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ABSTRACT Autonomous navigation has meant a challenge for traditional positioning systems. As a
consequence, ad-hoc deployments of sensors for addressing particular environment characteristics have
emerged known as Local Positioning Systems (LPS). Among LPS, those based on temporal measurements
present an excellent trade-off among accuracy, availability, robustness and costs. However, the existence
of different Time-Based Positioning architectures - Time of Arrival (TOA), Time Difference of Arrival
(TDOA) and Asynchronous Time Difference of Arrival (A-TDOA)- with different characteristics in clock
and signal path noise uncertainties has supposed that it does not exist any preferred a priori architecture
for urban NLOS complex scenarios. As a consequence, in this paper, we propose a general framework
for the optimization of the node deployments of each architecture in urban scenarios based on accuracy,
availability and robustness. This framework allows us to compare the performance of the TBS architectures
in the urban scenario proposed as a novel methodology for the deployment of LPS time architectures in urban
environments. Results in the proposed scenario have shown the preeminence of the A-TDOA architecture
in primary and emergency conditions which supposes and outstanding remark for future high-demanded
accuracy applications in urban environments.

INDEX TERMS A-TDOA, clock errors, Cramér-Rao bounds, genetic algorithm, localization, local posi-
tioning systems, NLOS urban scenarios, TDOA, TOA.

I. INTRODUCTION
Localization accuracy has become a crucial task for high-
demanded autonomous navigation. Traditionally, Global
Navigation Satellite Systems (GNSS) have provided global
coverage through a constellation of satellites in the space
reaching acceptable accuracy for localizing objects in the
earth’s surface. However, the signals emitted from satellites
face different challenges for providing a stable link among
targets and satellites such as ionospheric adverse effects [1],
signal path noise degradation [2], multipath phenomena [3]
or unstable synchronism among system elements [4].

This creates error instabilities on GNSS signals that make
them useless for indoor navigation [5], precision landings [6],
reconnaissance and surveillance [7], search and rescue oper-
ations [8] or precision farming [9].
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These applications have promoted the development of
Local Positioning Systems (LPS) that are based on ad-hoc
deployments of sensors that particularly adapt to complex
environments reducing or avoiding adverse effects on signals.

LPS and GNSS are categorized through the physical
property measured for providing target location: time [10],
power [11], phase [12], angle [13], frequency [14], or combi-
nations of these methodologies [15], [16].

Time-Based Positioning Systems (TBS) have particularly
shown an outstanding trade-off among accuracy, robustness,
availability, stability, and easy-to-implement hardware con-
figurations. These time architectures are distinguished by the
time-lapse computed in the system clocks for determining the
target location.

Time of Arrival (TOA) [17] models measure the time
elapsed from the positioning signal emission until its recep-
tion in one of the architecture nodes. They require the syn-
chronization among all the system elements that cooperate
actively in the target location determination and at least
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4 different nodes are required to mathematically solve the
3-D position calculation.

Time Difference of Arrival (TDOA) [18] computes the
relative time-of-flight among the reception of a positioning
signal in two different architecture nodes. 5 different receivers
are required for the 3-D position determination but we have
shown in [19] that under a node optimization only 4 receivers
can unequivocally determine the target location.

The synchronization of TDOA architectures is not
necessary for the signal emitter and it is optional among the
architecture nodes. This synchronization among the architec-
ture nodes can be avoided through the computation of the
time measurements in a single clock of a Coordinator Sensor
(CS). This can be reached through the receive and retransmit
strategy of the positioning signal from the system devices to
the CS node.

Among these asynchronous architectures, Asynchronous
Time Difference of Arrival (A-TDOA) [20] and Difference-
Time Difference of Arrival [21] stand out and we have
proven [22] that A-TDOA systems provide better accuracy
performance under different node configurations.

Therefore, the A-TDOA architecture which was first
proposed in [20] in 2017 has been widely studied for precise
location contexts with an analysis of the optimal frequencies
of emission for reducing the system errors [23] in a very
similar derived architecture or achieving optimal results in
indoor environments [24].

However, GNSS such as GPS, GLONASS, or Galileo use
TOA configurations since these architectures provide the
minimum signal travel, reducing the path noise uncertainties,
that stand as the key error source of these systems.

However, if there exists proximity among target and archi-
tecture nodes, the effects of the signal path degradation are
reduced and synchronization instabilities among the system
elements become more important. That is the reason why
traditional ground-based area positioning systems such as
Omega or Loran-C made use of TDOA hyperbolic position-
ing. But these systems have been shut down since the error
treatment of GNSS signals has allowed global navigation
with less uncertainty.

But, the global navigation is not the purpose of LPS where
complex environments do not allow the use of GNSS devices
for complex high-demanded accuracy tasks. LPS suppose
the finding of the fittest system settings for these particular
conditions in which the designer must deal with accuracy,
stability, robustness security, availability, and costs [25].

In this sense, the usage of TOA systems reduces the costs
and complexity (i.e. fewer system elements needed) but the
synchronism error must be offset. TDOA systems reduce the
clock errors (i.e. not necessary synchronism for the emit-
ter) but combine the uncertainties of two different paths for
the positioning signal. Asynchronous TDOA configurations
avoid the synchronism errors but increase the signal travel
paths by retransmitting the positioning signals to the CS
nodes [26], being the availability of a CS in each possible
target location under coverage mandatory for computing the

time measurements, making the system dependent on these
processing sensors.

Consequently, there is no a priori perfect TBS architecture
for a defined scenario, and a deep study of each configuration
is needed for each different LPS application.

However, regardless of the TBS architecture used, the opti-
mization of the node location is critical for achieving practical
results reducing the system uncertainties.

This is known as the node location problem and has been
assigned as NP-Hard [27], [28]. Although, exact solutions
such as the branch and cut algorithm for monitoring lanes
with sensor network deployment optimization [29], hybrid
exact-heuristic solutions such as the optimization of wireless
body area networks for enhancing the system operation with
low-battery consumptions [30] or approximate algorithms
such as [31] in which the optimal Line-of-Sight (LOS) cover-
age with power constraints is inspected; heuristic methodolo-
gies are recommended for finding optimal node deployments
especially in large instances of the problem (i.e. high number
of nodes deployed or large regions covered by the sensor
network).

For instance, in [32] the authors address the energy-
efficient coverage problem in Wireless Sensor Networks
(WSN) through simulated annealing, in [33] a memetic algo-
rithm with a pseudo-fitness function in the local search is
proposed for analyzing potential unfavored regions of the
space of solutions in LPS or in [34] the introduction of
swarm intelligence through the firefly algorithm allows the
obtainment of optimized sensor distributions for power local-
ization schemes. Other approaches look for at least three
non-collinear beacons in coverage by employing the dol-
phin swarm algorithm [35], the transformation of unknown
localization nodes into settled nodes by maximizing the cov-
erage properties of a WSN through the bacterial foraging
algorithm [36], the analysis of the energy decay models
in energy-based localization through the elephant herding
optimization [37], the optimization of the optimal layout
of beacons for indoor localization of Automated Ground
Vehicles (AGV) through diversified local search [38] but
specially genetic algorithms in localization node location
problems [39]–[42] have been used to address this complex
task.

In [39] a novel methodology distinguishing the region
for the location of the system nodes and the region for the
navigation of the vehicles in LPS is introduced, in [40] a
multi-objective methodology for optimizing the parameters
which reduce the localization uncertainties of LPS is pro-
posed, in [41] a multi-objective approach to the node location
problem allows the joint optimization for system accuracy
and the avoidance of disruptive phenomena on signals such
as the multipath or in [42] the localization of the unknown
anchors is optimized preserving the network connectivity.

These wide range of applications of the node location prob-
lem in WSN must be particularized for localization schemes.
The node optimization in LPS requires favoring the LOS
paths among target and sensors, reducing the signal paths,
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avoiding multipath phenomena, considering possible sensor
failure conditions, and finding the optimal combination of
sensors under coverage for determining the target location.

LPS accuracy must be evaluated in these optimiza-
tions through Cramér-Rao Bound (CRB) which is a max-
imum likelihood estimator that provides the minimum
achievable uncertainty granted by any algorithm used for
the position determination. Its usage in localization is
widespread [43]–[45] and the characterization of the system
errors are introduced in the covariance matrix of the system.
The characterization of the signal path noise must deal with
a heteroscedastic noise consideration in LPS [22], [46] since
the travel paths can notably differ among system receivers.

In our previous works, we have modeled the path
losses [22], the clock instabilities [26], and Non-Line-of-
Sight links [41] into the covariance matrix of the CRB for
characterizing the architecture errors in LPS applications.
We have later applied this model for constructing optimized
cost-effective node deployments [25] considering sensor fail-
ures in the CS nodes [47].

In this paper, we study the time local positioning architec-
tures (TOA, TDOA, A-TDOA) for optimized node deploy-
ments in NLOS complex urban scenarios considering sensor
failures in CS nodes and Worker Sensor (WS) nodes, while
maximizing the achieved accuracy of each system.

We particularly analyzed the characteristics of the time
positioning architectures in urban environments where there
is no a priori suitable architecture and the particularities of
the environment must be considered. This study proposes
the methodology for taking design decisions in LPS urban
applications guaranteeing system accuracy, robustness, avail-
ability, and stability enhancements.

The remainder of the paper is organized as follows: we
introduce the TBS architectures studied and their error model
characterization into the CRB matrix in Section 2 together
with the NLOS complex urban scenario of simulations.
In Section 3 the GA optimization technique is presented with
the fitness functions for each TBS optimization based on a
cost-effective sensor deployment, while Section 4 and 5 relate
the results and the conclusions of the paper.

II. PROBLEM DEFINITION
TBS have attracted research interest for LPS high-demanded
accuracy applications. Their trade-off among system com-
plexity, robustness, stability, and availability provide a reli-
able combination of factors for deploying ad-hoc sensor
networks for autonomous guided navigation in outdoor and
indoor environments.

TBS are configured under synchronous (TOA and TDOA)
and asynchronous (A-TDOA) architectures which provide
different alternatives for the attainment of the accuracy
requirements defined by the particular tasks for which they
are committed.

However, there is no a priori suitable architecture for LPS
applications. This is a consequence of the different character-
istics of the main TBS architectures.

TOA systems provide the least uncertainty in the signal
noise since their travel path is the shortest among the TBS
architectures. Nonetheless, their clock errors are the greatest
since they require synchronism among all the sensors of the
architecture including the Target Sensor (TS).

TDOA systems combine the path degradation effects of
two different signals, which are mandatory for computing the
time difference measurements to determine the TS location.
But, they reduce the synchronism errors since these systems
do not require the TS node synchronism with the CS nodes
of the architecture.

A-TDOA systems have the longest positioning signal paths
as they rely on the receive and retransmit strategy of the signal
through the CS node of the system in which all the time mea-
surements are computed. As a consequence, these systems
assume the greatest signal degradations but they avoid the
synchronism adverse effects in the time measurements [26].
Besides, asynchronous architectures completely rely on the
CS clock for computing the timemeasurements. This require-
ment may suppose potential system unavailability if a tem-
poral malfunction of the CS node is occurring. Consequently,
methodologies for ensuring the system availability [25] in CS
node failure conditions are required for easing this potential
disadvantage.

Therefore, a deep study of the characteristics of the envi-
ronment, the system clocks properties, and the goals of the
LPS deployment must be performed for defining the most
convenient TBS architecture for enhancing the localization
accuracy and stability.

This study requires the characterization of the system
noise errors [22], the consideration of the clock errors [26],
the detection of LOS/NLOS paths in the positioning signal
links of each architecture [41], the guarantee of the avail-
ability of the TBS under possible sensor failures [47] and a
methodology that enables a cost-effective node deployment
for each architecture [25].

In this paper, we apply each of these considerations for
the deployment of a TBS architecture for an LPS application
in an urban scenario for the first time in the authors’ best
knowledge. We define this scenario, characterize the system
errors of each architecture and perform the optimization of
the node deployment for each possible TBS architecture since
the system errors are not comparable under random node
deployments (e.g. signal noise is not minimized in these
cases and beneficial geometric node deployments are not
considered for achieving practical surfaces for the application
of the positioning algorithms).

As a consequence, we first minimize the uncertainties of
each TBS architecture and then compare these architectures
for the urban scenario selected as a methodology for the
appropriate design of LPS for critical accuracy applications.

In this section, we provide an analysis of each TBS archi-
tecture at study and the modeling of the system uncertainties
for each TBS (i.e. TOA, TDOA, and A-TDOA) into the CRB
matrix which provides the minimum achievable error by any
positioning algorithm in a defined TS location. This estimator
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is later used for characterizing the quality of a particular node
deployment and for comparing the performance of each TBS
architecture in the defined scenario.

A. CRÁMER-RAO BOUNDS FOR THE TBS ARCHITECTURES
The definition of the uncertainties in TBS is crucial for the
design of LPS systems and the comparative performance of
the different architectures. CRB allows us to determine the
minimum variance value of any unbiased estimator. In local-
ization, its usage is widespread [43]–[45], [48] since it pro-
vides the minimum achievable error in the estimation of the
TS spatial coordinates (i.e. the minimum error reached by any
positioning algorithm).

Kaune et al. [45] provided a matrix form of the Fisher
Information Matrix (FIM) which is a maximum likelihood
estimator which inverse defines the CRB of each architecture
at study:

Jmn =
(
∂h (TS)
∂TSm

)T
R−1 (TS)

(
∂h (TS)
∂TSn

)
+

1
2
tr
(
R−1 (TS)

(
∂R (TS)
∂TSm

)
R−1 (TS)

(
∂R (TS)
∂TSn

))
(1)

where Jmn represents the FIMmn matrix element,R(TS) is the
covariance matrix of the architecture at study in which the
characterization of the uncertainties (i.e. noise in LOS/NLOS
condition and clock errors) is provided, and h(TS) is the
vector containing the information of the time measurement
computed in each architecture.

As a consequence, the h(TS) vector and the covariance
matrix R(TS) must be characterized for every TBS architec-
ture in order to obtain the FIM. The derivations of the J terms
referred to the TS spatial coordinates provide an expression
of the maximum variance of the TS coordinates (i.e. the error
in the position calculation).

In LPS applications, the characterization of the noise in the
covariance matrix must be introduced in an heteroscedastic
consideration [46], [49], [50] since the path of the positioning
signal significantly differs among the architecture sensors.

Following this consideration in LOS [22] and NLOS [41]
conditions through a Log-Normal path loss propagation
model, and introducing a model for quantifying the uncer-
tainties of the CS clocks of the architectures through a
Monte-Carlo simulation for estimating each temporal vari-
ance of the time measurements including the time resolution
of the system clocks [21], [26], we characterize the error
of each TBS architecture at study. This characterization is
assuming uncorrelated errors between noise and clock uncer-
tainties, since the error sources do not share any relation (i.e.
noise errors are produced in the positioning signal path and
clock errors in the CS time measurement). For a detailed
consideration of each error characterization in LPS systems,
please refer to [26] and [41].

In TOA architectures, in which the time measurements are
uncorrelated (i.e. non-diagonal elements of the covariance

matrix are zero), h(TS) and R(TS) take the following
expression:

hTOAi = ‖TS − CSi‖ i = 1, . . . ,N cs (2)

σ 2
TOAi =

c2

B2
(
PT
Pn

)PL (d0)[(diLOSd0

)
+

(
diNLOS
d0

)nNLOS
nLOS

]nLOS

+
1
l

l∑
k=1

{
|Ti − floorTR (Ti + Ui − U0

+T0 (ηi − η0)+ Tiηi)| c2
}

(3)

diLOS = ‖TS − CSi‖LOS (4)

diNLOS = ‖TS − CSi‖NLOS (5)

where Ncs is the number of CS under coverage, c the speed
of the radioelectric waves in m/s, B the signal bandwidth
in Hz, PT the transmission power in W, Pn the mean noise
level in W obtained through the Johnson-Nyquist relation,
PL(d0) the path-loss in the reference distance d0 from which
the Log-Normal model is applied, diLOS and diNLOS represent
the flight distance from each emitter/receiver pair in LOS and
NLOS conditions respectively, nLOS and nNLOS the LOS and
NLOS path-loss exponents, l is the number of iterations of
theMonte-Carlomodel for estimating the temporal variances,
Ti is the time of flight of the positioning signal from emitter
to receiver in TOA architecture, Ui and U0 is the initial-time
offset of the CS and TS clocks respectively and ηi and η0
represent the clock drift of CS and TS clocks, and floorTR is
the truncation function that represents the temporal resolution
of the deployed sensors.

TDOA architectures assume the correlation among the
time measurements [51] which produces non-zero elements
in the non-diagonal terms of the covariance matrix. The vec-
tor h(TS) and R(TS) are obtained as follows:

hTDOAi = ‖TS − CSi‖ −
∥∥TS − CSj∥∥

i = 1, . . . ,Ncsj = 1, . . . ,NCS i 6= j (6)

σ 2
TDOAij =

c2

B2
(
PT
Pn

)PL (d0)[(diLOSd0

)
CSi

+

(
diNLOS
d0

) nNLOS
nLOS

CSi

+

(
djLOS
d0

)
+

(
djNLOS
d0

) nNLOS
nLOS

]nLOS

+
1
l

l∑
k=1

{
|Ti − floorTR (Ti + Ui − U0

+T0 (ηi − η0)+ Tiηi)| c2
}

+
1
l

l∑
k=1

{∣∣Tj − floorTR (Tj + Uj − U0

+T0
(
ηj − η0

)
+ Tjηj

)∣∣ c2} (7)

djLOS =
∥∥TS − CSj∥∥LOS (8)

djNLOS =
∥∥TS − CSj∥∥NLOS (9)
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where sub-index j is used for referring to the second posi-
tioning signal in the TDOA architecture (i.e. the emission in
which the CSj is operated).
A-TDOA architecture also assumes uncorrelated time

measurements since a unique CS is employed for collecting
the time measurements. h(TS) and R(TS) are particularized:

hA−TDOAi = ‖TS −WSi‖ + ‖TS-CS‖ − ‖WSi − CS‖

i = 1, . . . ,Nws (10)

σ 2
A−TOAi =

c2

B2
(
PT
Pn

)PL (d0) [(dWSi−TSLOSd0

)

+

(
dWSi−TSNLOS

d0

) nNLOS
nLOS
+

(
dTS−CSLOS

d0

)
+

(
dTS−CSNLOS

d0

) nNLOS
nLOS
+

(
dWSi−CSLOS

d0

)
+

(
dWSi−CSNLOS

d0

) nNLOS
nLOS

]nLOS

+
1
l

l∑
k=1

{
|(Ti + TTS − Tcs)− floorTR

[(Ti + TTS − TCS )(1+ ηCS )]| c2
}

(11)

dWSi−TSLOS = ‖WSi − TS‖LOS (12)

dWSi−TSNLOS = ‖WSi − TS‖NLOS (13)

dTS−CSLOS = ‖TS-CS‖LOS (14)

dTS−CSNLOS = ‖TS-CS‖NLOS (15)

dWSi−CSLOS = ‖WSi − CS‖LOS (16)

dWSi−CSLOS = ‖WSi − CS‖NLOS (17)

Substituting the corresponding h(TS) and R(TS) for each
TBS architecture in the FIM matrix (Eq. 1), the accuracy of
each architecture can be evaluated through the Root Mean
Squared Error (RMSE), expressed by the following relation:

RMSE =
√
trace

(
J−1

)
(18)

B. SIMULATIONS ENVIRONMENT CONFIGURATION
The comparison between TBS architectures should take place
in an environment where systems capabilities can be tested.
In detail, specific scenarios for each application must be
characterized to estimate the accuracy, cost, and robustness
of the implemented system before its deployment. Even more
interesting, with CRB models [25], the designer can compare
different architectures, sensor placements, and environments
conditions finding the best solution to its particular location
problem.

This last approach is presented in this paper, where a
3D generic urban scenario has been conceived to compare
TOA, TDOA, and A-TDOA characteristics (Figure 1). This
scenario has been designed for testing TBS architectures
throughput in harsh environments, where positioning sig-
nals are degraded by obstacles, buildings, which are typical

FIGURE 1. 3D urban scenario of simulations. Grey tones represent the
reference surface and buildings, while brown colors indicate the Target
Location Environment (TLE).

operating conditions for future autonomous vehicles and
other high-demanding applications in urban areas.

Based on the terminology detailed in [39], the Target
Location Environment (TLE) is defined as the allowed TS
navigation area, and the Node Location Environment (NLE)
is identified as the possible zone where architecture sensors
can be located.

In the scenario depicted in Figure 1, the TLE region is
located in the proximity of the reference surface, simulating
a terrestrial positioning application (however it can model
also aerial configurations). It extends from 0.5 to 5 meters
in elevation from the ground, avoiding multipath phenomena
that blurred the representativeness of the accuracy results
reached through the CRB models.

The NLE zone extends over all the reference surface and
buildings, except for the TLE region. This ensures that archi-
tecture sensors do not disturb the traffic of possible vehicles.
The NLE region is contained in height from 3 to 10 meters,
minimizing disruptive phenomena due to multipath in the
sensors, and limiting the maximum size of sensors, especially
critical in urban environments.

Once TLE and NLE regions are determined, a discretiza-
tion process based on a required spatial resolution must be
performed. This procedure is extremely important to obtain
accurate results, without over-dimension the processing time
of the optimization.

For the TLE area, spatial resolutions of 1 meter in x and y,
and 1.5 in zCartesian coordinates are defined. The discretiza-
tion of the NLE region is directly determined by the scaling
process of the implemented GA [39] for the optimization.
Based on this, a grid resolution contained in the interval
[0.5-1] meter is employed.

These settings are founded when the optimization vari-
ables vary less from the 1 % when increasing the spatial
resolution of NLE and TLE zones, reaching a trade-off
between representativeness and processing time. This anal-
ysis should be performed for every environment of the
application.
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III. GENETIC ALGORITHM OPTIMIZATION
In this manuscript, a TBS performance comparison in terms
of accuracy, availability, and robustness is carried out for
high-demanding applications in 3D urban environments.
Comparative results must be acquired through optimized
sensor distributions for each TBS in the Scenario presented
in Figure 1. In this section, the characteristics of this opti-
mization problem and the implemented methodology to solve
are submitted, together with the optimization functions for
locating TOA, TDOA, and A-TDOA architectures sensors.

A. NODE LOCATION PROBLEM
The finding of the optimized sensor distribution for the reduc-
tion of the architecture uncertainties is known as the Node
Location Problem (NLP).

It is a crucial task in Wireless Sensor Networks (WSN)
since the system performance is notably dependent on find-
ing an optimized node deployment. The definition of the
necessary nodes for covering the target area (i.e. coverage
problem [52]), the consideration of possible sensor failures
in the deployment [47], the reduction of the energy con-
sumption [53] or the minimization of the clock [26] and
noise [41] uncertainties are some of the most important issues
in WSN that require an optimized sensor location for achiev-
ing acceptable results.

The NLP is a combinatorial optimization problem that has
been assigned as NP-Hard [27], [28]. Therefore, a heuristic
solution is recommended for finding an optimized sensor
placement in polynomial time. However, the huge dimension
of the space of solutions of the NLP - highly dependent on the
number of sensor nodes and the resolution of the NLE and
TLE [25]- has suggested the usage of metaheuristics which
reach an optimal trade-off among the intensification and
diversification phases in the combinatorial search. Among
them, GA [39]–[42] has particularly stood out in the litera-
ture.

In the localization field, the usage of heuristics for the
NLP is also justified since the derivation of the quality
metric (CRB) cannot be extended to the entire TLE [49].
Therefore, it is impossible to define a path in the optimization
process in which an ascent tendency in the fitness value
can be attained. This produces that the NLP designer must
particularly perform a hyperparameter tuning to guarantee
the population diversity for achieving a balanced examination
of the space of solutions and avoiding the premature conver-
gence of the algorithm.

As a consequence, in this paper, we propose a GA
optimization to the NLP of the three main localization archi-
tectures in urban scenarios with the methodology for the
hyperparameter tuning described in [39].

B. CHARACTERIZATION OF THE NODE LOCATION
PROBLEM
The NLP aims to discover the optimal Cartesian coordinates
of the architecture sensor nodes for enhancing the sensor
network localization properties.

Generally, the NLP is defined as the finding of the subset
Si containing the Cartesian coordinates of each of the archi-
tecture sensors (〈si〉 = 〈xi, yi, zi〉) fulfilling the following
relation [33]:

(Si = (〈si〉, . . . , 〈sn〉)) ⊂ S :

{∑KTLE
k=1 ffSi (k)

KTLE

≥ max

(∑KTLE
k=1 ffSj (k)

KTLE

)}
(19)

where S is the set containing each possible combination of
sensors in the space of coverage, Sj the subset containing
every combination of S except Si, n the number of sensors
of the architecture, KTLE all the points in which the target is
considered to be located during the optimization process [39],
ffSi (k) the evaluation of the fitness function of the subset Si in
one of the analyzed target points k and ffSj (k) the analysis of
the fitness function in a determined point k in the subset Sj.

In addition, the characterization of the NLP requires the
definition of the hyperparameter KNLE -the number of possi-
ble locations for an architecture sensor in the coverage area-
which defines the number of possible individual subsets of
the S in the NLP which is defined as follows [33]:

P (Sensor Distributions) =

[
n−1∏
m=0

(KNLE − m)

]
(20)

Consequently, the NLP is factorial with the number of
nodes present in each architecture which is dependent on the
achievement of the accuracy results acceptable in the design-
ing process. Thus, the correct definition of KTLE and KNLE
are critical for obtaining acceptable results in time-effective
NLP optimizations [39]. In this paper, the definition of these
hyperparameters are performed through the achievement of
slightly modifications in the principal statistical variables
when reducing the spatial resolution.

C. OPTIMIZATION FUNCTIONS FOR TBS
The optimization objectives of the TBS comparison are rep-
resented through specific fitness functions for TOA, TDOA,
and A-TDOA architectures. For further details of the pre-
sented TBS architectures, please refer to the authors’ previous
work in [26]. Precisely, the optimization must maximize the
accuracy, availability, and robustness of each architecture in
the environment of simulations, while penalizing all sensor
distributions with an invalid configuration.

The maximization of the accuracy is completed through
the minimization of temporal uncertainties induced by noise,
clock errors, and NLOS conditions in the positioning signals
of TBS. The accuracy magnitude for each TBS sensor distri-
butions is estimated through the RMSE characterized based
on the corresponding CRB system model (Section 2).

The maximization of the availability is performed through
the assurance of the throughput requirements when some sen-
sors of the TBS are not accessible to the operation. Accord-
ingly, the optimization should provide sensor distributions
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that maximize the accuracy performance of TOA, TDOA and
A-TDOA architectures when Coordinate Sensors (CS) –those
with the capacity to perform temporal measurements– and/or
Worker Sensors (WS) –sensors without the time measuring
ability, typical of A-TDOA systems–fail or are unavailable.
Based on their configuration, the maximization of the avail-
ability is represented differently for each TBS.

Concerning to the maximization of robustness, high-
demanding applications demand not only accuracy in the TS
positioning, but also stability in the location service. The
optimization of TBS must penalize sensor deployments with
high contrast in the accuracy values of all the TLE region of
the system.

Finally, penalizations for forbidden sensor distributions,
such as devices located inside the TLE zone, are performed
for ensuring correct TBS implementations. Similarly, design-
ers can encourage distributions in certain pre-determined
areas.

Gathering previous requirements, a global fitness function
for the cost-effective node deployment of TBS in urban envi-
ronments can be characterized through the next relation:

ff =caccff acc+cavaff ava+crobff rob−(cacc+cava+crob) ff pen
(21)

where ff stands for the value of the global fitness function,
ff acc represents the accuracy component of the ff , ff ava relates
the availability compound of the ff , ff rob expresses the robust-
ness part of the ff function, and finally ff pen quantifies all
penalizations applied to the TBS sensor distribution. Each of
these components is linked to their correspondent coefficient
(cacc, cava, crob) for weighting its influence according to the
optimization prerequisites.

As it can be observed, the optimization process is based on
the maximization of Eq.21, searching for a trade-off between
accuracy, availability, robustness, and avoiding forbidden
sensor distributions.

Thus, the mathematical model proposed in this paper for
the NLP in TBS architectures is presented below:

Maximize Z = ff (ffacc, ffava, ffrob, ffpen) (22)

Subject to : xlim1 ≤ xi ≤ xlim2; ∀xi ∈ si, ‘si ∈ S; si /∈ U

(23)

ylim1 ≤ yi ≤ ylim2; ∀yi ∈ si, si ∈ S; si /∈ U

(24)

zlim1 ≤ zi ≤ zlim2; ∀zi ∈ si, si ∈ S; si /∈ U

(25)

Covarchk ≥ nminarch (26)

Covarchk =
n∑
i=1

Covarchkn (27)

Covarchkn =

{
1 if SNRkn ≥ SNRthreshold
0 otherwise

(28)

where xlim1 , ylim1 , zlim1 and xlim2 , ylim2 , zlim2 are the lower and
upper bounds for a sensor to be located in the simulations
scenario respectively and U the subset of S containing the
forbidden regions for the architecture sensors such as the area
for the navigation of the vehicles or the buildings of the urban
scenario, Covarchk represents the number of architecture sen-
sors with effective coverage in an analysis point k which must
exceed the minimum number of sensors under coverage for
performing location in each architecture (nminarch ) and the
definition of the effective coverage of an architecture sensor
node n in the point k (Covarchkn ) is achieved when the link
between the sensor and the target has a signal-to-noise ratio
(SNRkn) which exceeds the threshold (SNRthreshold ) imposed
by the receptor sensibility.

TOA architectures are optimized based on the relations
submitted in Eq. 29. Accuracy estimation is obtained through
the CRB calculation based on the environment simulation
detailed in Eq.3, ensuring that at least 4 TOA sensors are
usable. Availability requirements are studied of the system
performance when the minimum number of sensors is acces-
sible to TS location (for TOA architectures, when only 3 sen-
sors in coverage). Respecting robustness, the fitness function
incrementally penalizes TLE zones where performance is
non-adequate, avoiding sensor distributions without consis-
tency in the system throughput over the entire TLE. Finally,
architecture sensors that are located inside the TLE zone are
also penalized.

ff |TOA = cacc|TOA
(
ff acc

∣∣
TOA

)
+ cava|TOA

(
ff ava

∣∣
TOA

)
+ crob|TOA

(
ff rob

∣∣
TOA

)
− (cacc|TOA + cava|TOA

+ crob|TOA)
(
ff pen

∣∣
TOA

)
ff acc

∣∣
TOA =

∑KTLE
k=1

[
(RMSEref−RMSE)

RMSEref

]2
KTLE

∣∣∣∣∣∣∣
TOA

ff ava
∣∣
TOA =

∑KTLE
k=1

[(
RMSEref−

∑Comb
1

RMSE3,C
Comb

)
RMSEref

]2
KTLE

∣∣∣∣∣∣∣∣∣∣∣
TOA

ff rob
∣∣
TOA =

{
abs [KTLE − sum (Eval)]

KTLE (KTLE + 1)

}2∣∣∣∣∣
TOA

ff pen
∣∣
TOA
=

∑N
1 R
N

∣∣∣∣∣
TOA

(29)

where KTLE is the number of points in the TLE region,
RMSEref is the reference RMSE for normalizing ff acc,
assuming a maximum error of 300 meters when position-
ing cannot be provided (worst accuracy condition in the
problem), RMSE is the vector that contains the accuracy
evaluation for all TLE zone, Comb is the number of possible
combinations of 3 available sensors in each zone of the TLE
region,RMSE3,C represents the accuracy estimation for each
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point of the TLE region for each combination of 3 possible
TOA sensors in coverage, Eval is the vector that stores the
existence of the required architecture sensors in each point
of the TLE –assuming a value of -2KTLE when these condi-
tions are not fulfilled [25], N is the total number of sensors
deployed, and R represents the vector for penalizing wrong
sensors distributions (0 for valid and 1 invalid allocation).

TDOA architectures optimization is founded on the same
basis as TOA systems. Based on CRB evaluation for TDOA
architectures with temporal uncertainties induced by noise,
clock errors, and NLOS conditions (Eq. 7), accuracy in
each of the TLE points is estimated for sensor distributions
(assuming that at least 4 TDOA sensors are accessible for 3D
positioning). Availability is addressed through the accuracy
analysis of sensor distributions when theminimum number of
sensors is available for positioning (4 in the case of 3D loca-
tion with TDOA systems [19]). Also, in TDOA architectures
one pre-determined CS is used to refer time measurements of
the surroundings TDOA sensors and compute pairs of time
difference of arrival from TS. For this reason, availability
is also affected by malfunctions in this pre-defined CS in
each TLE zone, so at least 2 eligible CS must be in coverage
and connected with 3 more (shared or not) CS in order to
perform positioning in failure conditions. As in the TOA
case, robustness is maximized based on a progressive fitness
function for evaluation accuracy and availability, which grad-
ually penalizes sensor distributions with non-uniformity in
the performance for every TLE region. Also, TDOA sensors
placed inside TLE zones led to hard penalizations in the
global fitness function for this sensor distribution.

ff |TDOA = cacc|TDOA
(
ff acc

∣∣
TDOA

)
+ cava|TDOA

(
ff ava

∣∣
TDOA

)
+ crob|TDOA

(
ff rob

∣∣
TDOA

)
− (cacc|TDOA

+ cava|TDOA + crob|TDOA)
(
ff pen

∣∣
TDOA

)

ff acc
∣∣
TDOA = =

∑KTLE
k=1

[
(RMSEref−RMSEprim)

RMSEref

]2
KTLE

∣∣∣∣∣∣∣
TDOA

ff ava
∣∣
TDOA = =

∑KTLE
k=1

[
(RMSEref−RMSEsec)

RMSEref

]2
KTLE

∣∣∣∣∣∣∣
TDOA

+

∑KTLE
k=1

[(
RMSEref−

∑Comb
1

RMSE4,C
Comb

)
RMSEref

]2
KTLE

∣∣∣∣∣∣∣∣∣∣∣
TDOA

ff rob
∣∣
TDOA =

{
abs [KTLE − sum (Eval)]

KTLE (KTLE + 1)

}2∣∣∣∣∣
TDOA

ff pen
∣∣
TDOA

=

∑N
1 R
N

∣∣∣∣∣
TDOA

(30)

whereRMSEprim andRMSEsec represents the location accu-
racy obtained with the primary and secondary eligible CS for
all TLE points, RMSE4,C represents the accuracy estimation
for each point of the TLE region for each combination of
4 possible TDOA sensors in coverage, and the rest of the
variables of the fitness function are defined as previously but
for the TDOA architecture characteristics.

A-TDOA architectures are optimized based on the criteria
presented in Eq. 21, but the methodology for analyzing accu-
racy and availability requirements are slightly different than
the purposed for TOA and TDOA systems. This alteration is
induced by the existence of two different types of sensors (CS
and WS) characteristics of A-TDOA architectures.

Accuracy estimation is carried out from the assumption
that 1 CS and at least 4 WS are available to connect with the
TS location. Consequently, temporal measurement uncertain-
ties in systems sensors motivated by noise, clock errors, and
NLOS conditions, are introduced in Eq.11 and positioning
accuracy (RMSE) is calculated based on CRB. Availability
evaluation is performed based on the capacity of the system
to provide high-accuracy positioning service when some of
the CS or WS present malfunctions. Conversely to previous
TBS systems, in A-TDOA architectures there exists two types
of sensors with different capabilities and functions, so the
availability study must distinguish their impacts. Precisely,
WS availability is approached as in TOA and TDOA sys-
tems, where the accuracy is evaluated for each possible com-
bination with the minimum number of sensors needed for
positioning (3WS [19] and 1 CS for A-TDOA systems). Con-
cerning CS availability, the optimization must guarantee that
a minimum of 2 CS –with the correspondent WS connected
(shared or not) between them– is accessible in each zone of
the TLE region, alluring the positioning service in the event
of CS malfunctions [25]. Robustness and undesirable sensor
distributions are feed into the optimization using the same
methodology that the rest of the TBS treated.

ff |A−TDOA

= cacc|A−TDOA
(
ff acc

∣∣
A−TDOA

)
+ cava|A−TDOA

(
ff ava

∣∣
A−TDOA

)
+ crob|A−TDOA

(
ff rob

∣∣
A−TDOA

)
−
(
cacc|A−TDOA + cava|A−TDOA + crob|A−TDOA

)
×

(
ff pen

∣∣
A−TDOA

)
ff acc

∣∣
A−TDOA

=

∑KTLE
k=1

[
(RMSEref−RMSEprim)

RMSEref

]2
KTLE

∣∣∣∣∣∣∣
A−TDOA

ff ava
∣∣
A−TDOA

=

∑KTLE
k=1

[
(RMSEref−RMSEsec)

RMSEref

]2
KTLE

∣∣∣∣∣∣∣
A−TDOA
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+

∑KTLE
k=1

[(
RMSEref−

∑Comb
1

RMSE4,C
Comb

)
RMSEref

]2
KTLE

∣∣∣∣∣∣∣∣∣∣∣
A−TDOA

ff rob
∣∣
A−TDOA

=

{
abs

[
KTLE − sum

(
Evalprim

)]
KTLE (KTLE + 1)

}2

+

{
abs [nTLE − sum (Evalsec)]

KTLE (KTLE + 1)

}2∣∣∣∣∣
A−TDOA

ff pen
∣∣
A−TDOA

=

∑N
1 R
N

∣∣∣∣∣
A−TDOA

(31)

where RMSEprim and RMSEsec indicate the accuracy eval-
uation for all TLE based on the primary CS associated and
the second one, respectively, for each TLE point, RMSE4,C
represents the accuracy estimation for each point of the TLE
region for each combination of 3 possible A-TDOA WS and
1CS in coverage, and Evalprim and Evalsec are respectively
the vectors that quantify the existence of one or two CS –with
their correspondent minimum or four WS (shared or not)-,
assuming a value of -2KTLE when these conditions are not
fulfilled [25].

D. OPTIMIZATION PROCESS
Once presented the quality evaluation models for each one
of the TBS architectures and the mathematical modeling
of the NLP, we detail through the following pseudocode
the optimization process developed for optimizing the node
distribution of these architectures for making their results
objectively comparable for the first time.

The optimization is carried out through the enforcement of
a GA algorithm, as it is shown in Table 1. Amongst all the
heuristic methodologies usually applied for solving the NLP,
GAs submitmore flexibility for adapting to the characteristics
of each specific implementation due to their large number
of encodings and genetic operators, the diversification and
intensification stages can be adjusted to the convergence
features of the problem, and the control over the selective
pressure allows a better global performance in harsh opti-
mizations with severe discontinuities in the fitness function.

As it is shown in Algorithm 1, the process starts with the
definition of a random population of individuals containing
possible node distributions. We then start the GA until the
convergence criteria is fulfilled. Inside the GA, we calcu-
late the LOS/NLOS paths of the positioning signal from
each of the possible TLE analyzed points to each of the
nodes of the architecture through the Ray Tracing algorithm
introduced in [41]. Later, the temporal variances are calcu-
lated through the Monte Carlo model introduced in [26].
This information allows the calculation of the CRB of each
architecture following the model presented in Section 2.1.

TABLE 1. Pseudocode of the optimization process followed for the
solution of the NLP

This information allows us to calculate the fitness functions
presented in Section 3.3 following the characteristics of the
TBS architecture that is being optimized for finally utilize the
GA operators (selection, elitism, crossover and mutation) for
executing the evolutionary optimization.

The implemented GA [39] allows adapting the heuristic
optimization process to the local geometric properties of
the NLE and TLE zones. In this sense, a binary encoding
and a scaling transformation of coordinates enable real-cases
scenarios of optimization. Also, the binary codification enti-
tles the implementation of distinct crossover techniques and
mutation procedures for boosting the convergence of the
method.

IV. RESULTS
The results of the TBS node optimization in the 3D urban
environment detailed in Figure 1 are submitted in this section.
Firstly, descriptions about the positioning systems configu-
ration and the GA hyper-parameters are provided. Secondly,
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TABLE 2. TBS configuration parameters relative to positioning technology,
time measurement devices [21], and environment characterization [54]

performance evaluations for TOA, TDOA, and A-TDOA
architectures in the urban scenario are supplied. Finally,
an analysis of the results is submitted, highlighting the bene-
fits of each architecture and how their characteristics influ-
ence their implementation to high-demanding positioning
applications

A. SELECTION OF PARAMETERS FOR THE SIMULATIONS
TBS node optimizations are subjected to the definition of the
location technology and the optimization strategy to properly
compare the positioning architectures.

Relating TBS technologies, the objective of this
manuscript is to provide a detailed methodology to estimate
architectures a priori throughputs and compare positioning
systems based on real applications in complex urban envi-
ronments. Based on this, a generic configuration of com-
munications and positioning devices is selected, aiming the
most representativeness with urban restrictions and limita-
tions. Positioning signal characteristics, clocks uncertainties
models, and path loss estimations are shown in Table 2.

The hyper-parameter selection for the GA optimization
is conditioned to the trade-off between the obtainment of
near-global maximum solutions with high representativeness
and spatial resolution, and the processing time and the com-
plexity of the method. Table 3 displays the optimization
parameters chosen for the simulations with the TBS.

Regarding the GA configuration of Table 3, experiments
were carried out for diminishing the number of individuals in
the population due to their direct impact on the complexity
and processing time. Reducing individuals below 80 led to
suboptimal optimizations and unstable convergences, so this
value is fixed as the minimum threshold for adequate opti-
mizations.

Tournament 2 has been selected as the selection technique
due to their better trade-off between higher fitness function
values and the number of generations to converge, com-
pared to other methodologies as Tournament 3, Ranking,
and Roulette. Parametric analysis for elitism has been also

TABLE 3. Settings for GA optimization for TOA, TDOA, and A-TDOA
architectures

developed, based on the same criteria as the election of the
selection technique and with the analytical process for the
selection of these values that we introduced in [55] adapted
to this particular scenario. In this regard, the optimization
process tends to fall in local optima, so applying slight selec-
tive pressure results in the better global performance of the
method.

Among the large variety of crossover and mutation binary
techniques, the single-point methodologies provide the best
outcomes thanks to the escalation in the exploration of the
space of solutions. In the urban NLOS problem, where dis-
continuities and drastic alterations in the fitness functions are
present, these procedures are the key aspect for obtaining
a trade-off between the diversification and intensification
stages. The effect of these techniques is a progressive incre-
ment of the maximum fitness function value through the
generations, thanks to the creation of new individuals with a
resemblance with their progenitors (uniform crossovers show
a tendency to blur the genetic similarity inducing less robust
optimizations).

The mutation percentage is slightly larger than usual to
overcome local optimizations induced by the discontinu-
ities in the global fitness function caused by NLOS condi-
tions [33]. Lastly, the fitness function coefficients (Eq. 19)
are determined as unitary to perform a standard optimization
where normal operating conditions are considered to a greater
extent than emergency (failure) conditions. However, this
layout can be adapted based on optimization demands and
application requirements.

B. TBS OPTIMIZATIONS
The large urban scenario of simulations selected has pro-
moted the employment of 25 architecture sensors for achiev-
ing the coverage of the entire analyzed TLE points.

We have performed the optimizations described through-
out the past chapters for each of the TBS architectures (TOA,
TDOA and A-TDOA) looking for enhanced node distribu-
tions in accuracy, availability and robustness reaching the
following results displayed from Figure 2 to Figure 4:
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FIGURE 2. Accuracy representation in every TLE analyzed point for the
optimized TOA architecture with 25 sensors in the proposed urban
scenario. The architecture nodes deployed are displayed in brown tones.

FIGURE 3. Accuracy representation in every TLE analyzed point for the
TDOA architecture with 25 sensors in the proposed urban scenario. The
architecture nodes deployed are displayed in brown tones.

FIGURE 4. Accuracy representation in every TLE analyzed point for the
A-TDOA architecture with 25 sensors (5 CS) in the proposed urban
scenario. The architecture CS nodes deployed are displayed in brown
tones and the WS are displayed in purple tones.

The previous figures have shown the accuracy of each
architecture in the TLE. Then, in Table 3, the results of the
accuracy and availability of the optimizations in nominal
conditions are presented:

TABLE 4. Accuracy analysis for the TOA, TDOA and A-TDOA architectures
in nominal conditions

TABLE 5. Accuracy analysis for the A-TDOA architecture in failure
emergency conditions

As it is shown, A-TDOA outperforms the synchronous
architectures in accuracy, indicating the relevance of the syn-
chronism errors in LPS. Therefore, the path errors have less
influence than the clock uncertainties in urban scenarios as
we previous demonstrated in outdoor environments in [26]
even considering NLOS paths through the algorithm later
introduced in [41].

This also means that the evolutionary optimization pro-
posed in this manuscript is able to address the trade-off
required for reducing the signal paths in the whole TLE
analyzed points without compromising the accuracy in any
region.

It is particularly noteworthy the achievement of a reduced
error bound in the TOA architecture which is the result of the
least dependency of this architecture on particular nodes for
collecting the time measurements, making the TOA systems
more flexible and robust.

However, their mean error values due to the influence of the
synchronism uncertainties makes the TOA architecture non-
competitive in this scenario but it could be suitable in espe-
cially harsh environments which could potentially promote
an incremental number of CS in the A-TDOA architecture
for the attainment of acceptable accuracy results [25].

The preeminence of the A-TDOA architecture in this sce-
nario promotes the determination of their results in emer-
gency conditions to conclude its suitability for this particular
scenario. We present in Figure 5 and Table 4 the operation
of this architecture in failure condition of a CS in every
analyzed TLE points promoting the use of the secondary
CS under coverage which is granted during the evolutionary
optimization of this architecture following the methodology
introduced in [25].
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FIGURE 5. Accuracy representation in every TLE analyzed point for the
A-TDOA architecture in failure conditions with 25 sensors (5 CS) in the
proposed urban scenario. The architecture CS nodes deployed are
displayed in brown tones and the WS are displayed in purple tones.

Consequently, the application of the A-TDOA architecture
in failure conditions slightly deteriorate with regards to its
nominal operation showing the availability of this architec-
ture and the quality of the optimization process.

As it is shown, the overall results show the preeminence
of the A-TDOA in this urban scenario. This supposes an out-
standing remark to be considered for future high-demanded
applications in urban contexts.

V. CONCLUSION
Local Positioning Systems (LPS) have shown an excellent
adaptation for high demanded accuracy applications in com-
plex environments. The development of autonomous naviga-
tion with high accuracy needs has supposed a challenge in
NLOS urban scenarios.

In this paper, we propose a methodology for the deploy-
ment of Time-Based Positioning Systems (TBS) in urban
environments. This methodology relies on the exploration
and analysis of the three main temporal localization archi-
tectures: Time of Arrival (TOA), Time Difference of
Arrival (TDOA) and Asynchronous Time Difference of
Arrival (A-TDOA).

Every architecture must be considered for every different
scenario since the clock errors and noise path uncertainties
are imbalanced among them. TOA systems accumulate the
least noise uncertainties since the positioning signal travels
the shortest path of these architectures but requires the syn-
chronism of all the system elements, while A-TDOA avoid
synchronization errors but increases the signal paths by its
receive and retransmit strategy.

Consequently, we define a general framework for the opti-
mization of the node distribution of these TBS architec-
tures in order to compare their performance in the proposed
urban scenario. This optimization requires the solution of the
node location problem for each architecture which has been
assigned as NP-Hard.

We propose a GA optimization for addressing this complex
problem focusing on the reduction of the clock and noise

architecture uncertainties in a combined LOS and NLOS
urban scenario, on guaranteeing the system accuracy and on
system availability in case of some Coordinator or Worker
Sensormalfunction and penalizing invalid node deployments.

Results show the preeminence of the A-TDOA architecture
in the proposed scenario. The influence of the synchroniza-
tion effects makes A-TDOA to be promising for urban Local
Positioning System applications due to the achieved reduc-
tion of the system clock errors. However, the simulations have
shown the importance of the location of the CS nodes in the
A-TDOA in desirable special positions that are reached in this
scenario but can suppose a challenge in some environments,
promoting the implementation of the TOA and TDOA system
in especially irregular urban scenarios
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