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ABSTRACT In the past few years, the development of demand response (DR) programs for smart grid
systems has provided residential customers with a real opportunity to participate in DR-driven projects. One
typical DR-related application now available is automated energy scheduling for residential building, which
can be used to help reduce energy costs. Residential energy scheduling focuses on saving cost by managing
the operation time and energy consumption level of different appliances. DemandResponse programs present
as NP-hard problems, the equations are non-convex mixed integer non-linear problems (MINLP), for which
it is difficult to obtain an optimal solution. In relation to residential DR, we propose a hybrid approach
here that is able to solve an MINLP. The problem is decomposed into discrete and continuous variables.
The discrete variables are optimized by using a particle swarm optimization (PSO) algorithm, whilst the
continuous variables are determined by using a gradient-based deterministic algorithm. The superiority of
the proposed algorithmwas demonstrated by compared with commercial optimization software and heuristic
based algorithm. Furthermore, the effectiveness of the proposed method in residential DR was tested and the
results were presented.

INDEX TERMS Mixed integer nonlinear programming, residential energy management, particle swarm
optimization.

NOMENCLATURE
h Time step
Telec(h) Electricity price
pgrid (h) Purchasing electricity from main grid
Tgas Price of natural gas
pgas(h) The heat generated by natural gas
pFC (h) The power of fuel cell
pbatt (h) Battery’s output power
αa, βa Working time range of electrical appliance
peFC (h) The electrical power of fuel cell
pms(h) Basic electricity consumption
pta(h) Power consumption of Thermostatically

controlled Appliance
pdefe(h) Electricity consumption by deferrable

appliance
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pinte(h) Electricity consumption by
interruptible appliance

phFC (h) Heat power produced by fuel cell
phms(h) Basic thermal consumption
pbatt (h) Battery’s output power
pchbatt (h), p

dch
batt (h) Battery charge and discharge

pmax
dch , p

max
ch Battery maximum discharging and

charging power
ηch, ηdch Charging and discharging efficiency

of battery
SOCmax, SOCmin Maximum and minimum residual

quantity of battery
Tin(h) Room temperature
Tout (h) Outdoor temperature
Tmin
in ,Tmax

in Maximum and minimum operating
temperature

αa, βa Working time range of electrical
appliance
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δ Electrical appliance switch state: 1
ON; 0 OFF

δa,t Binary variable indication the
operation status of task at time t

Ha Time slots required by appliance A
1PFC,U Upper limit of ramp rate of fuel cell
1PFC,D Lower limit of ramp rate of fuel cell
PFC,max,PFC,min Maximum and minimum limit

of fuel cell generated power

I. INTRODUCTION
In recent decades, the worldwide rise in energy demand has
led to a profound change in existing energy infrastructures.
The smart grid is an intelligent electricity system that inte-
grates advanced communications, sensing technology and
control methodologies to transform the traditional grid into
something more efficient. To meet the distribution side of
consumer’s expectations, for instance, there needs to be more
detailed research undertaken regarding smart grid compo-
nents such as demand response. Demand response (DR) pro-
grams can play a vital role in the smart grid. If the smart grid
can properly facilitate them, DR programs can bring about
reductions in peak load, energy consumption, and carbon
emission. They can also facilitate greater penetration of inter-
mittently available renewable resources. DR programs can
be applied across the residential, commercial and industrial
consumer sectors [1], [2].

It is much more complicated to design an efficient DR
program for residential consumers compared to the other two
sectors. That is mainly due to complex appliance loads and
random consumption patterns. Since the technical difficul-
ties in residential sectors, it is therefore urgent to develop
cost-effective and practical methods to control energy con-
sumption in residential dwellings [3].

Micro combined heat and power (micro-CHP) generation
has been considered a promising on-site generation method
in residential-side energy management [4], [5]. Residential
DR can benefit from micro-CHP to simultaneously gener-
ate electricity and heat, and thus provide energy services at
increased overall efficiency. The utilization of micro-CHP
systems in residential, commercial and industrial sectors
to improve energy efficiency have been reported in many
researches [6]–[8].

In order to enable CHP respond to different kind of opti-
mization strategies, control strategies need to be able to pro-
vide effective solutions to optimization problems. Therefore,
optimization algorithm is the focus of research. These can
be divided into two main categories, linear and non-linear
optimizer. Linear optimizers (such as linear programming
and mixed integer programming) have the advantage of fast
computation speed, and most of them apply Mixed-Integer
Linear Programming (MILP) techniques to optimize the
CHP power system. Some methods, such as Lagrange relax-
ation method (LR) [9], Genetic Algorithm [10], Particle
Swarm Optimization [11], Branch and Bound (BB) [12] and

Sequential Quadratic Programming (SQP) [13], have been
applied to scheduling these MILP systems [14]. In order to
provide accurate solutions, many works model the actual sys-
tem as MINLP formulation. A MINLP approach for schedul-
ing CHP units in day-ahead electricity markets is proposed
in Ref. [15]. The scheduling of manufacturing system and
CHP system under a Time-of-Use (TOU) electricity tariff is
implemented, and a near optimal solution with reasonable
computational cost is found in [16] by using PSO method.
In addition, a stochastic programming framework with uncer-
tainties of CHP units is considered in [17]. Nonetheless,
MINLP technology may be difficult to find a solution close
to the global optimum [18].

In this article, we focus on the application of CHP in elec-
tricity load management of typical residential building with
the various types of appliance. In order to formulate a more
accurate appliance model, a MINLP model is built. However,
as mentioned above, the structure of MINLP is NP-hard
problem, and it is hard to obtain a global solution. Despite the
difficulties in solving MINLP problem, a number of different
methods have been proposed. In general, a solution is brought
about by using either deterministic or stochastic algorithms.

Deterministic algorithms, such as non-linear branch and
bound [19], outer approximation [20], [21], and general-
ized bender-decomposition [25], take different approaches to
solve MINLP. In [25], by formulating the DR program as an
MINLP, they can obtain optimal electricity load dispatch by
using the generalized bender-decomposition approach. When
deterministic algorithms are used, the whole problem is usu-
ally decomposed into discrete and continuous vectors, and a
solution being arrived at through mutual iteration. However,
deterministic methods alone cannot guarantee global opti-
mization.Without good initial estimates, poor, sub-optimal or
even infeasible solutions maybe obtained. On the other hand,
stochastic methods, such as PSO [22], genetic algorithms
(GA) [23], and differential evolution [24], have shown them-
selves to be capable of handling theMINLP easily. Stochastic
algorithms tend to use random initializations to search for
global or near-global values. However, stochastic algorithms
are typically slow to converge and cannot guarantee finding
a feasible solution within a finite amount of time.

In order to obtain an optimal solution, a hybrid optimiza-
tion method is proposed in [26], [27] to solve a bi-level
programming problem. In this article, a hybrid algorithm is
proposed to solve the non-convex MINLP, which combines
the advantages of stochastic and deterministic algorithms.
As is normal indeterministic methods, the MINLP problem is
decomposed into discrete and continuous variables. However,
unlike traditional deterministic methods, in order to increase
the diversity, we also use a stochastic method to solve the
discrete variables. In this article, PSO is used to determine
discrete variables. This increases the chances of finding an
optimal solution. At the same time, a gradient-based deter-
ministic algorithm solves the continuous non-linear optimiza-
tion with fixed discrete variables, as one would expect with a
stochastic method. In order to verify the performance of the
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FIGURE 1. Residential building.

proposed algorithm, several computational experiments have
been carried out.

The major contributions of this article can be summarized
as follows:

1) Unlike previously published study [35]–[37] based
on MILP model, a more complex non-convex MINLP
model is proposed and applied to a household sce-
nario in this article. The smart building is equipped
with the following types of appliances: interruptible appli-
ances, deferrable appliances, battery-assisted appliances,
thermostatically-controlled appliances and fuel cells (FC).

2) Instead of solving the non-convex MINLP by using
either a deterministic algorithm or a stochastic approach,
we use a hybrid deterministic and stochastic algorithm. This
is capable of achieving a near-optimal solution. Its perfor-
mance is compared with commercial optimization software
and heuristic based algorithm.

The article is organized as follows: Section 2 provides
a brief description of the mathematical model. A detailed
solution methodology is proposed in section 3. Illustrative
case studies are presented in section 4. Section 5 provides a
summary and conclusion.

II. MODELS OF THE DR PROBLEM
In this section, the objective functions and constraints for
scheduling based on the previously described models are
briefly described.

A. OVERVIEW OF A DEMAND RESPONSE PROGRAM
An overview of a demand response system in form of a
residential building is shown in Fig.1 [28].

The proposed residential building consists of main grid,
FC, battery, thermostatically-controlled appliance, deferrable
appliances, interruptible appliances, thermal load, electrical
load, and natural gas. It should be noted that the FC works
as CHP system to increase its efficiency. The heat generated
by the FC can supply the thermal load. The main grid, FC,
or the battery can supply the electrical load. The main role
of the DR is to minimize operating costs when meeting the
load demand of the individual house. It is assumed that the

components of the residential building have already been
installed, so installation cost is not considered.

B. OBJECTIVE FUNCTION
This article introduces an efficient DR to minimize daily
electricity cost in a residential building. Mathematical formu-
lation of the proposed residential building is given below.

Residential building economic optimization is achieved by
choosing an objective function that represents the operational
costs to be minimized. The objective of DR program in a res-
idential building is to determine the best operation schedules
of appliances to minimize the electricity cost while satisfying
the appliance’s physical constraints. The objective function is
expressed as follows:

minF =
24∑
h=1

[Telec(h) ∗ pgrid (h)+ Tgas ∗ pgas(h)

+Tgas ∗ PFC (h)] (1)

where Telec(h) and pgrid (h) are the electricity price and the
amount of power exchanged with utility grid at hour h respec-
tively. Tgas is the natural gas price,while pgas(h) and PFC (h)
are the total amount of gas consumed by the natural gas
and CHP.

C. APPLIANCE CONSTRAINTS
1) ELECTRICAL DEMAND-SUPPLY BALANCE
Each electric generation system should be able to supply
electric demand. The mentioned sentence is formulated as
equation (2):

Pgrid (h)+ pbatt (h)+ peFC (h) = pms(h)+ pta(h)

+ pdefe(h)+ pinte(h) (2)

where pgrid (h), pbatt (h) and peFC (h) represent the power
from gird, battery storage and electrical power of fuel cell,
respectively. pms(h) denotes the total energy consumption
of must-run electrical appliances that are not scheduled.
pta(h) represents the thermal consumption.While pdefe(h) and
pinte(h) represent deferrable electrical appliances and inter-
ruptible appliances for one-hour, respectively. It can be seen
from Eq.(2) that the power form gird, battery storage and fuel
cell should be equal to the electrical demand of residential
building.

2) THERMAL DEMAND-SUPPLY BALANCE
The thermal demand-supply balance constraint can be
expressed as follow:

Pgas(h)+ PhFC (h) = Phms(h) (3)

It can be seen from Eq.(3) that the heat power produced
by natural gas and fuel cell should meet the total thermal
consumption.

3) BATTERY CONSTRAINTS
The battery can help to minimize the overall operation cost
by acting in the charging or discharge mode. Battery is only
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allowed to work on one state at each moment. The charge
or discharge value of power of the battery storage must
be in rated range. In order to prolong the life time of the
battery storage, the battery storage must not be within range
[SOCmin, SOCmax]. The battery constraints can be formulated
as follows:

0 ≤
pchbatt (h)

ηch
≤ pmax

ch (4)

0 ≤ pdchbatt (h) • ηdch ≤ p
max
dch (5)

pbatt (h) =
pchbatt (h)

ηch
− pdchbatt (h) • ηdch (6)

SOC(h+ 1) = SOC(h)+
pchbatt (h)− p

dch
batt (h)

Ebatt
(7)

SOCmin
≤ SOC(h) ≤ SOCmax (8)

4) THERMOSTATICALLY-CONTROLLED APPLIANCE
CONSTRAINTS
The thermostatically-controlled appliance adjusted their
energy consumption at each sub-interval to meet the require-
ment of setting temperature. Its performance at each
sub-interval depends not only on the current energy consump-
tion at previous sub-intervals. In this article, the air condi-
tioner is taken as an example. According to Pedrasa [29],
the building temperature at each hour is obtained by:

Tin(h+ 1) = Tin(h) ∗ e
−1
τ + (R ∗ Pta(h)

+Tout (h)) ∗ (1− e
−1
τ ) (9)

where 1 = 1h and τ = RC . The values used were
R = 18◦C/kW, C = 0.525kWh/◦C and the initial room tem-
perature was 20◦C. Constraints can be imposed to specify the
operating range and associated temperature range as:

Tmin
in ≤ Tin(h) ≤ T

max
in (10)

5) INTERRUPTIBLE APPLIANCE CONSTRAINTS
For the interruptible appliance, we assume that it only operate
in either ‘on’ or ‘off’ statuses within user’s preferred time
range [αa, βb], It consumes fixed energy at each sub-interval
if the appliance is turned on. Therefore, constraints needed by
the interruptible appliance can be written as follows:

δa,t = 0 t /∈ [αa, βb] (11)
t0−1∑
t=αa

δa,t + δa,t0 +

βa∑
τ=t0+1

δa,τ = Ha (12)

βa∑
t=αa

δa,t = Ha (13)

6) DEFERRABLE APPLIANCES CONSTRAINTS
Different from the interruptible appliance mentioned pre-
viously, the deferrable appliance should run until comple-
tion once started. Also, let H be the number of time slots
that the deferrable appliance need to operate at a defined

energy level. Appliances such as a dishwasher usually operate
with deferrable tasks. The characteristics of the deferrable
appliance were described as Eqs.(14)-(16). Equation (14)
indicates that the task should start within a operational
windows [αi, αi + λi]. Equation (15) describes the non-
interruptible characteristic. Equation (16) indicates that the
appliances shouldworkwithin a operational window [αa, βb].

t0−1∑
t=αi

δa,t + δi,t0 +

αi+λi∑
τ=t0+1

δi,τ ≥ 1 (14)

t0+Hi∑
τ=t0+1

δτ ≥ H • (δt0+1 − δt0 ) (15)

βa∑
t=αa

δt = H t ∈ [αa, βa] (16)

7) FUEL CELL OPERATION CONSTRAINTS
The fuel cell is a major part of home energy management
system, which can generate electrical and thermal energy at
the same time. The rate of changes in the output power of the
fuel cell is limited to upper and lower boundaries [30]. So the
fuel cell should meet the following constraints.

PFC,i − PFC,i−1 ≤ 1PFC,U (17)

PFC,i−1 − PFC,i ≤ 1PFC,D (18)

The maximum power limit and minimum power limit of
fuel cell is presented in Eq.(19).

PFC,min ≤ PFC ≤ PFC,max (19)

The part load ratio (PLR) is the ratio of electrical power
generated by the fuel cell to its power rating, which affects the
fuel cell efficiency and the ratio of electrical to the thermal.

When PLRi ≥ 0.05, the following can be obtained[28]:

ηFC,i = 0.2716; γFC,i = 0.6816 (20)

While PLRi ≤ 0.05, then

ηFC,i = 0.9033PLR5i − 2.9996PLR4i + 3.6503PLR3i
− 2.0704PLR2i + 0.4623PLRi + 0.3747 (21)

γFC,i = 1.0785PLR4i − 1.9739PLR3i + 1.5005PLR2i
− 0.2817PLRi + 0.6838 (22)

III. HYBRID ALGORITHM FOR THE
SCHEDULING PROBLEM
Based on previous analysis, our proposed model is a complex
non-convex MINLP. The resulting MINLP can be expressed
as follows:

minx,y F = f (x, y, q)

s.t. h(x, y, q) = 0

g(x, y, q) ≤ 0

q = k(x, y) (23)
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The function of the scheduler is to determine the optimal
operations x and y to save operational costs. x = [xdefe, xinte]
are binary variables and y = [yta, yFC , ybatt , ygas] are con-
tinuous variables. q is a continuous vector of the dependent
state variables that are determined by x and y. A global
solution could potentially be obtained by using a commercial
optimization solution [31]. However, these are currently too
expensive to be implemented. For these kinds of problems,
local deterministic methods are often employed but these
methods cannot guarantee global optimality. Without good
initial estimates, infeasible or poor, sub-optimal solutions
are often obtained. If one starts from good initial estimates,
there is a high probability of finding a high-quality solu-
tion. However, it is also the case that stochastic optimization
methods can obtain global or near-global solutions using ran-
dom initializations. Thus, in this article, a population-based
stochastic algorithm is deployed to randomly initialize the
fixed discrete variables. All the continuous variables are then
optimized using CONOPT (CONOPT is a solver for large-
scale nonlinear optimization developed and maintained by
ARKI Consulting & Development A/S in Bagsvaerd).

A. STOCHASTIC OPTIMIZATION
PSO is one of themost prominent meta-heuristic evolutionary
stochastic algorithms. It has been proven to be very efficient
in solving optimization problem with both discrete and con-
tinuous variables. The algorithm is initialized by creating
a swarm with random positions. Every particle is shown
as a vector (xi, vi, pbest ), where xi and vi are the position
and velocity of the ith particle, respectively, and pbest is the
personal best position found by the particles. Also, a best
position pgbest of the entire population is computed to update
the particle velocity. The velocity of the ith particle is updated
as follows:
vt+1i = wvti + c1r1(pbest

t
i − x

t
i )+ c2r2(gbest

t
i − x

t
i ) (24)

x t+1i = x ti + v
t
i (25)

where w = 0.8 is an inertia weight factor, c1 and c2 are the
acceleration coefficients. [28]

suggested c1 = c2 = 2. r1 and r2 are two random numbers
uniformly distributed in the interval [0,1]. vti and v

t+1
i are the

current and next velocity of the ith particle. In this version,
the variable Vi is limited to the range ±Vmax.
Traditional PSO is used to solve real value optimiza-

tion. In order to solve binary variable, a binary version of
PSO (BPSO) was proposed by [32]. In binary PSO, the parti-
cle position has two possible values, ‘0’ or ‘1’. The velocity of
BPSO is calculated as the PSO algorithm then, it is transferred
into a sigmoid function in the interval [0,1] as follows:

s(vt+1i ) = sigmod(vt+1i ) =
1

1+ e−v
t+1
i

if rand < s(vt+1i )

x t+1i = 1

else x t+1i = 0

vt are constrained within a range [−vmax,vmax].

B. DETERMINISTIC ALGORITHM
In this article, the continuous values are solved using com-
mercial NLP solver CONOPT. CONOPT is a gradient-based
NLP method for static and dynamic large-scale nonlinearly
constrained optimization problems. This algorithm projects
the gradient of the objective onto a linearization of the con-
straints and makes progress toward the solution by reducing
the objective [33].

C. HYBRID CONOPT AND PSO ALGORITHM
Our proposed algorithm combines a PSO stochastic algo-
rithm with a gradient-based deterministic NLP algorithm
to solve the non-convex MINLP. In the hybrid algorithm,
the values of the discrete variables are optimized using
PSO and all the continuous values are calculated using a
gradient-based NLP solver (CONOPT). The general structure
of the algorithm is shown in Fig.2.

The major steps can be summarized as follows:
Step 1: To start the program, initialize the relative parame-

ters of the home energy management system (HEMS).
Step 2: Randomly initialize the discrete variables. A PSO

algorithm generates an initial random population of N num-
ber of particles. Each particle randomly generates the vari-
ables x= [xdefe, xinte] that need to be optimized. As can been
seen, x represents binary values, which are solved by using
binary PSO.

Step 3: Deterministic optimization. The continuous vari-
ables y = [yta, yFC , ybatt , ygas] are optimized using the
gradient-based CONOPT together with the fixed discrete
variables obtained by PSO. All the discrete particles are
folded into the generation.

Step 4: Evaluation of fitness value. The fitness
value of each particle is calculated based on the dis-
crete value x = [xdefe, xinte] and the continuous value
y = [yta, yFC , ybatt , ygas].

Step 5: Each particle is ranked according to its fitness
value. The global and individual best particles are selected
and the PSO operators are applied according to Eqs.(24-25)
to create a new population. The population of the new gener-
ation is compared to that of the previous generation and the
best particles are selected as the new generation.

Step 6: Terminate the computation if a pre-defined max-
imum number of generations is satisfied. The solution con-
tained in the current generation represents the best solution.
It will include the best PSO particle and its CONOPT value.
If the criteria are not satisfied, the iteration continues.

IV. SIMULATION RESULTS
In this work, we took an overall planned framework that
divides a day into 24 one-hour periods. This applies to
a residential building that we assumed will be equipped
with a wide variety of appliances, including a fuel cell,
battery, a thermostatically-controlled appliance, deferrable
appliances, interruptible appliances and natural gas, each of
which would need modeling. The data for the modeling was
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FIGURE 2. The flowchart of proposed algorithm.

FIGURE 3. Must-run electrical and thermal demand and real-time price.

taken from relevant literature [34] and previously published
studies [35]–[37].

Variations in normalized thermal and electrical demand
during one day are shown in Fig.3 [35]–[37]. The day-ahead
price of electricity supplied to terminal loads is also shown
in Fig. 3. Parameters for the presumed household sce-
nario are provided in Tables 1 and 2. These parameters
were obtained and modified from previously published
studies [33]–[35].

TABLE 1. Data for Residential Appliances.

A. ALGORITHM ANALYSIS
In order to assess the effects of the optimization framework,
three different methods were considered for evaluating the
proposed scheduling scheme. For each case we applied a
numerical simulation.

Case 1. The MINLP problem was solved using a tradi-
tional PSO algorithm [38].The algorithm was programmed
using the MATLAB programming language with a popula-
tion of 200 particles.

Case 2. The MINLP problem was solved using the
commercial solver Knitro, which was modeled in A Math-
ematical Programming Language (AMPL) [33]. Knitro
is a special non-linear solver that uses state-of-the-art
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TABLE 2. Assume Values for Parameters.

TABLE 3. Comparison Between Different Algorithms.

algorithmic options to accommodate various objective and
constrained non-linearities in continuous and integer vari-
ables. It is designed for large-scale problems and can handle
hundreds of thousands of variables.

Case 3.The MINLP problem was solved using our own
proposed hybrid algorithm with a population of 100 particles.
The deterministic problem was solved by CONOPT and the
stochastic problem was solved using binary PSO.

All of the tests were performed on a PC with an Intel dual-
core 2.6 GHz processor running a Windows XP operating
system.

Each approach was executed five times and the overall
average was recorded. The statistical simulation results are
listed in Table 3.

From Table 3, it can be seen that the problem cannot be
successfully solved using a traditional PSO algorithm. This
may be due to the fact that the MINLP problem is too com-
plex. The PSO easily managed to converge to a local optimal
value, but it cannot satisfy all of the constraints necessary to
obtain the optimal solution.

Due to the non-convexity of the problem, Knitro, a com-
mercial solver, can obtain a feasible solution, but it was only
a local optimal solution. In our hybrid approach, the problem
is divided into discrete and continuous variables. The contin-
uous variables are solved using CONOPT, and the discrete
variables are solved using a stochastic PSO algorithm. The
results show that the performance of the proposed algorithm
is better than Knitro, a commercial solver. This may be due
to the fact that the performance of deterministic MINLP
algorithm depends mainly on its initialization. The embed-
ded population-based PSO algorithm increases the chance of
acquiring good initialization. Therefore, the PSO algorithm

FIGURE 4. Scheduling results for interruptible and deferrable appliance.

FIGURE 5. Controlled appliances and building temperature.

as the initial value for CONOPT can improve the performance
of the whole algorithm. However, the algorithm in this article
is at the cost of different initialization, so it will also increase
the cost of calculation.

B. SCHEDULING PROCEDURE
Further analysis was used to explore the effects of the pro-
posed algorithm.

Interruptible and deferrable appliances play an important
role in achieving economic operation. The schedule results of
interruptible and deferrable appliances are presented in Fig.4.
As expected, both deferrable and interruptible appliances are
scheduled to operate at low-price electricity periods (i.e.,
5:00, 12:00-16:00and 20:00–24:00) to save costs. Further
analysis of optimization results have been cited in a previ-
ously published study [23]–[25].

The scheduling results for the continuous appliances are
plotted in Fig.5.

The power drawn by the thermal energy equipment is
relatively stable. Outside of start-up, it works at maximum
power because it is has tomeet the constrained requirement of
moving from an initial temperature of 20oC to a temperature
within the set range [24oC,26oC].

As expected, the fuel cell had to work at a relatively high
power because it needed to reduce cost by generating heat and
electricity simultaneously.

The positive and negative values represent the bat-
tery charging and discharging, respectively. Once again,
as expected, the battery played an important role in
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achieving the economic operation of the demand response
program. The battery charged during low-price periods
(1:00,3:00,5:00) and discharged during peak-price peri-
ods(4:00,8:00,18:00).The HEMS reduce the bills by selling
power to the grid during peak hours ((4:00,6:00,8:00,18:00).

V. CONLUSION
In this article, we have proposed anon-convex MINLP solu-
tion for residential building. The proposed solution has been
designed for the scheduling of both discrete and continu-
ous appliances. As this presents as a non-convex MINLP
we compared our proposed approach to other potentially
relevant solutions, namely, the commercial software Knitro
and a traditional heuristic algorithm. Due to the non-convex
nature of the problem, the traditional heuristic algorithm
was not able to achieve a feasible solution. The commercial
solver Knitro converged easily, but to a suboptimal solution.
By contrast, our proposed hybrid algorithm was able to solve
the non-convex MINLP in an optimal fashion. This hybrid
algorithm increases the possibility of locating a successful
global solution because it deals with a whole population of
possible solutions at any one time. Further analysis, based on
an extensive simulation study that modeled an actual residen-
tial scenario, found that the proposed algorithm is effective
for real-world applications.
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