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ABSTRACT As distribution networks worldwide are experiencing the adoption of residential solar pho-
tovoltaic (PV) more than ever, the need for transiting from the concept of load forecasting to net energy
forecasting, i.e. predicting the blend of PV and load as a whole, is pressing. While most of the existing
literature has focused on load forecasting, this paper, for the first time, contributes to this transition at
both single household and low aggregate levels through a comprehensive study. The paper also proposes
a multi-input single-output (MISO) model based on an efficient long short-term memory (LSTM) neural
network, by which different household energy profiles help provide more accurate forecasts for other
households or aggregate energy profile. This technique, indeed, considers the spatial dependencies of house-
holds’ profile indirectly. Through this study, the underlying problem of short-term net energy forecasting is
compared to load forecasting, and it is shown how the inclusion of PV generation behind the meter could
deteriorate forecasting accuracy. Moreover, the impact of the level of granularity associated with smart meter
data on the aggregated net energy forecasting is discussed, and it is revealed that the higher resolution data
can potentially alleviate the accuracy lost. Furthermore, online LSTM, as opposed to proposed batch learning
MISOLSTM, is used as a forecasting tool. The results show online LSTM ismore resilient to sudden changes
at the single household level, while MISO LSTM is efficient for aggregate level. The proposed framework
is conducted on two real Ausgrid and Solar Analytics case studies in Australia.

INDEX TERMS Deep learning, long short-term memory (LSTM), recurrent neural networks, residential
load forecasting, short-term net energy forecasting, smart meter, spatial-temporal dependency.

I. INTRODUCTION
Residential rooftop photovoltaic (PV) system has been
rapidly becoming a component of the modern power system.
Also, acknowledging modern platforms, such as peer-to-peer
energy trading [1] and micro virtual power plant (µVPP) [2]
based on households’ solar generation, seems to accelerate
the growing trend of rooftop PV adoption at the residen-
tial level. Such circumstances necessitate a shift from load
forecasting to net energy forecasting as the fusion of load
demand and PV generation forecasting problems. This is
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precisely one of the branches introduced for a decade ahead
of energy forecasting in the Global Energy Forecasting Com-
petition 2014 (GEFCom2014) [3]. Although minimal studies
recently discuss net energy forecasting at low-aggregate and
residential levels, the existing research on this topic is too
sparse, especially at the household scale, and a more in-depth
investigation is needed.

Short-term load forecasting is an essential task to provide
reliable operation of modern power systems [4], [5]. Due
to power system modernization and decentralization, appli-
cations of load forecasting have become even more high-
lighted in today’s distribution networks. Real-time and near
real-time monitoring of distribution networks, community
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battery adoption, peak shaving methods and some advantages
of demand response technologies are just a few instances
that heavily rely on accurate one step ahead load forecasts.
For such applications, net energy forecasting has a critical
important role to play as load forecasting, if not more so.
Short-term load forecasting problem has been well estab-
lished over the years. Differentmethodologies exist in solving
the problem. The common similar day method is one of the
classical ones, in which a similar pattern is to be found from
historical data based on the hour of the day, day of the week
and season of the year [6], [7]. Some other studies develop
forecasting engines based on explanatory variables carrying
valuable information [8], [9]. In other words, feature selec-
tion, such as determining the number of lagged and moving
average variables, is the central task in such an approach [10].
Moreover, the idea of taking advantage of other regions’ load
profile to make the forecast for a specific location is studied
in [11], where the time-forward kriging method is used for
the spatial load forecasting concept. The method tries to find
the cross-correlation and auto-correlation among various load
profiles at the system level. However, spatial load forecasting
traditionally refers to predict the location and load growth for
the planning purposes [12].

Although the vast majority of research, including the above
literature, focuses on the substation level, load forecasting
at the low-aggregate level and, particularity, at the single
household level have been of interest to researchers in recent
years [13]–[17], mainly due to power system modernization.
In this regard, Stephen et al., in [13], apply a clustering
technique to provides a forecast for aggregated residential
load based on the practice theory of human behavior. Similar
clustering techniques are often a successful approach for the
similar day method [7]. Wen et al., in [14], focuses on the
load forecasting of a residential building with a one-hour
resolution, while Kong et al. consider both individual and
aggregte levels in a case with half-hourly data [15]. Thanks to
monitoring of the household appliances by separate meters,
single customer forecasting improves throughmoremeaning-
ful temporal relationships [16]. Moreover, Hong et al. show
that the spatial correlations between different appliances used
in a household can potentially increase the accuracy of single
household load forecasting [17]. However, all the above stud-
ies focus on load forecasting, the inclusion of household PV
generations behind the meter has been ignored.

Very recently, a handful of works have been carried out,
in which the net energy forecasting is discussed, mainly at
aggregate level [18]–[21]. Sun et al. propose a forecasting
model at feeder level, which first, estimates the PV pene-
tration, and then, PV forecast is integrated into load fore-
casting [18]. Application of a similar method is used in [19]
for considering different PV penetration scenarios at the
aggregate level to achieve an effective demand-side man-
agement approach. Kobylinski et al. in [20], investigate the
short-term net energy forecasting for a micro-neighbourhood,
comprising 75 single houses, with 15 minutes’ temporal reso-
lution data. Besides, the importance of aggregated net energy

forecasting has been shown for a secured energy trading
platform [21]. These studies reveal that the PV generation
behind the meter increases the uncertainty, which in turn,
the complexity of the net energy forecasting problem even at
low-aggregate level; however, there is a lack of literature on
this topic from a few perspectives, which this paper aims to
bridge the gap. Firstly, the research to date has tended to focus
on the net energy forecasting at the aggregate level, but not the
single household level. For some applications, forecasting of
end-user profile seems to be vital. In fact, forecasting at this
level is much more challenging compared to the aggregate
level. Secondly, the impact of granularity of the data recorded
has not been a matter of study on existing works related to
net energy forecasting, and therefore, the potential of improv-
ing net energy forecasting by different data resolution has
remained unsearched.

In recent years, studies show that deep learning techniques
outperform classical statistical models, such as autoregressive
moving average (ARMA) [22]. One of the most efficient
deep learning models for residential load forecasting has
been presented in [15] based on the long short-term mem-
ory (LSTM) neural network. Moreover, a variant of LSTM,
called gated recurrent unit (GRU) has been tested in [14].
Application of iterative residual blocks (ResBlocks) in deep
neural networks has also been illustrated in extracting spatial
and temporal correlations [17]. A predictive model based on
the artificial neural networks (ANN) has been developed for
the net energy forecasting to apply feature selection technique
in the context of lag signals [20]. Tang et al. in [23] has used
joint bi-directional ANN and deep belief network as a hybrid
framework for short-term load forecasting, where candidate
features are chosen based on the Pearson correlation coeffi-
cient. From the perspective of themachine learning, the above
deep learning-basedmodels, fall into the batch (offline) learn-
ing category, which means the predictive model is trained
based on the historical data at once. In contrast, the model
is incrementally trained by feeding instances through the
online learning framework [24]. Thus, the batch learning
could be less effective compared to online learning in terms
of adaptability to sudden changes and high variations. There
are online predictive models developed in the area of deep
learning [25], [26], though research to date has not seemed to
be focused on applying such models to energy forecasting at
the single household level.

The primary contribution of this paper relates to the subject
matter, although the methodology used comes to support it.

A. CONTRIBUTION TO THE SUBJECT MATTER
Specifically, this paper aims to contribute to the growing
area of research, i.e. short-term forecasting of net energy
behind the meter, by exploring how the inclusion of residen-
tial rooftop PV generations could affect load forecasting at
both single household and low-aggregate levels. As far as
we know, while some limited existing works have used net
energy forecasting concept at the low-aggregate level, this is
the first time that not only net energy forecasting at the single
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household level is discussed deeply, but also a comprehensive
comparison between load and net energy forecasting is made
at both household and aggregate levels. This study also exam-
ines the potential advantages that fined-grained data (with the
five-minute resolution) could bring to the one-step-ahead net
energy forecasting problem.

B. CONTRIBUTION TO THE METHODOLOGY
This paper proposesmulti-input single-output (MISO) LSTM
for short-term net energy forecasting, by which spatial rela-
tionships between various households are indirectly taken
into account. More precisely, the energy profiles of all house-
hold profiles are simultaneously fed into the LSTM model,
while either only one household or the aggregate profile
is the target of forecasting. To the best of authors’ knowl-
edge, the MISO approach has not been proposed in existing
load/energy forecasting model.

Besides the above-mentioned contributions, an existing
LSTM-based online learning approach is applied for the
net energy forecasting to investigate to what extend online
learning is capable of capturing abrupt variations compared
to batch learning as this is the case in single household
level. Moreover, this paper uses the mean arctangent absolute
percentage (MAAPE) index recently introduced to overcome
the drawback of the popular mean absolute percentage error
(MAPE), which occurs in cases that actual value is zero- this
case happens in net energy forecasting (not load forecast-
ing). The suitability and effectiveness of the MAAPE for net
energy forecasting is also shown by comparing it with two
other scale-free metrics, including MAPE and normalized
mean absolute error (nMAE).

The remaining part of this paper has been organized in
the following way. Section II provides methodologies used
based on batch LSTM, MISO LSTM and online LSTM.
In Section III simulation results are illustrated and discussed
with two Australian case studies. Finally, findings are high-
lighted and concluded in section IV.

II. METHODOLOGY
A. BATCH LSTM MODEL
Since the first introduction of the LSTM, several popular
variants have been developed [27]. To predict the next step of
the residential load, Kong et al. [15] have developed one of
the most comprehensive and efficient batch LSTM models,
so far. In this paper, a similar architecture is used as a base
reference of our study.

The LSTMmainly consists of three gates at each time step,
known as input, output and forget, which are respectively
indicated by it , ot and ft . Also, ϕ and σ functions apply to vec-
tor pointwise, which the former is commonly set as tanh, and
the latter is the sigmoid activation function. If the LSTM input
and generated hidden output are respectively defined as xt and
ht ,∀t ∈ {1, 2, . . . ,T }, there would be an LSTM block for
each time step, having a memory cell, st , which is responsible
for interacting between subsequent inputs to carry valuable

FIGURE 1. LSTM sequential structure.

information over the time series. These relations are depicted
in FIGURE 1, while the related mathematical formulation is
described as (1) - (6). In the following equations, the symbol
is the multiplication operator, and W represents the weight
vector. Also, b indicates bias terms.

Input gate : ft = σ (Wfxxt +Wfhht−1 + bf ) (1)

Output gate : it = σ (Wixxt +Wihht−1 + bi) (2)

Forget gate : ot = σ (Woxxt +Wohht−1 + bo) (3)

Input node : gt = ϕ(Wgxxt +Wghht−1 + bg) (4)

Memory cell : st = gt ~ it + st−1 ~ ft (5)

Hidden output : ht = ϕ(st )~ ot (6)

B. ONLINE LSTM
Unlike batch learning, in the online LSTM, the model
evolves continuously as new data arrives. It is worth to men-
tion that this is different from retraining the batch LSTM,
frequently, or once a new data is received. With the same
LSTM block structure as presented before, the update deriva-
tion would be different. To update the online LSTM weight
vectorW , a common stochastic gradient descent (SGD) algo-
rithm can be used as follows:

Wt+1 = Wt − ηt∇WtL (7)

L = (dt − d̂t )
2

(8)

where η is the learning rate, and ∇Wt indicates the gradient of
loss function L with respect toWt . Indeed, the loss function L
is the squared error over one training sample [28]. However,
through the batch learning technique, the loss function is
calculated based on the cumulative squared errors.

Amongst several extensions introduced for updating the
neural network instead of classical SGD, adaptive moment
estimation, known as Adam, is one of the most efficient
alternatives which considers the exponential moving aver-
age of gradients [29]. Following the same approach as dis-
cussed in SGD, this paper utilizes Adam for updating the
weights.
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C. MULTI-INPUT SINGLE-OUTPUT (MISO) LSTM
A common approach to deal with the short-term residential
load forecasting problem is to consider the time series of
the specific household load consumption and try to predict
the next step value of the household. Here, we call such an
approach a single-input single-output (SISO) model, which
means the only load consumption input to the forecasting
model is the time series that belongs to the household;
however, other features, such as calendar or temperature
information, might be taken into account. This is same for
the aggregated load time series. Apparently, through the
SISO forecasting model, only temporal dependencies are
considered.

To consider the spatial dependencies in the forecasting,
a MISO model based on the batch LSTM network has
been used. In better words, the time series of a group of
households are set as the LSTM input to predict a target
household’s time series. Similarly, all the households’ time
series associated with the aggregate level are simultaneously
deployed to forecast the next aggregated value. As depicted
in FIGURE 2, data of multiple households are feed to the
model, and therefore, spatial relationships among them are
taken into account during the training. Indeed, the resulted
LSTM model is a multivariate kind with the number of fea-
tures equal to the number of households available that taken
spatial-temporal dependencies into account. It is noteworthy
that an approach has been presented for aggregated load fore-
casting in [15], in which, firstly, all the individual households
are separately forecasted, then the resulted values are added
up as the aggregate prediction. This approach, indeed, lies
in the SISO model as the effect of individual time series on
each other are not considered. Moreover, the proposed MISO
model can also be applied for load or energy forecasting at the
system level, where substation zones are treated like single
households in the proposed method.

FIGURE 2 illustrates the complete framework, in which
calendar information has been added as well. The normal-
ization with the range of (0,1) and (−1,1) are respectively
applied to the households’ smart meter data for load and
net energy forecasting. Timestamps and calendar information
are extracted to be used as separate categorical features.
In this regard, the step of the day, the day of the week,
and holidays/working days are marked and passed through
the LSTM model by a one-hot encoder. The generic form
of the LSTM framework has n hidden layers, after which
a dropout is used to improve the performance of training
by reducing overfitting problem. It is worth noting that the
details discussed in this paragraph, such as calendar input,
normalization, the encoder, etc., have applied to the batch
LSTM described on the previous section as well.

D. MEASURING METRIC
A few common accuracy measures are used in load/energy
forecasting area, such as MAE, root mean square
error (RMSE) and MAPE. Among them, the MAPE, defined
in (9), is the most popular and common index used in load

FIGURE 2. Multi-input single-output LSTM to consider spatial
dependencies for short-term net energy forecasting.

forecasting, mainly due to its scale-free attribute.

MAPE =
1
N

∑N

t=1

∣∣∣∣At − FtAt

∣∣∣∣ (9)

whereAt andFt are actual and forecasted values, respectively.
Also, N is the number of forecasted samples.
Despite the advantages of MAPE, it suffers from a signif-

icant drawback when actual values are equal to zero, which
almost never the case in load forecasting. It is worth to note
that even for a single user, the total load consumption of
all appliances is often more than zero. However, for the net
energy forecasting, values sometimes oscillate around zero,
and therefore, MAPE approaches to infinite and would not
have a desirable performance. To address the issue, this paper
uses the mean arctangent absolute percentage (MAAPE)
index recently introduced in [30], not only retaining the
advantage of MAPE but also presents very similar values
in some cases and stays more robust against outliers. The
MAAPE index is expressed as follows:

MAAPE =
1
N

∑N

t=1
arctan

(∣∣∣∣At − FtAt

∣∣∣∣) (10)

Obviously, MAAPE is the arctangent transformation of
MAPE that inherently retains the MAPE distinguished fea-
tures. Besides, MAAPE and MAPE represent very similar
behavior for a small amount of

∣∣(At − Ft )/At ∣∣. Indeed, for the
forecasting errors around 0 to 0.5 (0% to 50%), MAPE and
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MAAPE produce very close measures due to the similarity
of functions y = x and y = arctan(x) in the given range. It is
also noteworthy that large forecasting error spikes, which are
far from the mentioned similarity range, are penalized more
heavily by MAPE. However, because the average forecast-
ing error of both single household and aggregate levels is
in the similarity range, this metric reasonably penalizes the
forecasting error of load/net energy [30].

III. NUMERICAL RESULTS
The simulations are presented in three main parts
(Section III.B to III.D). In the first part, the results illustrate
the forecasting challenges comparing load with net energy
predictions, while the second and the third parts are based
only on net energy forecasting. Specifically, the second part
relates to applying On-line LSTM at individual and aggregate
levels, and the third part focuses on considering the spatial
dependencies. The proposed LSTM-based model has been
programmed in Python using Keras package with Tensorflow
backend.

A. CASE STUDY AND SETTINGS
Through Australia’s National Energy Analytics Research
(NEAR) program initiated by Commonwealth Scientific and
Industrial Research Organisation (CSIRO), the half-hourly
solar generations and load consumptions of thousands of
households in New South Wales (NSW) have been col-
lected by Ausgrid, of which 300 households’ data is publicly
released from July 2010 to June 2013 [31]. Among them, 65
households over a whole winter season in Australia (from
June 1, 2012, to August 31, 2012) have been considered in
this study. The data is divided into the training, validating
and testing subsets with a 70:20:10 split. In addition to the
Ausgrid data that has been used for the major parts of our
analyses, another dataset from Solar Analytics (case study in
Section III.C) has been used to show the impact of higher
granularity on the forecasting model. The Solar Analytics
data contains rooftop PV generation of 1000 residential sites
across Australia, with 5 minutes sampling rate during the
year 2019.

Through various trial and error scenarios, the hyper-
parameters have been set to achieve optimal solutions.
Although the optimal neural network structure might be
slightly different from customer to customer, a fixed one has
been selected for all customers based on the best average
performance. Accordingly, the proposed LSTM comprises
2 hidden layers with 100 neurons on each. The dropout
percentage rate is set to 20%, and the look-back step is equal
to 2. Also, batch size and epochs are considered to be 64 and
100, respectively. To update the network weights through
the iterative based procedure, Adam optimization algorithm
is used.

B. LOAD VS NET ENERGY FORECASTING- BASE LSTM
As the Ausgrid dataset contains smart meter records of con-
sumption load and rooftop PV generation of the households
by separate measurements, we are able to investigate load

forecasting and net energy (summation of demand and gener-
ation) forecasting and scrutinize them. In doing so, the base
(offline) LSTM, which is proposed in [15] as one of the most
efficient and superior models for residential level so far, has
been tested on the case study.

FIGURE 3 and FIGURE 4 demonstrate the results for
a typical household with average range of volatility (ID:
#230) and aggregated load/net energy. It is worth noting that
the test period is during 23-31 Aug. 2012; however, time
illustration in these figures is limited in a way to have the
best presentation of load fluctuations as well as mapping
forecast to actual values. Moreover, TABLE 1 illustrates the
forecasting summary for load versus net energy at both single
household and aggregate levels. Not only does this table show
comparison between the accuracy of load and net energy
forecasting, but also indicates the functionality of MAAPE
comparing to two scale-free metrics, nMAE and MAPE. (the
nMAE is calculated as 1

n

∑N
t=1 |At − Ft |

/
1
n

∑N
t=1 |At |, that

is the MAE over the average of actual values).

FIGURE 3. Load vs net energy forecasting for a typical household (ID:
#230).

FIGURE 4. Load vs net energy forecasting for aggregate level.

For load forecasting, MAPEs related to the household and
aggregate levels are respectively 0.4488 and 0.0813, which
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TABLE 1. Free-scale metrics comparison (Base LSTM result).

are close to those reported in [15] with a different case
study (0.4 and 0.09, respectively). However, for net energy,
the MAPE shows some shortfalls. As can be seen, for single
household net energy prediction, this metric approaches to
infinite as some zero values are recorded by some house-
holds’ smart meter. Also, for the aggregate level, theMAPE is
unreasonably large (0.5844). Please notice that no zero value
obtained by aggregation, but some values are close to zero,
and by putting them into the fraction of equation (9), the
result would be slightly large. This table explicitly demon-
strates the weakness of MAPE when it comes to net energy
forecasting. On the other hand, metrics nMAE and MAAPE
are close and have similar behavior for load. This similarity
is also consistent for net energy at the single household level.
However, the result for aggregate net energy level is different.
Indeed, MAAPE has put more penalty than nMAE does. As it
is expected, to capture the error by nMAE, some of the detail
has lost because of the aggregation of errors done before the
averaging, and therefore, the error shown by this metric is
considerably lower than MAAPE. It is worth to note that
MAAPE, like MAPE, computes the error over every data
point across the testing set, and then averaged. Thus, higher
errors can be captured by MAAPE.

The obtained LSTM forecasting results have also been
benchmarked against ARMA and persistence algorithm in
TABLE 2, showing its efficiency. In the persistence algo-
rithm, the next value is assumed to be the same as previous
value. As it can be seen, the persistence model leads to close,
but a little worse, results to those obtained by base LSTM;
however, the performance of base LSTM will be further
enhanced in the following sub-sections by the online and
MISO LSTM models. Furthermore, the MAAPEs for single
household and aggregated net energy levels are 0.4168 and
0.2016 based on LSTM model that clearly shows adding
another source of uncertainty, i.e. rooftop PV generation,
to the load results in lower forecasting accuracy, as it is
expected. But the most significant point that can be seen from
TABLE 2 is that the amount of error caused by adding rooftop
PV generations to the demand loads is very considerable for
aggregate level comparing to the residential level. The above
sentence means by installing rooftop PV at the residential
level our energy forecasts would become approximately 30%
worse (from MAAPE 0.3225 to 0.4168) in residential level,
while this amount for the aggregate level is far more intense,
near 250% (fromMAAPE 0.0807 to 0.2016). Although there
are a handful of works in which net energy forecasting at
the aggregate level (not residential level) has been done with
the similar amount of error [20], [21], this is the first time,

TABLE 2. Load vs net energy forecasting comparison between base LSTM
and two baselines.

to the best of our knowledge, that this importance is raised.
Indeed, this issue has been unseenmainly because no compar-
ison has been made or even possible to be made between load
and net energy forecasting. The latter case occurs, especially,
whenmany smartmeters in the grid do not separatelymeasure
households’ generations and consumptions. This problem
caused would be a significant challenge that needs to be
known and responded as the concept of forecasting is shifting
form load to net energy in today’s smart grids.

To deeply investigate the above mentioned problem, dis-
tribution of error for each step of the day (half-hourly data
results in 48 steps) has been plotted in FIGURE 5. Each point
of the graph indicates the average ofMAAPE at a certain time
step for all testing subsets. In better words, FIGURE 5 shows
the performance of the used LSTM at every step of the day
over the testing set.

FIGURE 5. Distribution of forecasting error for each step of the day over
the training set.

As illustrated, the load forecasting error distributions (the
top plot of FIGURE 5) for households and aggregated level
follows a similar pattern, where the error related to residen-
tial level is higher than that of aggregated one, at all steps.
Also, it can be observed that errors for morning and evening
peaks (between 07:00-10:00 and 16:00-19:00, respectively)
are relatively higher than the rest of the day. By including
rooftop PV generations, the trend of net energy forecasting
error distributions (the bottom plot of FIGURE 5) remarkably
changes during daylight hours. As it is expected, the errors
increase over this period (between 07:00-17:00) for both
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households and aggregate level due to new uncertain source
inclusion. However, surprisingly, the error of aggregate level
tends to be closer to the residential one and even can be higher
sometimes (such as in 09:00). Two following reasons aremost
likely to justify such a behavior:
• Firstly, it is worth to note that a decisive factor affecting
rooftop PV generation of one household at each time
step can be a mass of cloud passing above the rooftop
panel. However, for the aggregate level, many masses
of clouds are involved at each time step, which in turn
intensify the uncertainty. This scenario is worse when
working with a case study, including the case in this
paper, where the households are not in one neighbor-
hood, such as a complex or a feeder (the drawback of
many datasets).

• Secondly, if closer attention is paid to the error distribu-
tion of the net energy for the aggregate level, it can be
seen that there are two surges. These times happen when
sudden changes in load demand and PV generations
coincide, i.e. a combination of morning load peak and
steep rise of PV generation, or evening load peak and
steep drop of PV generation in the evening. In such
circumstances, which are similar to the duck curve effect
in utility-scale, the two uncertainty sources negatively
intensify each other. As a result of that, the aggregate net
energy profile experiences a relatively significant differ-
ence in value within 1 hour in morning and evening.

C. THE NEED FOR FINER GRANULARITY FOR NET
ENERGY FORECASTING
Having the previously mentioned second reason next to the
fact that the granularity of the case study is 30 minutes,
raises the possibility that the data resolution might not be fine
enough to track and predict such changes, and consequently,
contributes the relatively high error as depicted in FIGURE 5.
This has encouraged us to examine the performance of the
forecasting model with higher resolution dataset. Although
Ausgrid provides valuable dataset for net energy at the house-
hold level, its half-hourly resolution places some limits to go
beyond. Moreover, as pointed out in [3], lack of dataset for
net energy forecasting is inhibiting new findings. Thanks to
Solar Analytics dataset with a 5-minute granularity of resi-
dential PV generation, we are able to overcome the problem,
particularly in our case. Because the forecasting challenge
discussed above (FIGURE 5) is the direct effect of rooftop
PV generations added to the load, using the Solar Analytics
dataset would fairly reflect the trend in net energy forecasting.
However, the ideal dataset would be the case study having
residential net energy with high-resolution data.

To obtain sensible results and conclusion, we have selected
households’ data from Solar Analytics similar to Ausgrid
in terms of quantity, location, seasonality and subsets split-
ting. In doing so, 65 houses in NSW have been selected
with a 70:20:10 split over the winter season. As the data
is recorded every 5 minutes, they are firstly filtered for
every 5, 10, 20, 30 and 60minutes’ intervals to create different

TABLE 3. Summary of aggregated PV generation forecasting (LSTM).

scenarios. Through each scenario, the LSTMmodel is trained
separately. The obtained forecasting results over the testing
subset are reported in TABLE 3 for different resolution-based
scenarios.

Firstly, as can be seen from TABLE 3, finer granular-
ity significantly improves the forecasting performance. For
instance, the accuracy increases by 67% as the resolution
varies from 30 minutes to 5 minutes (formMAAPE 0.2310 to
0.1379). Secondly, if we compare TABLE 2 and TABLE 3,
it is revealed that the error of aggregated PV generation fore-
casting with the resolution of 30minutes (MAAPE= 0.2310)
is close to the error corresponding to aggregated net energy
forecasting, i.e. MAAPE= 0.2016 (recalling that the Ausgrid
data has a 30-minute resolution). The two mentioned points,
indeed, imply that how closer observation (higher resolution)
has a considerable potential to enhance aggregated net energy
forecasting.

Furthermore, to investigate whether or not the higher reso-
lution data could mitigate the problem shown in FIGURE 5,
forecasting error distributions pertaining to resolution-based
scenarios have been extracted. Top plot of III-D shows the
testing subset for which the forecasts have been made. As it
is clear, the aggregated PV generation is a non-stationary
time series and it is highly affected by cloud movement.
Once forecasts have been produced over the testing subset,
the distribution of forecasting error can be plotted based
on each time step (the bottom plot of III-D). It is worth
mentioning that the PV generation of a selected day (8th day
of the training subset) has been mapped to the forecasting
error distribution plot to illustrate how they vary concerning
each other over the daylight hours. As can be seen, the hourly
data has a remarkably poor performance comparing to other
scenarios; thus, we put it aside in our further discussions.
Moreover, error obtained by different resolutions between
11:00 until 16:00 are very similar and relatively pleasant.
More importantly, what stands out in this figure is the trend
for the resolution of 30 minutes (the exact resolution used
in Ausgrid data). By comparing the green graph (related to
the 30 minutes’ resolution) to the other resolutions, it can
be observed that the error due to 30 minutes’ data tends
to stay high between 08:00-11:00 as well as around 16:00-
1700, while other resolutions showing lower errors. These
hours specifically include times that aggregate PV generation
experiences a relatively steep rise or drop (the same trend
discussed in FIGURE 5). By recalling the similar challenge
for net energy forecasting, it seems the resolution of half-an-
hour is not fine enough to capture sudden changes posed by
aggregate PV generation. On the other hand, it is clear from
this figure that the 5 and 10 minutes’ resolutions are rather
resilient to such changes. In conclusion, to achieve accuracy
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FIGURE 6. Aggregated rooftop PV generation forecasting for various
resolution. Top plot: Aggregated PV generation over the testing set. The
bottom plot: Distribution of forecasting error over testing subset.

for aggregated net energy forecasting to be in the range of
load forecasting one, a finer granularity is essential.

D. ONLINE LSTM
The online LSTM described in Section II has been applied
to the end-user and aggregated net energy time series. The
LSTM structure is the same as one used for base LSTM;
however, the batch size is considered to equal as 1 through
the stateful training. As a matter of clarification, it is worth to
note that by online, it means the weights are updated once a
new observation is received. This is different from re-training
the whole model for each new observation.

TABLE 4 reports the corresponding results while com-
pared with the base LSTM. The obtained results show that
the online training can improve forecasting at the household
level, while forecasting performance at the aggregate level
might get worse. For our case, net energy forecasting at
the household level has increased by 7.3% (from MAAPE
0.4168 to 0.3867). The main reason for such results is that
the fluctuations and uncertainty at the aggregate level are
far lower than the household level, which makes the aggre-
gate level forecasting more predictable to household level.
Therefore, better performance is achieved through batch
learning, which is the method used in the base LSTM.
On the other hand, online LSTM is more capable of being
adapted to new trends of which it has not been trained
before. This is why the obtained results by online LSTM
for household level outperform those of base LSTM. This
type of behavior is more likely to happen at household
levels. Households off-holiday travel, rooftop solar panel
maintenances or fault detecting periods are typical instances
causing unexpected changes in the pattern of household net
energy time. However, they could be imperceptible for the
aggregate level.

TABLE 4. Online LSTM vs base LSTM- Net energy forecasting results.

TABLE 5. Spatial-temporal LSTM vs base LSTM-Net energy forecasting
results.

Households numbers 1 and 172 with sudden zero load
demand are just two out of many examples within Ausgrid
data. As depicted in FIGURE 7, there are new trends in the
net energy time series of households. The left hand profiles
in FIGURE 7 show the data split over train, validation and
test steps. Obviously, if the model is trained and validated
according to base LSTM, it is most likely to have poor
performance over testing set as the new trends occur within
the training set. The forecasted results support the expecta-
tion. In FIGURE 7-(a), household number 1, has no demand
load for the two first days of the training set. Apparently,
base LSTM is not able to forecast this new trend; however,
online LSTM is closely following the ground truth over
these days. Also, the load demand for household number 172
(FIGURE 7-(b)) drops to near zero from the second day of the
training set on. Similarly, online LSTM has the best perfor-
mance with adapting the changes. As it can be seen, online
LSTM has desirably matched the actual values, especially
from 29/08/12 to 31/08/12.

E. SPATIAL DEPENDENCY CONSIDERATION- MISO LSTM
To include the impact of all households’ net energy data
in forecasting a specific household or the aggregated net
energy, the proposed MISO version of LSTM has been
applied on the case study. Applying a similar network struc-
ture and hyper parameter to the based LSTM, the obtained
results are tabulated in II, while compared to base and
online LSTM. As it can be seen, considering all residen-
tial time series as multivariate LSTM has reduced the fore-
casting error by 13.2% compared to the base LSTM (from
MAAPE 0.2016 to 0.1748). On the other hand, this approach
could not have a positive effect on household level forecast-
ing. FIGURE 8 shows the box-and-whisker plot of house-
holds’ net energy forecasting results for the base, online, and
spatial-temporal (MISO) LSTM approaches with interquar-
tile range. From this figure, it is clear that the residential
errors resulted by online LSTM are more concentrated with
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FIGURE 7. Online vs base LSTM net energy forecasting results for two households (#1 and #172) experiencing unprecedented changes over their
training sets.

FIGURE 8. Box-and-whisker plot of the 65 households’ net energy
forecasting for different LSTM approaches.

the lowest average. Moreover, the plots corresponding to
the base and spatial-temporal LSTMs shows that the error
distribution produced by spatial-temporal LSTM is more
condense; however, it has a higher average. As a result,
the online andMISO LSTM approaches respectively have the
best performance for household and aggregate levels.

IV. CONCLUSION
This study steps towards addressing today’s inevitable prob-
lem caused due to the fusion in energy forecasting at house-
hold and aggregate levels where the customers have installed
rooftop solar PV panels. In doing so, this paper, firstly, builds
up a forecasting model based on one of the most efficient
existing LSTM model (base LSTM) to explore the chal-
lenges of short-term net energy prediction. Also, the problem
of conventional MAPE index, which becomes an infinite
number when the ground truth is zero, is resolved by using
the MAAPE index with similar functionality. The obtained

results show that the forecasts deteriorate at both single
household and aggregate levels whilemoving from load to net
energy forecasting, owing to the added source of uncertainty
behind the meter, i.e. PV generation. However, the downturn
associated with the aggregate level is more intense, especially
during 2 hours in the morning and evening. The evidence
indicates over these hours PV generation usually experiences
its steepest rise and drop, and the load demand is in the morn-
ing peak and the start of the evening peak hours. Besides,
the effect of data granularity level is examined by applying
the model on a real dataset with 5 minutes’ resolution. The
figures reveal that to have accuracy for the aggregated net
energy forecasting in a similar range of load forecasting one,
the need for higher resolution data seems to be essential.

Furthermore, this paper proposes two deep learning
approaches based on the LSTM framework to enhance the
results obtained by the existing base LSTM. In doing so,
online LSTM and MISO LSTM models are developed and
tested on an Australian case study. Unlike conventional batch
(base) LSTM, online LSTM updates the network weights
as new observation received through a single batch. Also,
in MISO LSTM, the historical data of all individual house-
holds are simultaneously used as inputs to forecast the target
time series. The obtained results suggest online LSTM and
MISO LSTM respectively improve net energy forecasting at
end-user and aggregated levels by 7.3% and 13.2% compared
with the based LSTM.
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