotes
bot-based malware. It is assumed that the time between infec-
tion events is exponentially distributed. Let pxi(δ time) denote

the probability of M being transited from Node x to Node
i during the time period of δ time: pxi(δ time) = P =
(M (time + δ time) = j|M (time). The following equation
models the transmission probability of a new infection:

∞∑
i=0

pxi(M (time))si =

(
∞∑
i=0

p1i(M (time))si
)x
, s ∈ [0, 1].

(16)

In general, in the case of Mirai outbreak, the number of
infected nodes represents the state of the branching process
and the concept of birth implies latent infections that have
occurred. Also, in Equation 16, the death is not considered
simply because of the nature of IoT botnet. The assumption
is that although the botnet malware (M ) infects new IoT
devices, the infection remains inactive and waits for a major
attack. Therefore, Equation 16 implies that the propagation
of a botnet is additive and that botnets collect zombies in
planning for major attacks. Detecting botnets is hard due to
malware mutation and evolution and also zero-day vulnera-
bilities.

Introducing infectious entities into susceptible entity pools
can lead to an epidemic, contributing to an increase in the
number of infected entities. Whether an epidemic occurs
depends on the rate of infections, regeneration, mortality, and
the extent of vulnerable population. In a basic SIR epidemic
model, the population is split into susceptible (S), infected (I),
and recovered (R) entities. Let the variables β and γ imply the
rate of transmission and recovery, respectively. In the case of
a serious condition, an increase in the incidence of infection
results in a mortality rate of α. In fact, if a recovered entity
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FIGURE 4. IoT devices losing immunity and becoming susceptible again to new variant of the botnet. Considering
the SIRS model with the parameters γ = 0.3, α = 0.02, δ = 0.05, β = 0.75, with an initial infection of 2 individuals
in a population of 2000 devices.

has developed only temporary immunity to re-infection, with
a declining immunity rate of δ, the recovered entity returns to
being susceptible. As the botnet updates frequently to avoid
detection and remain obfuscated, the SIRS epidemic model
shows botnets propagate stochastically. In the case of the
SIRS epidemic model, the ratio R0 known as the basic repro-
duction number is an important parameter in the epidemic
theory. Let all the three random parameters for all the states
(S, I ,R) in the continuous-time Markov epidemic model be
denoted as (S1, S2, S3) = S with N =

∑i=1
3 Si directly

correlated to the random variable for the overall size of the
population. Therefore, the SIRS model 17 is described in the
following equation to illustrate the botnet propagation:

dS(t)
dt
= −β

S (t)
N (t)

S(t) I (t)+ δ R(t)

dI (t)
dt
= β

S (t)
N (t)

S(t) I (t)− γ I (t)− αI (t)

dR(t)
dt
= γ I (t)− δ R(t),

(17)

where the SandI > 0, R = 0, and S + I + R = N . Figure 4
illustrates a botnet outbreak using the SIRS stochastic model
with a population of 2000 devices.

V. SIMULATION AND PREDICTION OF IOT BOTNET
OUTBREAK WITH THE SEIRS STOCHASTIC MODEL
IoT botnets can be presented using the SEIRS epidemic
model with additional compartments. In the case of IoT bot-
net, there is a significant incubation period between scanning
of IoT devices, i.e., the scanning phase, and the C&C server
report that was not infected with the initial malware. This is
called the exposed state or latency period. The SEIRS model
consists of four distinct states: susceptible (S), exposed (E),
infected (I), and recovered (R) with six parameters: β, σ , γ ,
�, µ and α where β is the contact rate and controls how fast
botnet spreads from being susceptible to exposed, σ gives
the transition from being exposed to infected, γ gives the
transition from infection to recovery, and � is the rate of
recovered IoT devices becoming susceptible again due to new
botnet variants or new malware. The SEIRS compartments

TABLE 2. Summary of parameters and compartments used in the SEIRS
system.

and parameters are summarized in Table 2.

dS
dt
= (1− p)µN︸ ︷︷ ︸

a

− βSI/N︸ ︷︷ ︸
b

+ �R︸︷︷︸
c

− µS︸︷︷︸
d

dE
dt
=
βS(router + camera+ others)I

N︸ ︷︷ ︸
a

− σE︸︷︷︸
b

− µE︸︷︷︸
c

dI
dt
= σE︸︷︷︸

a

− γ I︸︷︷︸
b

− (µ+ α)I︸ ︷︷ ︸
c

dR
dt
= pµN︸︷︷︸

a

+ γ I︸︷︷︸
b

− �R︸︷︷︸
c

− µR︸︷︷︸
d

(18)

We classify these parameters into three categories, botnet-
centric, attack-centric, and immunity-centric. β belongs to
the botnet-centric category, sigma and alpha parameters are
in the attack-centric subset, and γ , �, µ and P belong to the
immunity-centric subset. The severity of the contact rate and
incubation rate depends on how botnet is designed including
code complexity, scanning, and vulnerabilities preloaded in
the botnet or possibly receive payloads from the C&C servers.
In the case of the Mirai outbreak, the contact rate included
65,000 IoT devices infected within the first 20 hours of its
activation, with Brazil recorded 41.93%, Iran 10.17% and
China 5.14% of infected IoT devices [3], [40]. Here in this
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FIGURE 5. A simulation of the SEIRS system with R0 = 5.9, β = 0.419, γ = 0.071, σ = 0.048, � = 0.7, µ = 0.01 and α = 0.00 including no security patches
on the IoT devices. This graph shows the botnet’s incubation period while collecting zombies. We assumed that the botnet uses zero-day vulnerabilities
to collect zombies for its attack, and there is no security patches available at the time of infection.

TABLE 3. Components of the SEIRS differential equation.

study, we use the worst case scenario of Mirai infected IoT
devices, i.e., 41.93%, for the β infection rate parameter for
our SEIRS model. The incubation state can be potentially
used to hold a large pool of zombies for larger attacks.
The SEIRS governing differential equation is described
in 18 and each of its functions are explained in Table 3.
We assume the infection rate β is fixed where the attack- and
immunity-centric parameters may vary.

R0 =
σ

ω + µ
+

β

γ + µ+ α
(19)

The SEIRS models generally consider homogeneous IoT
devices, in which the infection is likely to equally initiate
communications with individual IoT devices and therefore
with each susceptible device at a β rate. This represents the

spread of the botnet malware in IoT networks where the
infectious servers try to randomly infect and evenly generate
addresses for next infections. The β and σ depend on the rate
at which the botnet server scans (see Figure 1) for susceptible
nodes, their distribution ranges and densities, and up and
down links as well as communications rates [41]. Therefore,
to reach a saddle point of IoT botnet infection and reduce the
speed of infections, it is crucial to control β and σ .We assume
all heterogeneous IoT devices are losing immunity and they
will be susceptible for new infection with zero-day payload,
considering infinite cycle.

Our SEIRS model is based on a susceptible state that
includes homogeneous and heterogeneous IoT devices. How-
ever, susceptible IoT devices may transit to the exposed state
if one of their individual connections gets infected by bot-
malware. In the case of an initial botnet infection, the botnet
author(s) has control over master servers where they are
responsible for exposing vulnerable devices. In this state,
the infected devices (Zombies) are under the control of the
masters and are inactive for a period of time until they are
sold in which case they would receive additional payloads
fromC&C servers for the next stage of an DDoS attack. In the
SEIRS system, collecting zombies can be represented by R0,
which plays a critical role in collecting zombies. Once an
attack begins, the first response from the security point of
view would be to block the network domain, change network
addresses including URLs, or simply kill IoT devices who
may also die from the loss of power. In the SEIRS system,
the α parameter identifies the death rate for IoT devices. After
an immunity period represented by�,IoT devicesmay be los-
ing their immunity p due to new vulnerabilities or mutations.
We simulated the SEIRS model using the R language [42] to
show IoT botnet can initiate infections following its release
into the Internet.

Figures 5 and 6 illustrate that the botnet’s initial infections
evolved over time and developed new transitions from the
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FIGURE 6. A simulation of the SEIRS system with R0 = 5.9, β = 0.419, γ = 0.071, σ = 0.048, � = 0.7, µ = 0.01 and α = 0.00 including the rate of 0.5 for the
security patches on IoT devices. This graph shows the botnet’s incubation period while collecting zombies for a major attack. We assumed half of the IoT
devices updated with the security patches that takes the edge off collecting zombies.

susceptibility to incubation state. The simulation predictions
illustrate that the botnet collected IoT devices for a major
attack. The incubation period depends on attack aims of the
botnet or the sell of zombies on the darknet. The incubation
is a continues process that is shown as E(∞). Figure 5
shows the infection rate, i.e., I (∞), never flattens and devices
are continuously infected or victim servers are attacked.
Hence, as the infection continues to contaminate susceptible
IoT devices, an equilibrium point S(∞) 1 is never reached
although security patches R(∞) continue to be developed.
This is due to the continuous development of new botnet
variants that take advantage of unknown vulnerabilities.

VI. CONCLUSION
Many cyber criminals are financially motivated to develop
new forms of malware. Botnet-based malware has seen a
tremendous growth as a result of the widespread adoption
of IoT devices. The Mirai botnet malware, mainly consisting
of embedded systems and IoT devices, has invaded net-
work services and overwhelmed several high-profile organi-
zations with massive DDoS attacks. We therefore provided
a short survey of mobile malware spread models in this
study. SIRS and SEIRS mathematical models were used to
illustrate how homogeneous and heterogeneous devices can
infect and spread the infection in a large or small scale over
comprehensive networks. We formulated the IoT botnet in
a stochastic model that has the Markov property, and from
there, determined that an initial botnet infection always exists.
We have also developed a stochastic SIRS model in Matlab
to prove that IoT devices are always susceptible to infection
I (∞) even after acquiring immunity. Based on the malware
analysis of the Mirai botnet, we formulated the botnet in a

1Malwarefree equilibrium point refers to an equilibrium with all infection
states being zero.

SEIRS epidemic model and simulated the model in the R
language. The SEIRS stochastic model is a suitable model
to illustrate the botnet-based malware, since there is the
incubation state for collecting zombies in preparation sfor
major attacks. In general, bot-basedmalware has a substantial
incubation period, i.e., for collecting zombies and waiting for
the master server to send attack commands, during which IoT
devices may have been compromised but have not yet been
triggered to attack. Finally, based on our observations from
the SEIRS results, it can be concluded that all S, E , I , and R
states are infinite in the SEIRS system and the curves would
never reach a saddle point at any point in time, even after we
assumed that 50%of IoT deviceswere updatedwith a security
patch. Controlling R0 is crucial to manage the infection and
probably using network telescope can be a major defense
mechanism against the incubation state in a DDOS attack
while botnets send random probes to scan for security holes
and harvesting zombies.
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