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ABSTRACT Mobile CrowdSensing (MCS) has emerged as a valuable framework for large scale mapping
of phenomena of interest, thanks to the ever-growing advances and pervasiveness of sensor-rich mobile
devices.Meanwhile, towards building a robustMCS system, several challenges have yet to be overcome. This
includes security challenges, privacy concerns, data integrity, in addition to others. In this research, we are
concerned with the power consumption of sensing campaigns, from the perspectives of service demanders
and participants. We propose an opportunistic and predictive crowdsensing management framework that
realizes Green Mobile CrowdSensing (GMCS) campaigns through energy-aware participant-task matching.
This is achieved using two new techniques. First, we propose Green Auctioning, an auction management
technique which adopts a new objective function that guarantees the selection of the devices which consume
the least energy. The proposed objective function features a hard reputation term which depends on the
device’s energy consumption, in addition to the soft reputation term previously proposed in the literature.
Second, we propose Predictive Auctioning, an auction management technique that adopts machine learning
models to empower the platform to predict users’ ability to complete the task at hand, using the user’s battery
level and internet connection status, and the task’s duration. Towards this goal, we have constructed a new
dataset–theMAGGIE dataset–by monitoring the energy consumption of over 100 users, over a duration of
four months, using a mobile application specially developed for this purpose. To the best of our knowledge,
this is the first research that addresses energy-aware auctioning by constructing a crowd-sensed dataset
specially built for this purpose. We present promising results for the attained energy awareness without
compromising other performance aspects including data trustworthiness and the clearance rate of sensing
auctions.

INDEX TERMS Auctions, green, prediction, budget, constraints, incentive mechanisms, Mobile
CrowdSensing (MCS), opportunistic crowdsensing, penalization, redundancy.

I. INTRODUCTION
Mobile CrowdSensing (MCS) is an emerging framework in
which online, battery-powered mobile devices are used to
collect different types of data using embedded sensors and
on-board electronics. With the ever-growing number of smart
phone users, MCS has attracted an increasing interest in a
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multitude of real-life applications, and hence from the sci-
entific research community. MCS takes the form of sensing
campaigns that are run on heterogeneous mobile devices and
are usually orchestrated by a platform that receives sensing
requests from service demanders and forwards those requests
to participants. Since the framework is people-powered, MCS
can be categorized as either participatory sensing or oppor-
tunistic sensing. While the former involves users that are
required to actively contribute data, data collection in the
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latter is done without the user taking action [1], [2]. Even
though participatory sensing increases user involvement, and
does not suffer from security [3] and privacy challenges,
the quality of gathered data depends on the reliability of par-
ticipants in the sensing campaign. Several factors are required
to maintain the reliability of participants, one of which are
effective incentive mechanisms.

In sensing campaigns, auctions has been presented in the
literature as a theoretical tool for task-participant matching
and for modeling incentive mechanisms. The role of incen-
tives is to compensate the users for employing their resources
in sensing, and they can be classified into monetary and
non-monetary techniques [4], [5]. Incentive mechanisms are
key to the success of sensing campaigns since they affect the
participation level and the quality of the acquired.

In MCS systems, participants are often referred to as
prosumers, since they act as both consumers and produc-
ers of crowdsensing data [6]. Many techniques have been
proposed to overcome diverse challenges in the process of
selecting winners in auctions by evaluating their capacities to
accomplish sensing tasks.MSensing [7] dealt effectively with
truthful bidding, where the users who aim at increasing their
incomes participate in the auction with higher bids. Neverthe-
less, MSensing was shown to be vulnerable to users who send
malicious information. This was handled in [8] by introduc-
ing a reputation-aware incentive mechanism. The research
proposed in [9] presented different forms for the reputa-
tion factor such as voting (decentralized), statistical (central-
ized), anchor-assisted decentralized, and collaborative scores,
reputation-based auctions. The authors of [10] proposed a
redundancy factor to penalize redundant task assignment,
where a task is assigned to multiple participants, which can
consume the budget unnecessarily and hence decrease the
clearance rate (CR) i.e., the percentage of the accomplished
sensing tasks in an auction-based campaign [10]–[12].

Among other open problems, a principal challenge in
the field of mobile crowdsensing is energy consumption,
which is a concern for service demanders and providers.
Previous research on energy-aware MCS featured techniques
that aim at avoiding redundant measurements [16], reducing
the sesning time [17], or minimizing the number of partic-
ipants [13]. This research addresses energy-aware sensing,
or Green Mobile Crowdsensing (GMCS) by presenting two
new auction management techniques, Green Auctioning and
Predictive Auctioning.

In Green Auctioning, we embed energy awareness in the
task-participant matching using a newly formulated hard rep-
utation term in the adopted objective function. This extends
the work in [8], [9] which proposed a threshold-based hard
reputation term, in addition to a soft reputation term to
evaluate the trustworthiness of the acquired data. Without
compromising the soft reputation, and instead of dealing with
the hard reputation term as a threshold-based Boolean flag
for a device’s quality, our formulation of the hard reputation
term computes a score for each participant/device based on
the energy consumption of the specific embedded sensors

that are required in each sensing task. With the proposed
formulation, we aim at minimizing the power consumption of
sensing campaigns by choosing the participants/devices with
the least energy consumption.

The second proposed approach, Predictive Auctioning,
addresses the challenge of having tasks that do not get com-
pleted after they got assigned to participants, which repre-
sents a waste of energy on the platform side and on the
participants side as well. This is also closely related to the
clearance rate of sensing campaigns. There are several factors
that may result in this situation including the battery level,
the battery temperature, the status of internet connection, and
the tasks’ energy demand and duration. This challenge has
not been discussed before in the literature. We believe that
this situation can be handled by accurate forecasting of the
aforementioned factors in which we can capitalize on the
advances in machine learning approaches [57].

The proposed approaches for GMCS require a real-life
dataset, first, to evaluate the effectiveness of the hard reputa-
tion term using real figures for sensors’ energy consumption,
and second, to train machine learning models on energy and
connection status forecasting using realistic data. Otherwise,
the learned models would not generalize well in real-life
situations. In general, there is a lack of publicly available
datasets that are appropriate for our purpose. After exploring
the literature, we decided to construct our own dataset–the
MAGGIE dataset. The flowchart of the proposed system is
shown in Fig. 1 and we elaborate on the construction and the
features ofMAGGIE in the following sections. Although pre-
vious research had used resource profiles [60], the proposed
dataset enables us to profile users based on diverse parameters
including their energy consumption, internet stability periods
and charging periods, which are all key to achieve GMCS.

The contributions of this research are summarized as
follows:
• We have built a real-life dataset that contains a wide
variety of energy-related and internet connection-related
performance data, in addition to hardware features of
diverse smartphonemodels. The dataset was constructed
by monitoring over 100 users, after having their consent,
over a duration of 4 months using a mobile applica-
tion specially developed for this purpose. We argue that
the richness of parameters and features included in the
dataset makes it a suitable test bed for future research
in the field, and helps studying the patterns related to
device usage. We provide this dataset publicly for the
sake of transparency and for contributing to the research
advances in MCS.

• To the best of our knowledge, we are the first to formu-
late the hard reputation of participants’ devices in terms
of their energy consumption. We investigate the impact
of the new objective function on the energy consump-
tion and the clearance rates of three recently proposed
auction management techniques under varying num-
ber of auctions, tasks, and participants. Our extensive
simulations show significant energy savings using the
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FIGURE 1. The architecture of the proposed framework. The first stage represents the acquisition of the MAGGIE dataset, which also represents the data
gathered from potential participants in a real-life scenario. After pre-processing, the data are used to compute a hard reputation for the participating
devices (towards computing comprehensive data trustworthiness) based on which we accomplish Green Auctioning. The second path represents
the second proposed method–Predictive Auctioning. It involves learning energy and internet connection status patterns using LSTM neural networks.
Please see text for more details.

proposed objective function, and highlight a trade-off
between saving energy and maximizing the clearance
rate (CR). We refer to this part of the contribution as
Green Auctioning through the rest of this document.

• We demonstrate, using models learned from the
MAGGIE dataset by means of LSTM neural networks,
how we can forecast the parameters related to energy
performance of the devices and the internet connec-
tion patterns of the participants. We also demonstrate
how to incorporate this forecasting in developing a
Predictive Auctioning framework. This framework aims
at green crowdsening that avoids wasting energy by
assigning tasks only to the participants who are capa-
ble of accomplishing them with regards to energy and
internet demands. To evaluate Predictive Auctioning,
we compare the performance of the original versions
of three recent auction management techniques with
the performance of their predictive versions. Since Pre-
dictive Auctioning is capable of choosing only highly
qualified participants who can complete their tasks,
we report significantly higher clearance rates achieved
by the predictive versions of the techniques under con-
sideration compared to the original versions of those
techniques.

The remainder of this paper is organized as follows.
We highlight related work from the literature in Section II.
Then, we discuss the problem definition and explain nec-
essary background information in Section III. Section IV is
dedicated to describe the acquisition process, structure and
the content of the proposed dataset. We present the proposed
methods–Green Auctioning and Predictive Auctioning–in
Section V and Section VI, respectively. Section VII demon-
strates the effectiveness of the proposed techniques by

analyzing the results of our extensive simulations, and finally
section VIII concludes this research.

II. RELATED WORK
This section is meant to cover the relevant work in the
recent literature. Particularly, we focus on previous research
that addressed energy-aware sensing and/or that constructed
datasets for this purpose.

One principal factor that affects accuracy and power con-
sumption is the large variety of sensing devices that exist
nowadays. There were many studies that focused on reducing
the mobile power drawn during sensing, computing, and data
transmission phases of an MCS application. For example,
the authors of [13] adopted a coverage-based technique to
minimize the number of participants while keeping area
coverage intact. Another application-specific approach (for
human body motion detection) was proposed in [14] where
ultra-low-power passive static electric field sensing was used
instead of traditional active accelerometer-based sensing.
In [15], the authors replaced a power-hungry sensor with an
energy-efficient sensor, while the sensing functionality is kept
the same.

Other energy-aware techniques include [13] where a par-
allel transfer and delay tolerant mechanism is used to com-
plete sensing tasks while users are placing their phone calls,
in order to save energy in the data transmission phase.
Usense’s middleware is able to save energy using a mecha-
nism that avoids taking measurements in those areas where
there is already enough data or when the phenomenon is
mostly invariant [16]. Also, the research in [17] considers
allocating tasks that overlap in time to the same users, thus
decreasing the overall sensing time. In this context, it is worth
mentioning that a part of the literature assumes that multiple
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jobs cannot be performed on a machine concurrently [18],
while others [17] do not.

Previously, some researchers used mobile crowdsensing
for gathering data such as the MIT Reality Mining dataset
in which 100 Nokia mobile phones were given to undergrad-
uates [45], in addition to the study in [43]. Also, the authors
of [49] collected information over the course of one year from
one model of Nokia smartphones. The work proposed in [46]
studied installation and removal of Android applications on
many devices. Due to the number and the nature of the gath-
ered performance parameters, the number of devices’ models,
and the procedure of acquiring the datasets in these previous
studies, we have figured out a necessity in constructing our
own dataset, that lends itself well to the purpose of validating
Green Auctioning and Predictive Auctioning.

III. BACKGROUND AND PROBLEM DEFINITION
In a typical auction, buyers offer increasingly higher prices
in a competition to obtain goods. In MCS campaigns, service
providers’ competition ismanifested as under-bidding for one
another. This is called a reverse auction. In the literature of
MCS, reverse auctions are used as a principal tool for the
mathematical modeling of incentive mechanisms and task
assignment. The terms auction and reverse auction are going
to be used interchangeably in the rest of this article.

For crowdsesning campaigns that adopt auctions, the plat-
form is responsible for matching tasks to participants given
the requirements of the service demanders and the bids
received from the participants. These bids represent a remu-
neration that covers their sensing costs. Winner participants,
who are chosen by the platform to accomplish the sens-
ing tasks, are determined using an objective function. This
function is designed to optimize the demand (for example,
maximizing the number of accomplished tasks or minimizing
the energy consumption) given the resources (for example,
the platform budget or sensors’ energy consumption). Each
sensing campaign involves the following [36]:

• N smartphones indexed with i and represent the partici-
pants in the auction, i.e., i ∈ 1, · · · ,N .

• M campaign tasks indexed with j and their details
are sent by the platform to the participants, i.e., j ∈
1, · · · ,M .

• A bidding process in which all participants should take
part. Each bidder should bid on (or be interested in) at
least one task.

• Winner selection and payment determination
algorithms.

Towards effective management of auctions, several types
of awareness are required in the coordinating platform,
among which are energy awareness, hard reputation aware-
ness, and connection pattern awareness. In the rest of this
section, we explain each of the aforementioned awareness
types and we highlight its impact on the quality of the gath-
ered data, the clearance rate, as well as the energy perfor-
mance/demand of crowdsensing campaigns. Also, a summary

TABLE 1. Frequently used notations and symbols.

of the symbols and the notations that are used throughout this
work is given in Table 1.

A. ENERGY AWARENESS
For every participant in a sensing campaign, the energy con-
sumption can be written as:

Ei =
∑
t∈Ti

(Esti + E
b
ti ), (1)

where Ei is the energy consumption by participant i, Ti is the
set of tasks done by participant i, Esti is the sum of the energy
consumed by all the sensors involved in task ti by participant
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i, and Ebti is the energy consumed by the battery in a task ti
by participant i excluding the sensors energy, e.g., processor,
display, etc. The total energy consumed by all the winners in
a sensing campaign [41] is given by:

Etotal =
∑
w∈S

Ew, (2)

where S is the set of winners in an auction, and a subset
of the set of participants in that auction. So, the cardinality
of the set S should be less than the number of participants,
N , in a campaign. Also, Ew is the energy consumption by
winner w in a campaign. Aggregate energy savings in an
MCS application can be achieved by decreasing the number
of recruited nodes [38] or by decreasing the energy consumed
by each node. Hence, energy consumption profiling of the
participating smartphones and their embedded sensors is key
for controlling the energy performance of sensing campaigns
through energy-aware device-task matching.

Along the same lines, assigning an energy-demanding
and/or computation-hungry task that requires a long sensing
time to a participant with a low battery level or a high tem-
perature battery would result in an uncompleted campaign.
This is because the task would be left unfinished which
costs the platform an unpredictable loss in the clearance rate
and possibly extra computations to rerun the auction. Also,
it would have a negative influence on the participants as well,
draining their devices’ power in vain, misusing their devices,
and discouraging them from future participation. Decreasing
the size of the participants pool may also impact negatively
the quality of gathered data.

B. HARD REPUTATION AWARENESS
Sensitive tasks should not be matched to old mobile phone
models which have less accurate and low resolution sensors.
Even though users can have a high soft reputation [8] (high
ratio of the positive readings to the total readings), their hard
reputation, i.e., the accuracy of the sensors, should also be
taken into consideration.

One principal aspect for maintaining high Quality of Ser-
vice (QoS) in MCS systems is to maximize data trustwor-
thiness. For user i, this is formulated as a function of a
participant’s soft reputation Rsi and hard reputation Rhi , and
is given as [9]:

DTi = f (Rhi ,R
s
i ), (3)

where s in Rsi stands for soft, while s in E
s
ti in Eqn. 1 stands

for sensors.
While previous studies [9] took Rhi into consideration by

merely requiring the participating devices to satisfy a mini-
mum threshold, and assumed that the quality of the acquired
data can only be affected by the users’ soft reputation, we con-
sidered the devices’ hard reputation in more depth. Partic-
ularly, we quantify a devices’ hard reputation according to
the specifications (for example, accuracy and resolution) of
its sensors, and match devices to applications based on the
latter’s requirements.

C. CONNECTION PATTERN AWARENESS
We observe that there is a pattern in the participants usage of
mobile devices, e.g., their power consumption and connection
to internet. This pattern can be learned by means of machine
learning models, after which the prediction of different sens-
ing device aspects and/or participants’ behaviors become
achievable. In opportunistic and participatory sensing, being
able to recognize the pattern of internet connection is key for
managing sensing campaigns effectively. Whether it is due to
unstable internet connection or deliberate disconnection from
the internet, the prediction of such interruptions helps the
platform maintain an acceptable quality of service through
informed device-application matching. Moreover, being able
to predict the battery level and the temperature of the devices,
the platform can determine a device’s readiness to accomplish
specific tasks and predict potential participants ahead of hold-
ing an auction.

This research focuses on multi-step short-term uni-
variate energy forecasting. We assume functional depen-
dency between historical ({x1, . . . , xn−1, xn}) and future
({x0n+1, x

0
n+1, . . . , x

0
n+k}) time series data points. We aim at

realizing Predictive Mobile CrowdSensing using machine
learning-based forecasting. Our goal is to enhance the task
allocation strategy by building the platform’s capacity to
choose the participants who have sufficient resources, e.g.,
battery level and battery health, internet connection, in order
to complete the tasks they have bidden on, in a manner that
results in reducing energy consumption by avoiding energy
wasting.

IV. THE CONSTRUCTION OF THE Maggie DATASET
The principal objective of constructing a dataset is to provide
a trusted testbed for mobile crowdsensing research concern-
ing energy issues. The dataset should be realisitc in terms
of energy consumption patterns, comprehensive in terms of
smartphone models and their monitorable features, labelled
to enable machine learning of mathematical models, and
publicly available to promote transperancy and to facilitate
collaborative innovation.

To the best of our knowledge, this research provides the
first real-life and comprehensive power profiling dataset for
energy-related studies in the area of crowdsensing. It features
a rich variety of sensing device models, types of embed-
ded sensors, and hardware parameters. Statistics on the data
provided by the proposed dataset is given in Appendix.
The proposed dataset is also compatible with the follow-
ing set of recommendations for researchers in ubiquitous
computing: consent,1 transparency, purpose, security, and
proactive privacy preservation [21]. It is worth mentioning
that several smartphone datasets have been collected for
research purposes in a variety of domains, e.g., social evo-
lution and healthcare [54], [55], activity recognition, real-
ity mining [56], security [51], user interaction and energy
consumption [50], [53], and device analyzer projects [52].

1The dataset has been gathered after getting the consent of the participants.
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However, MAGGIE–our proposed dataset–differs in several
aspects.

Different from the datasets proposed in [50], [51], [53],
[54], the MAGGIE dataset includes diverse sensing device
models. We argue that this is a more realistic scenrio to study
energy consumption patterns, especially in mobile crowd-
senisng. Also, opposite to SETI@Home [49] and FoldIt [50],
data collection in the proposed framework is decentralized,
and data processing is centralized. Most importantly, as will
be highlighted in the dataset description below, MAGGIE is
unique in terms of the energy-related features acquired from
the users. Similar to SETI@Home, we avoid the collection
of personal information to avoid privacy-related challenges.
Moreover, similar to SETI@Home and Device Analyzer,
MAGGIE is collected using a mobile application that runs
on the devices of volunteering participants, i.e. we did not
provide a special type devices to participants for the sake of
the study. We argue that using personal devices helps reveal
more realistic energy consumption patterns. Nevertheless,
compared to the previously proposed datasets, MAGGIE has
a lower sampling rate, particularly to avoid adding a burden of
extra battery consumption on the participating smart phones.
The rest of this section discusses the different stages of con-
structingMAGGIE.

A. STAGES OF DATASET CONSTRUCTION
The dataset construction is comprised of three stages, namely,
data acquisition, local and server-side data storage, and
server-side offline data processing. These three stages are
depicted in Fig. 1, and we elaborate on each of them
below.

1) DATA ACQUISITION
Towards building the dataset, we developed an android
mobile application for smart phones using Android Stu-
dio Version 2.0. The application is designed to have a low
resource footprint, with a negligable typical power drain and
an avarage amount of disk space of 2.5 MB.We have adopted
two time resolution profiles by sampling the dataset gath-
ered parameters either every one hour or every 20 minutes.
We show visual examples for the gathered parameters such
as the battery level and the device temperature, presented
as time series 1-D signals, in the following sections. Before
implementing the application, the following characteristics
had to be taken into consideration:

• Battery and disk space demands have to be minimized,
not only to guarantee participants’ convenience, but also
to avoid biasing a mobile’s power profile.

• The application should be compatible with all mobile
models and API levels, in order to make a success-
ful mobile crowdsensing experiment. Our application is
compatible with APIs up to 28 (Pie, Orea, Nougat, . . . ).

• The application should operate in the background all the
time, should be on the auto-launch list when the phone
is switched on, and should be excluded from battery

optimization and restricted background data features on
the devices.

• Data should be uploaded to a secured server using a
secured protocol, e.g., SFTP over SSH on TCP port 22,
to protect the users’ data.

• The interaction between a participant and the application
should be minimal, and any special arrangements from
the side of the participants (with regards to their usage
pattern) should be avoided. Hence, the devices were
not required to be rooted. Also, the volunteers were not
required to open the application or even to check if it is
running in the background.

2) LOCAL AND SERVER-SIDE DATA STORAGE
The data is stored temporarily on the device in a .txt file then
a batch-uploading process is carried out to a server when an
internet connection (WiFi or mobile data) is available. After
data uploading, the local file is deleted to save the device
resources and to prevent sending multiple copies of the same
data.

3) SERVER-SIDE OFFLINE DATA PROCESSING
Following the step of data uploading to the server, an offline
data pre-processing (or data cleaning) stage is carried out.
It includes missing value imputation and outlier detection.
This is usually time-demanding because raw data is rarely
100% complete. Missing values can arise from information
loss and/or failure to load the information. The presence of
missing values might result in biased insights, mainly due
to the small number of data points, which can eventually
compromises the reliability of the dataset. Also, different
approaches for handling missing values and outlier detection
can drastically change the results of data analysis. Therefore,
adopting an effective approach to deal with these challenges
is crucial. For the missing data in our dataset, we handled
it using linear interpolation. For outlier data points, which
may result from recording errors, data corruption, or equip-
ment malfunction, they were identified by defining ranges
and thresholds on the collected data. Aftewards, they were
deleted or replaced to avoid introducing a bias in the statistical
estimates such as the mean values of different data variables.

B. DATASET DESCRIPTION
The proposed dataset had been collected over a duration
of 4 months from approximately 80 different device models,
running Android versions from Android 5 upwards (starting
fromAPI Level 21) to guarantee the quality of the sensors and
the collected data. Over 100 users have installed the software,
and the dataset includes their age and gender information.
MAGGIE is organized into tables such that every data table
contains the following information2:

2With the consent of the volunteers, a sample of the dataset
is publicly available for the research community through the
following website: https://sites.google.com/view/
the-maggie-dataset-webpage.
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1) DEVICE AND BATTERY-RELATED DATA
• Participant identifier: This is a unique number for each
device and its associated data. We used an Android ID
that is given to each smartphone permanently. We could
not use the IMSI (International Mobile Subscriber Iden-
tity) or the IMEI (International Mobile Equipment Iden-
tity) due to privacy issues.

• Mobile model: This is used to figure out which models
consume more energy; hence, they can be avoided for
the sake of green auctioning.

• Android version name
• Android version code
• Internet connection status: This is recorded with a time
stamp in order to learn the connectivity pattern of
the user. This allows a platform to predict the avail-
able participants ahead of receiving requests of sens-
ing campaigns. We used the Wall-clock time, which is
a real-time clock in Android with attached time zone
information. It is used for displaying the local time to
the user.

• Battery percentage, health status, and temperature

2) SENSORS-RELATED DATA
We gathered information about all the sensors embedded in a
device. This information includes:

• Name: This makes it possible to determine which sen-
sors are available on a device and consequently which
sensing applications that device can be chosen to per-
form. Moreover, it shows us if the sensors are calibrated
or not to help us increase the quality of the acquired
data. Sensor calibration is a method of improving a
sensor’s performance by removing structural errors in
its outputs. Structural errors are differences between a
sensor’s expected output and its measured output, which
show up consistently every time a new measurement is
taken. We can also know which sensors are wakeup.3

• Maximum range: This is the maximum value that can be
measured by a particular sensor.

• Resolution: This is the smallest change that can be
detected by the sensor.

• The power (in mA) consumed by the sensor while in use.

A sample of the text files generated by the application is
shown in Fig. 2. In the rest of this document, we demon-
strate two uses of the MAGGIE dataset, namely, Green
and Predictable Auctioning. Green Auctioning features a
device-application matching process that aims at minimizing
the amount of power consumed by a sensing campaign. This
is achieved using a matching objective function that penalizes
energy-hungry sensors/device models. Predictive Auction-
ing also features a device-application matching technique,
and aims that minimizing the wasted energy. Particularly,

3Wake-up sensors ensure that their data is delivered independently of the
state of the system on a chip (SoC). While the SoC is awake, the wake-up
sensors behave like non-wake-up-sensors. When the SoC is asleep, wakeup
sensors must wake up the SoC to deliver events.

FIGURE 2. A sample of the generated files in the MAGGIE dataset from
HTC One E8 Dual SIM.

by predicting the battery status of a candidate device, and
given the task duration and the energy demand of that task,
it prioritizes the devices that will be able to complete the task.
Otherwise, starting the task then failing to complete it would
constitute a non-rewarding loss of energy for the participants.
It would also represent an additional energy consumption on
the platform side since the auction needs to be re-run.

V. GREEN AUCTIONING
Towards the goal of holding green auctions, we propose a new
objective function that takes into consideration the hard repu-
tation of participants in addition to their soft reputation. This
comprehensive reputation awareness enables the platform
to guarantee data trustworthiness without compromising the
energy consumption of a sensing campaign. The platform’s
energy awareness comes at the cost of more data overhead,
where the hardware specifications of the sensing devices have
to be sent from the participants to the platform. Although this
data overhead is incurred only for new users, it is expected to
be recurring (for existing users) over relatively-long periods
during which the performance of the devices’ components,
e.g., the battery and the sensors, is expected to deteriorate.
This takes the form of scheduled updates for the hardware
specifications of the platform’s database of devices.

To evaluate the data trustworthiness of user i as in Eqn. 3,
Rhi is computed by acquiring the resolution and the power
consumption of each sensor ahead of holding auctions. For
each task in a sensing campaign, the platform computes
a ranking factor for every participant/device. This ranking
factor depends on the sensor required to accomplish that task
and on the specification identified by the service demander
(for that task) as well. The ranking factor plays a key role
in choosing the final set of participants in every sensing
campaign. For user i, Yi and Zi are the ranking factors for
that user according to the sensor’s resolution and power con-
sumption, respectively. Both factors, Yi and Zi, lie in the range
[0, 1], and they are computed in a similar manner. The power
consumption ranking factor, Zi, is computed as:

Zi =
Imax − Ii
Imax − 1

, (4)
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TABLE 2. A sample of the dataset showing the candidate sensing devices arranged in an ascending order according to the amount of power consumed by
the on-board accelerometer.

where Ii is an index representing the order of the sensing
device of user i among the other sensing devices in a cam-
paign. This index is the output of sorting the participating
devices according to a particular aspect. In Eqn. 4, this aspect
is the sensors’ power consumption. Imax is the largest index,
and it is worth mentioning that Imax is not necessarily equal
to the number of participants since we might have two or
more users that get the same sorting index. Similarly, Yi is
calculated using the values of the resolution of the sensors
required for a particular task. The overall Rhi for user i is
proposed to take the following formulation:

Rhi∈N = Ai.Yi.Zi ∀ i ∈ N ; Ai ∈ {0, 1}, (5)

whereAi is a binary flag indicating if a task is in a participant’s
region of interest or not. A participants’ regions of interest is
the geographic region that includes all the tasks a participant
might be interested in. Beyond its borders, a participant would
not bid on any task. In our simulations, we assume this region
to be a circular region surrounding the participant, and we
elaborate on the size of the participants’ regions of interest in
the Performance Evaluation section.

An example of the gathered power-related information is
shown in Table 2. It represents the power consumption of the
sensor under consideration–in this case, the accelerometer–
in different device models, sorted in an ascending order. This
structured data is a sample of the proposed dataset–MAGGIE.
It is worth mentioning that MAGGIE features the two factors
Zi and Yi for each sensor, while Table 2 is just a sample that
shows Zi only.

The previous discussion implies that the hard reputation of
a participant in a sensing camping is determined by: 1) the
task geographic location which is specified by the service
demander, 2) the required sensor’s power consumption which
is specified by the nature of the task and the participating
device model, 3) and the required sensor resolution which is
specified by the service demander. It is worth mentioning that
in case the service demander has no specific requirements
for the sensors’ resolution, the term Yi can be eliminated
from Rhi . Also, the mathematical formulation of Rhi can be
extended to involve other aspects such as the maximum range
of sensors which is anticipated, like the sensors’ resolution,
to be specified by the service demander. Furthermore, each
term in the mathematical formulation of Rhi can take the form
of a hard constraint, such that if the power or the resolution

Algorithm 1 Green Auctioning
1: function Hold a Green Campaign(T , B, B, Rs)
2: Compute C, Pc, Tc
3: for c ∈ C do
4: function Compute Data Trustworthiness for Par-

ticipants(C, Pc, Rs)
5: for i ∈ Pc do
6: Calculate Ai,Yi,Zi
7: Compute Rhi
8: Compute DT i
9: end for
10: return {DT }
11: end function
12: function Hold a Green Auction({DT }, Tc, B, B)
13: Perform task-participantmatching

14:
...

15:

16: return Sc, {Pc}
17: end function
18: end for
19: return S, {P}
20: end function

do not satisfy the requirements of the service demander,
the corresponding term can be set to zero, which leads to
diminishing the probability of choosing that participant to
join the campaign. The steps of Green Auctioning are shown
in algorithm listing 1.

The algorithm starts by identifying the various categories
of tasks in a sensing campaign and the participants that are
capable of accomplishing each category. For each category,
given the soft reputations of the participants and the char-
acteristics of their on-board sensors, we compute the data
trustworthiness of each participant–an essential step before
holding the auctions. In Green Auctioning, a campaign is
comprised of a set of auctions–an auction for each cate-
gory. For each category, given the budget of the campaign,
the data trustworthiness values, and the bids’ values, we hold
a green auction by performing a task-participant matching
that adopts an objective function with the proposed com-
prehensive reputation term. Obviously, while looping over
categories, the budget considered in each loop/category is the
remaining budget from previous auctions. For brevity, we did
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TABLE 3. A sample of a user profile in the MAGGIE dataset, showing data related to battery level/percentage, battery temperature, charging status, and
internet connection status, with the corresponding time stamping information.

FIGURE 3. A sample of a user profile for nearly a month, showing patterns for battery level/percentage, battery temperature, charging
status, and internet status.

not introduce a symbol for the remaining budget from each
auction.

The proposed comprehensive formulation for data trust-
worthiness, which counts for both Rsi and Rhi , lends itself
well to be used with other frameworks that aim at maximiz-
ing other aspects in MCS, such as the clearance rate (CR)
[10]–[12]. In Section VI, we present the results of extensive
simulations that compare the performance of various recently
proposed CR-maximizing techniques that adopt comprehen-
sive reputation (Rsi and R

h
i ), to their performance while con-

sidering Rsi only.

VI. PREDICTIVE AUCTIONING
Given that MCS requires online, battery-powered systems,
we propose a greedy algorithm that matches tasks to

participants by taking into consideration that: 1) a task can
be allocated to a device if and only if its sensing interval
is smaller than the time expected for the device’s battery
to reach the low battery status, 2) a task can be allocated
to a device if and only if it can maintain an acceptable
battery health and battery temperature throughout the inter-
val of the sensing task, and 3) a task can be allocated to
a device if and only if it can maintain a sustainable inter-
net connection throughout the interval of the sensing task.
A sample of the MAGGIE dataset that is used for the sim-
ulations on Predictive Auctioning is shown in Table 3. It is
worth mentioning that this is also the type of data acquired
from the potential participants in a real-life implementa-
tion of Predictive Auctioning. We depict this framework
in Fig. 1.
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FIGURE 4. A sample of battery level variations over three successive days.

A. SYSTEM MODEL
Figure 3 shows the usage pattern for one participant which
had been acquired over nearly a month. Particularly, it fea-
tures an example for the data acquired by the platform from
potential campaign participants for Predictive Auctioning,
namely, battery level/percentage, battery temperature, inter-
net connection status, and charging status. Similar to the
system specifications that are acquired for Green Auctioning,
the various time series for each user (such as those shown
in Fig. 3) are expected to be updated according to a predefined
schedule by the platform.

Based on our observation, there is a pattern in the
aforementioned time series that can be learned, and hence
predicted, for proactive management of sensing auctions.
Among the user-specific patterns that we have observed in
the collected data are:

• The battery reaches its maximum level at a specific time
everyday. We argue that this could be used as the best
time to recruit that user for battery-demanding tasks. For
example, in Fig. 4, it can be seen that the device retains
a maximum battery level from 6:45 am to 12:00 pm
and has its least battery levels between 10:00 pm and
2:00 am.

• For some users, almost the samewithin-day pattern takes
place for a particular day every week, yet the pattern is
different from week to another. This is shown in Fig. 5
which represents a user’s battery usage pattern for five
consecutive Sundays.

• Some users tend to charge their mobiles when they reach
a certain battery level as in Fig. 6, while other users
charge their devices only during night.

• Profiling the battery temperature as in Fig. 7 showed that
some smartphones become overheated during charging
which can be really harmful for the battery. Assigning
tasks to those devices at these times should be done after
warning the participant.

For time series forecasting, this work has explored various
machine learning methods. These methods are divided into
traditional statistical methods and deep learning-based tech-
niques, such as Auto-Regressive Integrated Moving Aver-
age (ARIMA) [62], and recurrent neural networks including
long short-term memory (LSTM) networks [63], bi-direction

FIGURE 5. A sample of time series representing battery level variations
on Sundays for 5 weeks.

FIGURE 6. A sample of a user’s energy profile showing a minimum
battery level threshold after which mobile charging usually starts.

FIGURE 7. A sample of data showing variations of mobile temperature
over a complete day.

recurrent neural networks, Elman networks, Jordan net-
works [64], and recursive neural networks. Particularly,
we have explored the ability of different network con-
figurations to capture the behavior of the data, and their
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TABLE 4. Different models of time series prediction and their
corresponding RMSE.

performance, measured in terms of the root mean squared
error (RMSE), is shown in Table 4.

B. ALGORITHM DESIGN
In this sub-section, we present a greedy algorithm for
task-participant matching that relies on predicting the battery
level and internet connection status for the participants of
sensing campaigns. In our model, each of the M tasks in
a campaign is associated with a sensing interval indicating
the period required to complete that sensing task. The set of
sensing intervals, {TI }, that are associated with the sensing
tasks are assumed to be known to the platform. Also, even
though MCS requires online devices, not all sensing cam-
paigns are required to be held online. For example, the service
demander might have the flexibility to permit the platform to
hold the auction whenever it has access to more participants,
higher data trustworthiness, or any other aspect that is con-
sidered favorable, by the system designers, for the quality of
the campaign. We argue that this scenario is valid for many
real-life applications.

In the beginning of every campaign, the platform receives
the following information from the service demander: the
tasks of the campaign, the set of sensing intervals of all tasks
({TI }), and the campaign validity duration (CVD). The latter
is defined as the duration throughout which the sensing is
allowed. The platform then predicts the internet connection
status and the battery level, throughoutCVD, for each individ-
ual in the platform’s users database. Since we have not started
the auction yet, we call the users in the platform’s database
potential participants. From the predicted patterns, the plat-
form determines Hd , which is defined as the one-hour time
during CVD that witnesses the maximum number of indi-
vidual profiles predicted to have stable internet connection
and battery level above bTh–the battery threshold level, which
is set to 20% in this research. It is worth mentioning that a
recent measurement study [12] showed that an energy-hungry
sensor like the GPS can consume up to 15% of the total
energy. This is the reason behind our choice for the battery
threshold level. The optimization problem that we solve to
determine Hd is given as:

Hd = argmax
h,d

(N Stable
h,d + N bTh

h,d ), (6)

whereN Stable
h,d is the number of potential participants that have

a stable internet connection at hour h of day d during CVD,
and N bTh

h,d is the number of potential participants that have

FIGURE 8. A data sample showing LSTM-based forecasting of battery
level.

battery levels above or equal bTh at hour h of day d during
CVD. Equation 6 is optimized by brute-force search. The
starting time of the auction, T St , is then set to be the onset
ofHd . With regards to pattern prediction, and considering the
results obtained in Table 4, we focus on LSTM and BiLSTM
in this research. Figure 8 and Fig. 9 present an example for the
time series forecasting obtained using LSTM and BiLSTM,
respectively, on MAGGIE.

Based on the predicted patterns, and after identifying T St ,
the platform determines the battery level of each potential
participant at the onset of the auction (the onset of Hd ). This
level is denoted as bi(T St ), such that bi is the battery level
for user i. The platform also determines the time at which the
battery of user i reaches the threshold level (bTh), which is
denoted as Ti(bTh). The time interval that will elapse until the
battery reaches that level can be computed as:

IThi = T St − Ti(bTh). (7)

Even though the battery threshold level, bTh, is set to 20% in
this research, it can be allowed to vary according to the power
requirements of the tasks and the allowed greediness level of
auctions.

In our experiments, we also classified the participants into
5 different categories according to their bi(T St ). These cat-
egories are shown in Table 5 and Fig. 10. According to the
category of the users, they are allowed to bid on particular
tasks. For each user, these tasks must require less time to be
completed than the user’s IThi , which ensures the completion
of these sensing tasks given the user’s battery level in the
beginning of the auction. An example is illustrated in Fig. 11
to clarify the concept. In this example, there are three sensing
tasks A,B,C , each with different sensing interval. User 1 is
allowed to bid on task A or B or both of them, but bidding on
task C is not allowed as it needs more sensing time than ITh1 .
Whereas user 2 is permitted by the platform to bid on any of
these tasks as they all require less than ITh2 .
To realize this strategy for participant-task match-

ing, the platform calculates a matching flag for each
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FIGURE 9. Using BiLSTM to forecast time-series on MAGGIE. The figure plots linear regression between the targets and
outputs on the training and test samples. The best linear fit (the neural network simulation and predictions) is denoted by
a solid line, whereas the perfect fit (outputs exactly equal to targets) is represented by the dotted line. The correlation
coefficient (R) - mentioned above each plot - represents the proximity between the best linear fit and the perfect fit of the
model. In this figure, with R nearly equals 1, the best linear regression–whose equation is written on the y-axis–nearly
overlaps with the perfect linear fit which indicates a very strong correlation between the targets and outputs of the
prediction model.

TABLE 5. Different categories of mobile users according to their battery
level at the of starting time a sensing campaign.

task-participant pair such that:

fi,j =

{
1, if tj ≤ IThi
0, otherwise,

where tj is the duration of task j in a sensing campaign.
After computing the matching flag, the auction is held by
sending each potential participant only the tasks that they can
complete, i.e., the tasks that correspond to a flag of value
1. This empowers the users of all categories, especially 3
and 4 (please see Table 5), to bid/focus on more achievable
tasks, rather than tasks they will not be able to complete,
and would burden the batteries of their devices to no avail.
Category 5 users are not permitted to participate as they have
all-zero flags. The steps of Predictive Auctioning are given
by algorithm listing 2.

VII. PERFORMANCE EVALUATION
In this section, we present an evaluation for the performance
of Green Auctioning and Predictive Auctioning using the
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FIGURE 10. Participants are shown as dots with different colors that refer
to their different categories as shown in Table 5. The color scale is shown
to take a range 0-1 which corresponds to 0% and 100% battery level,
respectively. The participants’ areas of interest are depicted as dashed
circles and the tasks are shown as violet squares with different sizes
according to their sensing interval.

FIGURE 11. An illustration of our task allocation strategy that integrates
the required sensing interval of tasks with the battery level of
participants. In this example, User 1 is allowed to bid on Task A and Task
B, but not on Task C since its interval is longer than what the battery of
User 1 can afford. User 2, however, is allowed to bid on the three
available tasks.

Algorithm 2 Predictive Auctioning
1: function Hold a Predictive Auction(T , B, B, {TI }, CVD)
2: Predict connection status during CVD
3: Predict battery levels during CVD
4: Compute N Stable

h,d ,N bTh
h,d

5: Compute Hd
6: Determine T St , bi(T St ),Ti(bTh)
7: Compute IThi
8: Compute fij
9: Perform task-participantmatching

10: return S, {P}
11: end function

MAGGIE dataset. For both techniques, and to facilitate the
comparison with recently proposed methods, we have fol-
lowed the literature in setting the values for the simulation
parameters, and we elaborate on this point below. The area
of the simulation was set to 1000 m × 1000 m where the
tasks and the participants are distributed uniformly. For the

FIGURE 12. An illustration showing the area of the campaign, with
participants depicted as dots and tasks as squares. The tasks and
participants are shown in 3 different colours (blue, green and red), which
represent accelerometer, gyroscope and magnetometer sensor-specific
tasks and participants. Each participant’s area of interest is marked with
a dashed circle.

auctions, the collective bids of the participants were varied
uniformly in the range [1, 10], while the values of the tasks
were varied in the range [1, 5]. The per-task bids were varied
uniformly in the range [vj − α, vj + α], and we set α = 2 in
our simulations. The soft reputations of the participants were
varied uniformly from 0.6 to 0.9, where the area of interest
around each participant was set to a radius of 30m as depicted
in Fig. 12.

A. PERFORMANCE EVALUATION FOR GREEN AUCTIONING
For evaluating the effectiveness of the Green Auctioning
algorithm, we developed a green version of three algorithms
from the recent literature, namely, TSCM [8], HMCDB [10]
and RPB [10], and we compare the performance of the green
versions with the original versions. These algorithms are all
reputation- aware (RA), but the main difference in the green
versions is that they adopt the newly proposed objective func-
tion for task-participant matching, while the original versions
adopt an objective function that includes Rs (soft reputation)
only. It is worth mentioning that we mapped the Rh (hard
reputation) factor to the range [0.5, 1] in order to be close
to the range of the participants’ soft reputation so that they
have nearly equal influence, and Zi from the range [0, 1] to
[0.1, 1].

With the simulation results shown below, we aim at high-
lighting the impact of involving the Rh as a factor in man-
aging auctions. Three aspects are considered (allowed to
vary) in our simulations which are: the number of campaigns,
the number of tasks, and the number of participants. Table 6
summarizes the simulated scenarios and their corresponding
parameter values. It is worth mentioning that in Green Auc-
tioning, a campaign is comprised of multiple auctions, each
for every task category.

In the first row of Fig. 13, we show a comparison with
regards to the attained clearance rate between the green
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TABLE 6. A summary of the different simulated scenarios for Green Auctioning and their corresponding parameter values.

FIGURE 13. The impact of varying the number of campaigns, tasks, and participants on the average power consumption and the attained
clearance rate (CR). The comparison takes into consideration three recent auction management techniques, namely, TSCM, HMCDB, and
RPB. The figures compare the performance of the original versions of these three techniques with the performance of their green versions,
i.e., the versions that adopt the proposed objective function for task-participant matching. Please see text for more details. As for the units
of the vertical axes: For the upper row, the clearance rate is the percentage of completed tasks from the total number of tasks in a sensing
campaign. For the lower row: The Android operating system responds with Ampere readings to queries regarding power consumption,
so the power consumption is measured in mA.

versions of TSCM, HMCDB, and RPB and their original
versions. This is done under varying number of campaigns
(first column), varying number of tasks (second column), and
varying number of participants (third column). The second
row shows a comparison between the same candidates with
regards to the consumed power. Generally speaking, there is
a trade-off between clearance rate and power consumption.
This is expected because even with the ability to identify
the devices that consume the least power, requiring more
tasks to be done will require more power consumption from
the sensors. Meanwhile, it is of significant importance to
compare how much power has been saved for how much loss
in clearance rate, and vice versa.

In Fig. 14, we show the relative percentage change in the
consumed power and the clearance rate between the green
and original versions of TSCM (row 1), HMCDB (row 2),
and RPB (row 3). This was simulated under varying number

of campaigns (column 1), tasks (column 2), and participants
(column 3). The relative percentage change in the power
consumed is defined as:

ε% =
Eoriginal − Egreen

Eoriginal
× 100, (8)

where Eoriginal and Egreen are the energy consumed by the
original and green versions of the technique under consider-
ation, respectively. Similarly, the relative percentage change
in the clearance rate is defined as:

η% =
rco − r ′c
rco

× 100, (9)

where roc and r
′
c are the clearance rate attained by the original

and green versions of the technique under consideration,
respectively. The blue and red bars in Fig. 14 represent η%
and ε%, respectively. For TSCM and HMCDB, even though
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FIGURE 14. The relative percentage change in energy consumption and clearance rate due to Green Auctioning. This is computed for TSCM,
HMCDB, and RPB, under varying number of auctions, tasks, and participants. There is a trade-off between energy consumption minimization
and CR maximization. Nevertheless, the figure shows that in the majority of the comparison cases, the attained energy savings are more than
the resulting CR decline. Please see text for more details.

TABLE 7. A summary of the different simulated scenarios for Predictive Auctioning and their corresponding parameter values.

the green versions of both techniques have resulted in CR
decline, the energy savings are more than the CR loss, since
the red bars (ε%) are bigger than the blue bars (η%). This
is consistently the case with varying number of campaigns,
tasks, and participants.

With RPB, though, energy savings do not consistently
outweigh CR losses. Particularly, with varying number of
auctions and in some cases of varying the number of partici-
pants, the green version results in energy savings but at a high
cost in terms of CR decrease. In part, this is expected since
RPB is an auctioning technique that focuses on maximizing
CR by penalizing redundant task assignment and by giving
high priority to tasks with less bidders to increase the odds of
their accomplishment. So, it is more inclined towards accom-
plishing more tasks, and hence more energy consumption.
This explains why its green version finds it challenging to
achieve energy savings that are higher than the CR loss.

B. PERFORMANCE EVALUATION FOR PREDICTIVE
AUCTIONING
For evaluating predictive auctioning, we used the same sim-
ulation area and the same settings for the value of each task,
the participants’ bids, and the participants’ area of interest

as the case with Green Auctioning. Also, similar to Green
Auctioning, the performance was investigated under vary-
ing number of auctions/campaigns, tasks, and participants.
We also investigated the impact of varying the maximum
allowable sensing interval as will be shown later in this
section. It is worth mentioning that in Predictive Auctioning,
a campaign is comprised of one auction, different fromGreen
Auctioning where auction is comprised of multiple auctions,
each for every task category. In our simulations, we set the
interval of the tasks to be directly related to the values of the
tasks, i.e. a task with a high value implies that it has a long
sensing interval. The maximum length of a sensing interval is
denoted by lmax . The length of the sensing interval of a task
is chosen randomly in [4, lmax] time slots. The time slot is
one minute. Table 7 summarizes the simulated scenarios and
their corresponding parameter values.

As mentioned in subsection VI-B, and according to the
RMSE values obtained and shown in Table 4, our simulations
for predictive auctioning adopted the BiLSTM model. The
initial learning rate was set to 0.005, the learning rate drop
factor was set to 0.2, the learning rate drop period was set
to 125. The number of hidden layers in both units was set to
50, the maximum number of training epochs was set to 250
and the minimum batch size was set to 120. A train-test split
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FIGURE 15. The impact of varying the number of auctions on the
performance of the reputation-aware (RA) original and predictive
versions of TSCM, HMCDB, and RPB with regards to the attained
clearance rate.

FIGURE 16. The impact of varying the number of participants on the
performance of the reputation-aware (RA) original and predictive
versions of TSCM, HMCDB, and RPB with regards to the attained
clearance rate.

of 80-20 was adopted and the model was built using the Deep
Learning Toolbox of Matlab.

As a performance baseline, we chose the same auctioning
techniques that were used to evaluate Green Auctioning,
namely, TSCM [8], HMCDB [10], and RPB [10], which
are all representatives of reputation-aware (RA) techniques.
In the rest of this sub-section, we compare the performance of
the original versions of the aforementioned techniques with
the performance of their predictive versions. Particularly,
we focus on the clearance rate, and we show that predictive
auctioning consistently yields an increase in the number of
accomplished tasks in a sensing campaign.

With regards to the number of auctions, Fig. 15 shows that
the predictive versions of the algorithms under considerations
attain higher clearance rate compared to the original versions

FIGURE 17. The impact of varying the tasks’ maximum sensing interval on
the performance of the reputation-aware (RA) original and predictive
versions of TSCM, HMCDB, and RPB with regards to the attained
clearance rate.

FIGURE 18. The impact of varying the number of tasks on the
performance of the reputation-aware (RA) original and predictive
versions of TSCM, HMCDB, and RPB with regards to the attained
clearance rate.

that are reputation-aware only. In addition to being reputation
aware, the predictive versions are capable of choosing tasks
to participants in a manner that maximizes the number of
accomplished tasks. The predictive TSCM attained a CR that
is more than 4 times that of its original version. The predictive
HMCDB and the predictive RPB achieved an equal CR of
23%, while their original versions attained 14% and 22%
respectively.

As for the number of participants, generally speaking,
as the number of participants increases, the higher the attained
CR, because the number of task executers becomes larger.
Fig. 16, shows that the predictive RPB algorithm achieves
an average of approximately 30% increase in CR compared
to the original RPB over varying number of participants.
Predictive RPB is closely followed by the predictive HMCDB
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FIGURE 19. Statistics on the data provided by the MAGGIE dataset.

algorithm and the predictive TSCM. The predictive TSCM
algorithm yields almost 50% larger CR compared with the
original algorithm at 1000 participants.

In our simulations, the maximum length of sensing inter-
vals is allowed to vary from 20 to 120 minutes with
increments of 20 minutes. Figure 17 highlights the impact of
varying the maximum sensing interval on the attained clear-
ance rate. While the attained CR, in general, does not demon-
strate significant change over the range of simulated intervals,
there are some trends that are worth mentioning. For the
original TSCM and HMCDB, with more tasks having longer
intervals, there is a slight decrease in the CR. This is because
more tasks will need larger sensing interval than the user can
handle. The case with the original RPB is different, though,
because it involves budget saving by penalizing redundant
sensing in addition to three stages for winners selections,
namely, the redundancy, the primary and the secondary win-
ners, compared to only two stages in TSCM and HMCDB.
Consequently, the three sets of winners in RPB are capable
of executing more tasks. This also implies larger coverage
area, and hence can handle more tasks, which saves the tasks
that have less sensing intervals from being dropped, such as
in the case of TSCM and HMCDB. The predictive versions
of all the techniques under consideration consistently lead to
increasing the clearance rate, thanks to assigning the sensing
tasks to the users that are qualified, battery-wise, to accom-
plish them. The superiority of the predictive versions are also

valid for the case of varying the number of tasks as shown
in Fig. 18. The pool of tasks provided within the area of
interest of each participant gets larger when the number of
tasks increases. Hence, both original and predictive versions
demonstrate an increase in CR with increasing the number
of tasks. While the original versions show a higher rate
of CR increase (larger slopes), the predictive versions have
preserved consistently higher clearance rates.

It should be stated that in the above comparative anal-
ysis, the platform in all our simulations had been given
an access to the same budget in each case/technique under
consideration. Hence, the predictive versions were able to
achieve significantly higher clearance rates using the same
resources/budget.

VIII. CONCLUSION
In this research, we proposed two approaches for Green
Mobile Crowdsensing (GMCS), aiming at reducing the power
consumption in mobile crowdsensing campaigns through
effective device-application (or task-participant) matching.
In the first approach, Green Auctioning, we proposed a new
objective function that represents a comprehensive formu-
lation for user reputation. Previous techniques adopted an
objective function with a soft reputation term that depends
on data trustworthiness, in addition to a threshold-based hard
reputation term which reflects the quality of the sensing
device. Without compromising soft reputation, we presented
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a new formulation for the hard reputation term that depends
on the energy consumption of the device. By considering
three recently proposed, state-of-the-art auction management
techniques (TSCM, HMCDB, and RPB), we compared the
performance of their original and green versions, and we
showed significant energy savings in return of a decline in
clearance rates—a trade-off that empowers system designers
to optimize specific system characteristics. To further analyze
this trade-off, under varying number of auctions, tasks, and
participants, we showed that the attained energy savings were
higher than the CR decline in the majority of simulated
scenarios.

The second proposed approach for GMCS, Predictive
Auctioning, relies on forecasting the energy and internet
connection-related patterns of sensing devices using LSTM
neural networks. It is a task-participant matching algorithm
that assigns tasks only to users who can maintain sufficient
battery levels and a stable internet connection throughout the
sensing interval of the task at hand. Hence, we can avoid
the waste of energy that results from the case of a user
failing to accomplish a task after being assigned to it. Similar
to Green Auctioning, we compared the performance of the
original and predictive versions of TSCM, HMCDB, and
RPB, and we showed a consistent advantage for predictive
auctioning with regards to the attained clearance rates, under
varying number of auctions, tasks, participants, and sensing
intervals. It is worth mentioning that for the 1st and the 2nd
approaches, the reported advantages were achieved without
compromising other aspects such as data trustworthiness,
since the proposed objective functions lend themselves well
to optimizing further performance parameters.

Towards developing and evaluating the aforementioned
approaches, we have built a new dataset, the MAGGIE
dataset, that is comprised of battery-related, embedded
sensors-related, and internet connection-related data of over
100 users, acquired over a duration of 4 months, using a
mobile application that was specially developed for this pur-
pose. To the best of our knowledge, the proposed dataset
is the first to include that variety of sensing device models
and their respective performance data. We provide the new
dataset publicly to the research community for the sake of
transparency and to contribute to the advance of MCS.

APPENDIX
STATISTICS ON THE DATA PROVIDED BY THE MAGGIE
DATASET
See Figure 19.
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