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ABSTRACT Graph neural networks have been proven to be very effective for representation learning
of knowledge graphs. Recent methods such as SACN and CompGCN, have achieved the most advanced
results in knowledge graph completion. However, previous efforts mostly rely on localized first-order
approximations of spectral graph convolutions or first-order neighborhoods, ignoring the abundant local
structures like cycles and stars. Therefore, the diverse semantic information beneath these structures is not
well-captured, leaving opportunities for better knowledge representation which will finally help KGC. In this
work, we propose LSA-GAT, a graph attention network with a novel neighborhood aggregation strategy
for knowledge graph completion. The model can take special local structures into account, and derive a
sophisticated representation covering both the semantic and structural information. Moreover, the LSA-GAT
model is combined with a CNN-based decoder to form an encoder-decoder framework with a carefully
designed training process. The experimental results show significant improvement of the proposed LSA-GAT
compared to current state-of-the-art methods on FB15k-237 and WN18RR datasets.

INDEX TERMS Knowledge graph embedding, knowledge graph completion, graph attention networks.

I. INTRODUCTION
Knowledge Graphs (KGs), such as Freebase [1], YAGO
[2], DBpedia [3] and NELL [4] are fashionable carriers for
various common-sense knowledge. They act as the core of
many state-of-the-art natural language processing solutions
to many practical applications, including question answering,
reading comprehension, etc. However, the fact, where knowl-
edge graph is usually incomplete and lacks facts, entities,
or relations, may significantly hinder the performance [5].
Therefore, the knowledge graph completion is necessary and
vital. Figure 1 shows a subgraph of a knowledge graph with
real facts composed of actual relations between two entities
(solid lines). The relationships are organized in the forms
of (h, r, t) triples (e.g. h = ‘‘Tom Hardy’’, r = ‘‘acted_in’’,
t = ‘‘Revenant’’). The task of knowledge graph completion
is aimed at reasoning over existing triples to find the missing
links (e.g. red dotted line in Figure 1).

Current knowledge graph completion methods are broadly
divided into four categories: Translation-based models, Ten-
sor Factorization models, CNN-based models, and Graph
Neural Network models. The translation-based models
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FIGURE 1. A subgraph in a Knowledge Graph in representation of triples
which is composed of actual relations (solid lines) between entities and
inferred relations (red dotted line).

[6]–[8], tensor factorizationmodels [9]–[12], andCNN-based
models [13]–[15] treat each triple independently, and try to
model different relations to capture the semantic informa-
tion of the knowledge graph. However, they fail to capture
the rich sematic presented near a given entity in a KG.
Therefore, models based on graph neural networks (GNNs)
become fashionable recently. These GNN models explicitly
use neighboring information of an entity.

However, current methods based on GNNs [23] cannot
make good use of the rich local structural information in
the knowledge graph. For example, in Fig.2, there are sim-
ilar contexts around entity Hermione Granger and Draco
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FIGURE 2. An example of subgraph. There are similar contexts around
entity Hermione Granger and Draco Malfoy which have different local
structure, (i.e. relation paths (house, Houseed_by), (occupation,
occupationed_by) for Hermione Granger, and only (occupation,
occupationed_by) for Draco Malfoy.

Malfoy for them having the same neighbor wizard and
Harry Potter. Current GNN models are likely to predict
that (Harry Potter, friend_of, Hermione Granger) and (Harry
Potter, friend_of, Draco Malfoy). However, two head entities
Hermione Granger and Draco Malfoy actually have different
local structures, i.e., relation paths (house, housed_by), (occu-
pation, occupationed_by) for Hermione Granger, and only
(occupation, occupationed_by) for Draco Malfoy. Applying
such local structures may benefits the completion of knowl-
edge graphs, which are not properly handled by current
methods like basic GAT models.

Therefore, for the comprehensive usage of such structural
information in knowledge graph completion, we propose
local structure-aware graph attention networks (LSA-GAT).
The model applies the local structure around an entity and
aggregate the local structural information to update entities
and relations’ embeddings. Our model first observes multiple
typical structures near the given entity like stars and triangles,
then aggregates different structure information to learn dif-
ferent embeddings for the entity, and finally combines these
different embedding representations through the attention
coefficient to obtain the updated representation for the entity.

Through this design, our proposed model can capture
the potential semantic logics between entities and relations
within the representation of entities and relations. We fur-
ther integrate the model with a CNN-based module to com-
pose an encoder-decoder framework. Through experiments,
we have proved our proposedmodel is superior to the existing
GNN-based model in learning graph structure information,
and the experimental effect shows strong competitiveness.
Our contributions are as follows:
• As far as we know, this is the first study to propose
a graph attention method that explicitly uses different
graph local structures for knowledge graph completion.

• We proposed an end-to-end network LSA-GAT taking
benefits of both GAT and CNN entities and relations,
and the decoder applies 3 × 3 convolution filters and
1 × 3 filters to capture the interactive and translational
characteristic between entities and relations.

• We demonstrate the effectiveness of our proposed
LSA-GAT on the standard FB15K-237 and WN18RR
datasets, and show about a mean 10% relative

improvement over the state-of-the-art SACN in terms
of Hits@1, Hits@3 and Hits@10.

• Extensive experimental results reveal that different local
structures contribute diversely to link prediction per-
formance, and the overall performance is proportional
to the number of entity local structures applied, which
validate that local structure information is meaningful
for knowledge graph completion.

II. RELATED WORK
Recently, Knowledge Graph Completion (KGC) or Link
Prediction (LP), aimed at inferring missing head entities, tail
entities or relations in triples, has become an active research
field. The earliest model is based on the embedding method,
and its main idea is to model relation with different properties
such as symmetric and asymmetric relations in the graph.
TransE [6] models the triples as the translation of the head
entity to the tail entity in the semantic space, but it can
only handle 1-1 relations. To solve this question, TransH [7]
is proposed to deal with 1-N relations by projecting head
and tail entities into a relation-specific hyperplane and then
computed the triple score using a translation operation on
the hyperplane. TransR [8] directly build separate relations
and entities space, projecting entities from entity space to
relation-specific space to calculate the distance between
entities.

However, researchers found that when the scale of
the knowledge graph continues to grow, the above
translation-based model cannot achieve a balance between
the expansion ability and expression power. Tensor Factoriza-
tion models are proposed to compress the model. RESCAL
[9] applies a three-way rank-r factorization over each rela-
tional slice of knowledge graph tensor. DistMult [10] learns
embeddings from a bilinear objective and captures relational
semantics using weighted elementwise dot products to model
entity relations. ComplEX [11] generalizes DistMult [10]
by using complex embeddings and Hermitian dot products
instead. TuckER [12] learns embedding by outputting a core
tensor and embedding vectors of entities and relations.

Recently, CNN-basedmodels have been proven to improve
expression ability by capturing complex interactions between
entities and relations. At the same time, the parameter effi-
ciency of CNN can prevent the model from becoming dif-
ficult to run as the scale of the knowledge graph expands.
ConvE [13] reshapes the head entity and relation embed-
dings into a two-dimensional matrix and then applies a 2D
convolution and a fully connected layer on top of it to
obtain a feature vector. This feature vector and the tail entity
embedding vector are thrown to an inner product layer for
the final prediction. Just like the application of the capsule
network in the image processing field, CapsE [14] captures
the complex high-level features in the triples by applying
a capsule network after the convolutional layer. InteractE
[15] increases the interaction between relation and entity
embeddings through three key ideas—feature permutation,
a novel feature reshaping, and circular convolution. And its
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experiments show increasing the number of such interac-
tions is beneficial to link prediction performance. Although
CNN-based methods are effective, such methods always treat
each triplet independently and cannot capture the connections
between the triples. Moreover, methods above all only treat
each triple independently, ignoring the rich contextual infor-
mation around the triple. To handle this, GNN-based models
are proposed. GNNs are introduced for learning connectiv-
ity structure under an encoder-decoder framework. R-GCN
[16] proposes relation-specific transformation to model the
directed nature of knowledge graphs. SACN [17] proposed
weighted GCN, defining the strength of two adjacent nodes
with the same relation type, to capture the structural infor-
mation in knowledge graphs by utilizing node attributes, and
relation types. CompGCN [18] introduces a novel Graph
Convolutional framework which jointly embeds both nodes
and relations in a relational graph.

Existing methods mostly treat triples independently or
aggregate neighbors without take some special local struc-
tures into account. However, sometimes these neglected
local structures play an important role [24]. ADSF [25]
uses random walks to find subgraphs around nodes, and
learns node representations by fusing the information of these
subgraphs instead of separate neighbor node information to
help complete the classification of nodes on citation net-
works and social networks. In comparison, our proposed
model LSA-GAT aggregates neighbors with local structure
awareness.

III. METHOD
This section first introduces the basic definitions and
notations of KGC, and preliminaries on the pure graph
attention strategy for neighbor node aggregation. Then the
motivation and overview of our model are given. The third
part provides the intuition, the general structure, and the
detailed component design of the proposed end-to-end model
LSA-GAT.

A. PROBLEM FORMULATION AND NOTATION
Because of the nature of incompleteness of knowledge
graphs, KGC is developed to add new triples to a knowledge
graph. Here gives a task-oriented definition.
Definition 1 (Knowledge Graph Completion): Given an

incomplete knowledge graph G = (E,R,F), in which E is
the set of entities, R is the set of existed factual triples in
this knowledge graph. Knowledge graph completion (KGC)
aims to find missing facts by reasoning over existed triples.
Figure 1 shows an example of knowledge graph comple-
tion, based on existed triples, we can infer missing links.
For instance, we can infer (Tom Hardy, colleague, Leonardo
DiCaprio) (red dotted line) by reasoning over existed triples
(solid lines).

1) PRELIMINARY (GRAPH ATTENTION NETWORKS FOR
AGGREAGATING NEIGHBORS)
GAT assighn different weights for different neighbor around
an entity and recursively learns the representation for entities

FIGURE 3. The process of GAT. In each layer, entities aggregate the
information of their own first-order neighbors with GAT and update their
embeddings.

and relations. Formally, at each layer l of GAT, entity i
integrates neighboring entities’ features to obtain a new rep-
resentation via:

h(l+1) = σ (
∑
j∈Ni

αijhljw
l) (1)

where hl is the representation of entity i at l-th layer; Ni is the
set of entity i’s neighbors; αij is calculated weights via:

αij = g(hli,
∑
j∈Ni

(rij, hlj)) (2)

where rij is the representation of relation between entity
i and entity j, g is some attention calculation function.
Figure 3 shows the aggregation process of GAT.

We can view a GAT [27] as a message-passing algo-
rithm. Each layer in a GAT allows the model to integrate
information from a wider neighborhood. We explain this
from the perspective of a target entity (in gray). In Layer 2,
this entity gathered information from its one-hop neighbors
(in orange). In Layer 3, orange entities integrate their own
one-hop neighbors’ information (in blue). In Layer 4, blue
entities similarly aggregate information from their immediate
neighbors (in green). However, in the entire message passing
process, each triplet is only be treated as an independent
individual, ignoring the association between the triplet and
local structures patterns.

B. MOTIVATION AND OVERVIEW
Actually, the understanding of an entity in the knowledge
graph can start from its local area. In a knowledge graph,
some local structure contains rich semantic information,
which can help link prediction. Figure 4(a) shows a subgraph
of the entity ‘‘Ran’’ in FB15k-237 dataset, we can see that
the local structure around the entity is mainly divided into
three types: 1) connect to the same entity through different
relations; 2) connect to an entity through a path and another
relation at the same time; 3) connect to different entities
through different relations.

Similarly, we can abstract the whole graph and define
following local structures:
• 2-Cycle (in red): Entity v and another entity t are con-
nected through two different relations. formally, there
are two triples (v, r1, e1) and (v, r2, e1) in which only
the relation is different.

• Triangle (in blue): Entity v and entity t are connected
through a relation and a path respectively. Formally,
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FIGURE 4. A subgraph of entity ‘‘Ran’’ in FB25k-237 dataset and its illustration. (a) shows a valid subgraph around entity ‘‘Ran’’,
(b) shows its corresponding illustration under our definition.

(v, r5, e3) denotes the relation between entity v and
entity e3, (v, r3, e2) ∧ (e2, r4, e3) denote the path.

• Star (in green): Entity v is linked to different entities
through different relations. Formally, for a given entity v,
there are two triples (v, r6, e4), (v, r7, e5), (v, r8, e6) and
(v, r9, e7) in which only the head entity is the same.

These three different local structures can reveal differ-
ent semantic information. For example, the 2-cycle struc-
ture reveals that different relations connected to the same
entity have similar semantics. To learn the structural infor-
mation, we proposed a local structure-aware GAT model, as
LSA-GAT. Figure 5 shows the overview of the architecture of
our model.

Our proposed model mainly contains four modules:
i)Graph AttentionModule; ii) Local Structure Represen-
tation Module; iii) Feature Fusion Module; iv) Decoder.
Graph attention module measures the importance of each
neighbor triple around the target entity; local structure rep-
resentation module performs different process on different
local structures to abtain the structure-specific embeddings;
feature fusion modulemerges the structure-specific embed-
dings to obtain the final embedding for entities; the mod-
ule i),ii) and iii) form the Encoder of our model; Decoder
module uses the learned embeddings to calculate triples’
authenticity score based on an advanced CNN model.

C. ENCODER
In this section, we will give the details of the encoder in our
model. The encoder mainly contains three parts: 1) graph
attentionmechanism; 2) representation of the local structures;
3) feature fusion and update equation.

1) GRAPH ATTENTION MECHANISM
We adopt the graph attention networks (GATs) with
redesigned attention formula to recursively learn the
representation for entities by aggreagating the informa-
tion of neighboring triplesthe entity representation for

FIGURE 5. The architecture of our model. Our model contains two main
parts: Encoder and Decoder. Encoder is constructed based on our
proposed LSA-GAT to learn entities and relations’ representations, and
decoder is aimed at scoring would-be triples to infer missing facts using
the learned embeddings with CNN-based method.

knowledge graphs. Figure 6 shows the design of the graph
attention mechanism used in our model.

Generally, given an entity’s subgraph within one hop,
the entity and relations’ embeddings are inputted into a graph
attention cell and output the learned representations of the
entity and relations. Formally, given an entity v (we call it the
target entity), its’ neighbors are represented by

N (v) = {(vi, rij, vj)|rij ∈ R, vj ∈ E, (vi, rij, vj) ∈ F
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FIGURE 6. Graph attention mechanism used in our model.

FIGURE 7. The calculation cell used in graph attention mechanism to
compute weight for each neighbor.

We calculate the attention weights of a neighbor using head
entity vi and tail entity vj as well as the relation rij. Firstly, we
concatenate the entity and relation embeddings to represent
the corresponding triple (vi, rij, vj) followed a linear transfor-
mation to learn the embedding of the triple associated with
entity vi:

h(vi,rij,vj) = W1 · concat(hvi , hrij , hvj ) (3)

where hvi , htj , hrij are the embeddings of entities vi, vj and
relation rij, h(vi,rij,tj) denotes the embedding of corresponding
triple. W1 denotes the linear transformation matrix. Then
we perform LeakyRelu and Softmax to get relative attention
weight for each triple, Figure 7 shows the computation of
relative attention values:

d(vi,rij,vj) = LeakyRelu(W2·h(vi,rij,vj)) (4)

αij = softmax
(
d(vi,rij,vj)

)
=

exp(d(vi,rij,vj))∑
vt∈N (vi) exp(d(vi,rit ,vt ))

(5)

whereN (vi) denotes the neighborhood of entity vi, rit denotes
the corresponding relation linking entities vi and vt . The
transformed embedding is calculated by summing up all
triples’ representation weighted by their attention value, and
we use multi-head attentions [20] to stabilize the process:

h
′

vi = σ (
∑

vj∈N (vi)
αij·h(vi,rij,vj)) (6)

Eh′vi =
1
M

M∑
K=1

σ (
∑

vj∈N (vi)
α
(k)
ij ·h

(k)
(vi,rij,vj)

) (7)

FIGURE 8. The illustration of cycle-structure.

where M is the number of attention head we used. For
simplification, we denote the above attention operation as:

Eh′vi = Att(HN (v)) (8)

where HN (v) = {h(v,rvj,vj)|vj ∈ N (v)} is the set of embedding
of neighboring triples associated with entity v.

2) REPRESENTATION OF LOCAL STRUCTURES
As mentioned in section III(B) above, to learn local structural
information, we define three concerned structures, 2-cycle,
triangle, and star. Then we use our proposed model LSA-
GAT to aggregate the structure information to generate three
different structure-specific embeddings, and finally, merge
them to obtain the final embedding. For the 2-cycle structure,
we form a combination relationship by combining different
relationships between the same pair of entities. The combi-
nation relation is regarded as a new relation to form a 2-cycle
structure triple. For the triangle structure, we perform LSTM
on the path and combine it with the individual relation to
form a triangle structure triple. For star-structure, we regard
these triples as normal triples. Then input the reconstructed
triples into different GAT cells designed in Fig.6 to learn
the structure-specific embeddings for entities, and finally use
simple attention to merge them up for final embeddings.

2-Cycle
For different relations connected to the same entity,

we combine their relations in pairs to obtain different com-
bination triples, which allows the model to capture the
interactive characteristics between these relations.

For the example in Fig.8, there are 4 different relations
between entity v and e1. In our work, we first combine
relations in pairs to get combination triples. Formally, we use
combination to produce 6 combination triples (v, r1+ r2, e1),
(v, r1+ r3, e1), (v, r1+ r4, e1), (v, r2+ r3, e1), (v, r2+ r4, e1)
and (v, r3 + r4, e1) based on these four triples. This can cap-
ture the interactive features of different but semantic-similar
relations. And then we learn the embedding of combination
triples (v, r1 + r2, e1) (the same for another combination
triples):

h(v,r1+r2,e1) = W1·concat(hv, hr1+r2 , he1 ) (9)

hr1+r2 = hr1 + hr2 (10)

where hr1 , hr2 are the embeddings of relation r1, r2
respectively;hv, he1 are the embeddings of entity v and e1.
We denote the set of combination triples as cycle-specific
neighborhood N c

(v) = {(v, ri + rj, et )|v, et ∈ E, ri, rj ∈ Rvt .
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FIGURE 9. An example of triangle-structure. (a) shows an instance of
triangle structure in knowledge graph, (b) shows the illustration of the
triangle structure.

where Rvt is the set of different relation connecting entity v
and et . And then the 2-cycle-structure-specific embedding of
entities is computed by:

hcv = Att(hN c
(v)
) (11)

where hN c
(v)
= {h(v,ri+rj,et )|v, et ∈ E, ri, rj ∈ RvthNc

(v)
=

{h(v,ri+rj,et)|v, et∈ E,rirj ∈ Rvt is the set of embeddings
for combination triples, AttAtt is the attention mechanism
introduced in (3)-(8).

Triangle:
As shown in Fig.9, (a) is an instance of triangle structure

in knowledge graph, (b) shows the illustration of the trian-
gle structure. Supposed there are a relation (v, r5, e3) and
a 2-hop relation path p(v, e3) = (r3, r4), which indicates
ve2e3, it is straightforward and reasonable for us to build path
embedding via semantic composition of relation embeddings.

As illustrated in Fig.10, the path embedding p is cal-
culated by the embedding of relation headquatered_in,
entity Sunnyvale and relation located_in. And then we add
the path embedding to the embedding of single-relation
placed_founded to obtain a compositional relation embed-
ding. Finally, triangle-structured triples are represented by
the embeddings of head entity, compositional relation and tail
entity.

Formally, consider a relation (v, r5, e3) and a 2-hop relation
path p(v, e3) = (r3, r4) indicates ve2e3 (shown in Fig.9),
we use LSTM to get the path embedding:

hlstm = LSTM (hr3 , he2 , hr4 ) (12)

then the compositional relation embedding is represented as:

hcr = hr5 + hlstm (13)

the embedding of triangle is represented by following
equation:

h(v,cr,t) = W2·concat(hv, hcr , he3 ) (14)

FIGURE 10. The embedding process of triangle-structured triple. We use
LSTM to learn the representation of relation path, and then add the path
to another single relation to get combination relation. Then the
combination triple is formed of head entity, tail entity and the
combination relation.

FIGURE 11. The illustration of star structure. In star structure, only the
head entity stays the same.

moreover, in order to get the triangle-structured-specific
embedding of the target entity, we aggregate all of
surrounding triangles’ information:

htv = Att(hN t
(v)
) (15)

where N t
(v) denotes the neighboring triangles, hN t

(v)
is the

embedding of these triangles, here, N denotes the number of
triangles around the target entity.

Star:
The star structure reveals semantic information of entities

in different aspects. That means we can regard star-structured
triple as normal triple. Figure 11 shows an example of star
structure.

Consider the set of star-structured triples N s
(v) =

{(v, rj, et )|v, et ∈ E, rj ∈ R, the neighborhood is learned by
performing Att() over the embeddings of these triples:

h(v,rj,ej) = W3·concat(hv, hrj , hej ) (16)

hsv = Att(hN s
(v)
) (17)

where hN s
(v)
= {h(v,rj,ej)|v, et ∈ E, rj ∈ RhNs

(v)
=

{h(v,rj,ej)|v, ej∈ E,rj ∈ R}.

3) FEATURE FUSION AND UPDATE EQUATION
As shown in last section, for a given target entity v, there are
three structure-specific embeddings which capture different
structural information around the entity. Here we use three
corresponding attention values which are learned automat-
ically to distinguish the importance of different structural
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FIGURE 12. The architecture of our decoder. The decoder is based on CNN
which uses 3 × 3 filters and 1 × 3 filters to extract global and transitional
characteristics for final score of triples.

information and integrate different structural information:

h
′

v = αch
c
v + αth

t
v + αsh

s
v (18)

where hcv, h
t
v, h

s
v denote 2-cycle-structered, triangle-structured

and star-structured embeddings of the target entity respec-
tively, αc, αt and αs are the weights for the corresponding
structures, h

′

v is the new learned embeddings for the target
entity. Moreover, to avoid losing entities’ initial informa-
tion, we perform a linear transformation on initial entity
embeddings. And then We add this initial entity embedding
information to the entity embeddings obtained from the final
attentional layer:

H
′′

= WEH
′

+ H init (19)

where H init denotes the initial entity embeddings, H
′

rep-
resents the learned entity embedding from the final atten-
tional layer, WE is a weight matrix. To get the final rela-
tion embeddings, we perform a linear transformation on
initial relation embedding matrix R, parameterized by a
weight matrixWR:

R
′′

= WRR (20)

D. DECODER
Following ConvE [13] and SACN [17], we use a CNN-based
neural network cell as the decoder. Specifically, we use 3× 3
convolution filters and 1 × 3 convolution filters to learn the
feature map of triples. The 3×3 convolution filters are aimed
to exam the global relationships between different dimen-
sional entries of the embedding triple [vh, vr , vt ] for obtaining
the interaction of the whole triple while the 1×3 convolution
filters are focus on generalizing the transitional characteris-
tics. Figure 12 shows the architecture of our decoder. And the
total score function is defined as below:

f (h, r, t) = concat(σ ([vh, vr , vt ]�1)) ·W1

⊕ concat(σ ([vh, vr , vt ]�2)) ·W2 (21)

where σ is some activation function such as Sigmoid or
ReLU; �1 and W1 are shared parameters in 3 × 3 convo-
lution layer; �2 and W2 are shared parameters in 1 × 3
convolution layer used to compute the score of the triple;
denotes the convolution operator; and concat denotes the

concatenation operator;⊕ denotes the sum operator to get the
final score.

E. TRAINING OBJECTIVE FUNCTION
The encoder and decoder are jointly trained within the end-
to-end model. Following the idea of TransE [6] which uses
learned embeddings to calculate a triple’s score on the condi-
tion that vh + vr ≈ vt , where vh, vr , vt are the embedding of
head, relation and tail respectively, we use a scoring function
with hinge-loss to train the encoder based on our proposed
local structure aware GAT (LSA-GAT). Given a set of valid
triples and a set of invalid triples which is created by replacing
the head or the tail entity, namely,

S = {(h, r, t)|h, t ∈ E, r ∈ R

S
′

= {(h
′

, r, t)|(h
′

, r, t) /∈ S ∪ {(h, r, t
′

)|(h, r, t
′

) /∈ S

We train the encoder in our model by the following
equation, specifically we want the valid and invalid triple to
be separated as much as possible:

L(�) =
∑

s∈S

∑
s′∈S ′

max(f (s)− f (s′)+ γ , 0) (22)

f (s) = ||vh + vr − vt ||1, s = (h, r, t) ∈ S (23)

where γ > 0 is a margin hyper-parameter. And the decoder
is trained with the following soft-margin loss function:

Ldecoder =
∑

(h,r,t)∈S∪S ′
log(1+ exp(y(h,r,t)·f (h, r, t)))

+
λ

2
||W1||

2
2 +

λ

2
||W2||

2
2 (24)

y(h,r,t) =

{
1, (h, r, t) ∈ S
−1, (h, r, t) ∈ S ′

(25)

where S ′ is a collection of invalid triples constructed by
replacing the head or tail entity of valid triples in a KG.
f (h, r, t) is the score of triple calculated by the decoder.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
We evaluate the model on two standard benchmark datasets
for KG completion, FB15k-237 [21] and WN18RR [13].

FB15k-237: The FB15k-237 dataset contains textual
descriptions of knowledge graph relation triples and entity
pairs in Freebase. And the dataset is a subset of the FB15k
dataset. As mentioned by Toutanova and Chen [21], perform-
ing link prediction on FB15k is relatively easy because they
contain many reversible relations. This characteristic allows
most models to easily predict the majority of test triples.
Therefore, in order to accurately test the prediction capability
of models, FB15k-237 is constructed by removing the inverse
relations in FB15k.

WN18RR: The WN18RR dataset is created from WN18
[6], which is a subset of WordNet. Same as FB15k-237,
WN18RR dataset is constructed to ensure that the test data
does not have inverse relation test leakage. Each dataset
is divided into three sets for training, validation and test.
Table 1 shows the statistics of datasets:
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TABLE 1. Statistics of the datasets.

2) HYPER-PARAMETERS SETTINGS
We use grid search during the training stage to determine the
optimal hyperparameters. We finally determine the hyperpa-
rameter ranges: (i) for FB15k-237 dataset, we set 0.001 for
learning-rate, 0.03 for dropout, 100 for embedding size, 1 for
margin size used in objective function; (ii) for WN18RR
dataset, we set 0.0005 for learning rate, 0.01 for dropout,
50 for embedding size, 5 for margin size.

3) EVALUATION PROTOCAL
Following the evaluation protocal of Dettmers [13], each test
triple (h, r, t) is converted into two link prediction format:
head link prediction (h, r, ?) and tail link prediction (h, r, ?).
For every format, the correct entity is ranked among all KG
entities excluding the set of other true entities for the triples
observed in train and valid sets. In this work, we report the
Mean Rank (MR), the Mean Reciprocal Rank (MRR) of the
correct entity which is the average of the reciprocal rank of
the correct entity, and the Hits@N which is the accuracy in
the top N predictions. Here, we choose N as 1, 3 and 10.

B. RESULTS
1) LINK PREDICTION RESULT
Table 2 shows the link prediction results on two datasets.
Compared with previous results, our proposed model
LSA-GAT achieves better performance on most indica-
tors which shows our model has stronger representation
learning ability on knowledge graphs. More specifically,
on FB15K-237 dataset, LSA-GAT achieves improvements
of 15% in Hits@1, 11% in Hits@3, 7% in Hits@10,
and 12% in MRR compared with the second-best results.
On WN18RR dataset, LSA-GAT achieves improvements
of 4% in Hits@10 and 607 in MR. These results clearly
prove that our model significantly outperforms state-of-art
results on fourmetrics for FB15K-237, and on twometrics for
WN18RR. We can see that there has a significant improve-
ment on dataset FB15k-237, mainly due to the reason that
FB15k-237 dataset has more complex graph structure (more
types of relation and less types of entities which mean more
complex associations), and then there are more local struc-
tures around an entity. Then our model is better at aggregating
information within these local structures. The improvement
on the dataset WN18RR is not as much as that on dataset
FB15k-237. We believe that the reason is that the graph
structure of tht dataset WN18RR is relatively similar, so that
the local structure we defined is more fixed on the dataset (the
relation or path occurred in local structure is fixed). However,
our model still achieves competitive performance compared
with current mainstream models on dataset WN18RR, espe-
cially in Mean Rank (MR), our model achieves the best result
with a large gap.

2) COMPARISON STUDY
We conducted a comparison study to evaluate the effect of our
aggregation scheme on the model’s performance. To quantify
the improvements brought by our model, we use the aggrega-
tion scheme used byKBAT [19]which belongs to graph atten-
tion networks mentioned in section III(B) which ignores local
structures and only aggregate one-hop neighboring entities’
information. The aggregation scheme in pure graph attention
networks is defined as:

h(l+1) = σ (
∑
j∈Ni

αijhljw
l) (26)

where αij is the attention score between entity i and entity
j, we compare the performance of two models at different
epochs? Figure 13 shows the comparison result of the two
models. As the result shown, LSA-GAT (blue) is always bet-
ter than the comparison model (orange) on FB15K-237 and
WN18RR. The result gap between these two models repre-
sents the improvement of our model. Changing the way that
the neighbor information is aggregated has a large impact
on the link prediction results, which shows that our pro-
posed model improves the performance of knowledge base
completion.

3) EFFECTIVENESS OF LOCAL STRUCTURE
We conducted an ablation study to evaluate the effect of
our defined local structure on the performance of the model.
Specifically, we remove any one of the three structures and
keep the other two to compare the experimental results, where
we analyze the convergence speed, Hits@1 and mean rank on
the reduction model and the original model. Figure 14 shows
the experimental result.

As is shown in the experimental results, when we remove
one of the three structures, the convergence speed of the
encoder (the neighbor aggregation function) is lower than that
of the model without any reduction, and the result of link
prediction is slightly lower than the original model. The fact
that the blue line overlaps the gray line shows the convergence
speed of the model which removes the triangle structure is
similar to the model which removes the star structure.

From the experimental results, we can see that the effect
drops most obviously when the start-structure is removed,
which shows that our model learns different semantic from
other entities by fusing the information of different entities
under different relations as much as possible. Meanwhile,
the experimental results show that removing the triangular
structure has more obvious effects than removing the cyclic
structure, which indicates that the simultaneous integration
of path information and relationship information around
the entity has an important effect. Finally, we notice from
figure 13(a) that the convergence speed of our model is the
fastest which means that the model we designed can better
learn entity representations which contains richer semantic
information to help the knowledge graph completion tasks.
This shows that the local structure defined in this paper can
improve the performance of link prediction.
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TABLE 2. Experimental results including Hits@N, MRR and MR on FB15K-237 and WN18RR test sets. The best score is in bold and second-best score is
underlined.

TABLE 3. Number of local structures analysis on FB15k-237 Dataset. We perform both horizontal and vertical comparison to confirm the effectiveness of
our defined structures.

FIGURE 13. The comparison study of LSA-GAT in WN18RR and FB15K-237.

4) NUMBER OF LOCAL STRUCTURE ANALYSIS
The number of local structures can reflect the environmental
characteristics of the target entity. An entity has more oppor-
tunities to achieve special semantic interactions with other
entities when it is surrounded by more diverse structures.
As a comparison, we studied the influence of node degree in

the pure GAT model, as higher degrees indicate diverse local
structures. We use the same magnitude of degree and local
structures on these twomodels to compare their performance.
As shown in Table 3, we present the results for different
sets of nodes with different degree scopes and different local
structures scopes for the pure GAT model and the LSA-GAT
model respectively.

According to the experimental results, we illustrate the
effectiveness of our model from two perspectives. First,
in terms of horizontal comparison, when there are more
local special structures around a target entity, our model has
better performance in predicting the facts about the entity,
Hits@1 changed from 0.15 to 0.51, Hits@3 from 0.24 to
0.69 (shown in yellow box). Considering that more neighbors
could reveal more local structures, we designed a vertical
comparison, under the conditions of the same magnitude of
the number of degree and local structures, our proposed
model LSA-GAT is better than pure GAT, Hits@1 changed
from 0.46 to 0.51, Hits@3 from 0.57 to 0.61 (showed in
red box). This shows that compared to the pure GAT model
that uses one-hop direct neighbor information, our proposed
model LSA-GAT learns richer semantic information by fus-
ing different special local structures, which significantly
improves the performance of link prediction.

To further illustrate the effectiveness of our model,
we extract a subgraph around an entity and learn the informa-
tion of neighboring local structures defined in this work, then
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FIGURE 14. The ablation study results of LSA-GAT on FB15K-237.

FIGURE 15. The subgraph of movie entity ‘‘Ran’’.

we complete missing facts about the entity using our model.
Figure 15 shows a subgraph around the movie entity Ran.
The blue, red, green links are the previously-designed triangle
structure, 2-cycle structure, and star structure respectively.

For the question (Oscar_1985, hornored_for, ?) and
(?,award, London_Film_Critics_Circle_Award_for_Best
_Director), our model ranks the answer entity Ran within 1
and 3 respectively. But meanwhile the pure GAT model rank
both over 10. This shows our model has learned a more
appropriate embedding for the entity Ran and better infer
missing triples about Ran.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a local structure aware model
called LSA-GAT for knowledge graph completion. Three
typical local structures are defined to capture the semantic
connections between entities and relations, and the infor-
mation beneath these structures is aggregated to learn the
embeddings of entities and relations. Our work follows
an encoder-decoder fashion. The encoder is focused on
embedding entities and relations, and the decoder applies
3× 3 convolution filters and 1× 3 convolution filters which
capture the global interaction and translational character-
istic between entities and relations respectively to score a
would-be fact. Compared with the current state-of-the-art
model, our proposed model LSA-GAT has a significantly
improvement.

In the future, we intend to extend our method to better
perform on more complex structures such as sub-graph
and capture higher-order structures between entities (within
multi-hops) in our graph attention model. Another inten-
tion is trying to incorporate attention-based walking into our
encoder to focus on small but informative structures of the
graph.
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