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ABSTRACT Fast Fourier Transform (FFT), widely used in spectrum analysis, is a powerful processing
vibration signal to obtain the signal amplitude, frequency, and phase. However, the discrepancy between the
FFT derived values and the real values could be introduced due to spectral leakage and spectral interference.
This inconsistency is prohibited in some applications, for example, the extraction of vibration characteristics
for power machinery and failure diagnostics. Therefore, the methodology to obtain the frequency domain’s
exact characteristics becomes one of the most concerning topics in vibration and signal processing. In this
paper, a newly developed iterative method is presented in detail for high-accuracy characteristic extraction
of multiple frequencies periodic vibration signals based on FFT and least square method. In the situation
where the attenuation signal is superposed onto the periodic signal, the accurate characteristics of these two
signals are also obtainable. Besides, simulation examples are provided, showing that the proposed method
can be applied to the single-frequency signal, multiple frequency signals (including the signals of which the
adjacent frequencies are close), and attenuation signal. The experimental results show that using the data
processing method in this paper to extract the attenuation signals’ characteristics, and the fitted attenuation
curves are in good agreement with the actual attenuation signals. The method shown in this paper can be
used for precisely extracting the characteristics of the periodic signal and attenuation signals in engineering.

INDEX TERMS Spectral correction, FFT, least square method, vibration signal, attenuation signal.

I. INTRODUCTION
Rotating machinery, such as steam turbines, gas turbines,
or large generator, has a significant role in the modern indus-
try [1]. The method for monitoring and diagnosing rotating
machinery, such as temperature, pressure, vibration monitor-
ing, etc., can reduce the risk of economic loss and security
problems caused by component failure [2], [3]. Vibration
monitoring is one of the most widely used methods [4]–[6].
Since the time domain signal is usually too complex to
obtain effective information, some frequency-domain meth-
ods, such as Fourier transform, spectral analysis, wavelet
transform, Hilbert transform, etc. are typically used. Fast
Fourier transform (FFT) is the fundamental method for sig-
nal processing and is well accepted in engineering practice
ever since Cooley-Tukey proposed [7], [8]. However, the
FFT processed amplitude, frequency, and phase may deviate
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from the frequency components’ actual characteristics in the
time domain given by spectral leakage due to non-integer-
period truncation. For instance, as shown in Ref. [9]–[11],
the maximum relative amplitude errors are 36.4% and 15.3%
when using a rectangular window and Hanning window,
respectively. The maximum error of frequency is half of the
spectral resolution when using different windows, while the
phase’s maximum error can approach 90◦. Besides, spectral
interference can occur when two adjacent frequencies are
too close, worsening the relative error. As a result, the data
calculated by FFT without additional processing cannot be
used directly in situations where high-precision amplitude,
frequency, and phase data are needed. To name but a few,
the experimental study of identifying the dynamic character-
istic coefficients in sliding bearings [12]–[15], high precision
rotor dynamic balancing tests [16]–[18], and the tests using
impulse response method [19] to obtain the inherent charac-
teristics of rotating rotors all require accurate data processing
method.
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In order to solve the mentioned spectral leakage prob-
lem, plenty of relevant works have been done by numerous
researchers. The available methods for spectral correction are
generally categorized into four groups: interpolation, FT con-
tinuous zoom, spectrum energy, and phase difference [20].

The interpolation method, initially proposed by Rife and
Jain, uses two spectral lines to correct the spectrum. It is
suitable for signals processed with the rectangular win-
dow [21], [22]. In the following decades, many schol-
ars improved the method, D. Agrez [23] proposes the
weighted interpolated DFT algorithm in which three maxi-
mum spectral lines are used. These improvements extend the
application areas of the interpolation method and enhance
accuracy [24]–[26]. The influence of noise is also ana-
lyzed [27], [28]. It is widely used due to easy implementation
and high accuracy [29].

The spectral leakage can be minimized through FT
continuous zoom, in which the spectrums are corrected
by improving spectral resolution and reducing the spec-
trum analysis error. Zoom-FFT, a method developed from
FT continuous zoom, can extract frequency range with
high-frequency resolution without increasing the sampling
number [30], [31].

The spectrum energy method, firstly proposed by Carlo
Offelli and Dario Petri, corrects the spectrum through the
characters that the barycenters of the power spectrum of
symmetric window function approach to the origin of coordi-
nate [33], [34].

The phase differences of the highest spectral line of two-
time FFT can be used to restrain spectral leakage. This
method has a good anti-noise performance but does not work
well with the signals which are close to the adjacent frequen-
cies [11], [20].

The methods mentioned above are accurate when process-
ing a single component frequency signal (or two adjacent
frequencies are far enough), but the accuracy is reduced
significantly when spectral interference is serious. Luo [29]
compares the accuracy of various interpolation methods
with the Hanning window. When the normalized frequency
approaches 1, negative frequency increases the spectral leak-
age and the frequency error. Luo and Xie [20] propose a
phase difference method, in which the frequency error is 0.1
spectral bin when two adjacent frequencies are three spec-
tral bins apart with a minimum 3-term window. For the
method shown in Refs. [35], [36], the maximum relative error
of amplitude is 3.12%, and the maximum error of phase
is 1.91◦. The accuracy depends on the frequency correction
method.

This paper presents a high accuracy extraction method
based on FFT and the least square method. Amplitude, fre-
quency, and phase of the signal are obtained by searching for
the best evaluation criteria of fitting accuracy. Accurate signal
characteristics of the attenuation signal and the periodic sig-
nal with two close adjacent frequencies can be obtained using
this method. The method is validated by the given calculation
examples and percussion experiments.

II. LEAST SQUARE METHOD AND EVALUATION CRITERIA
FOR PRECISION
A. LEAST SQUARE METHOD
The least square method is deduced from the criteria that
minimizing the residual sum of squares [18]. The curves,
including polynomial (1.1) and trigonometric polynomial
(1.2), can be written as (1.3).

y = a1 + a2x + a3x2 + · · · + amxm−1 (1.1)

y =
m∑
n=1

(an cos nωt + bn sin nωt) (1.2)

y =
m∑
j=1

fj(t)aj (1.3)

Several sampling data of the observed signal is assumed as
follows:

Sampling moment T is an N×1 matrix and defined by

T = (t1, t2, · · · , tN )T (2)

Observed data of corresponding moment is anN×1 matrix
and defined by

Y = (y1, y2, · · · , yN )T (3)

Based on (1.3) and (2), the value of curvature function at
the corresponding moment, which is an N×1 matrix, is given
by

Ŷ =


m∑
j=0

fj(t1)aj

...
m∑
j=0

fj(tN )aj

 (4)

Design matrix F, which is an N × m matrix and made by
measurement scheme. It is given by

F =

 f1(t1) . . . fm(t1)
...

...

f1(tN ) . . . fm(tN )

 (5)

The coefficient matrix is defined by (6), which is an m×1
matrix,

A = (a1, a2, · · · , am)T (6)

Based on (5) and (6), ŷ can be expressed by

Ŷ = FA (7)

Residual is an N×1 matrix, which is given by

δ = Y − Ŷ = Y − FA (8)

According to the criteria that minimize the residual sum of
squares, the residual sum of squares is expressed as δTδ and
makes its partial derivative equal 0.

∂

∂A
(δT δ) = 2(

∂δT

∂A
)δ = −2FT δ

= −2FT (Y − FA) = 0 (9)
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Based on (8) and (9), the coefficient matrix can be solved
by

FTFA = FTY (10)

Then curvature function can be obtained.

B. EVALUATION CRITERIA FOR CURVE FITTING
In general, there are three kinds of evaluation criteria for
evaluating fitting precision. They are termed residual sum of
squares, correlation coefficient, and standard deviation. The
first two of them are adopted in this paper because the fitting
effect of both the residual sum of squares and the standard
deviation is almost identical.

a: Residual sum of squares is defined by

δ2 =
∑

(ŷi − yi)2 (11)

A good curve fitting means a small δ2.
b: Correlation coefficient is defined by

R = 1−

∑
(ŷi − yi)2∑
(ȳi − yi)2

(12)

A good curve fitting means R is close to 1.
Where yi is the measured value; ŷi is the calculated value

of the fitted curve; ȳi is the mean value of the measured value.

III. EXTRACTION METHOD FOR VIBRATION SIGNAL
CHARACTERISTICS BASED ON FFT AND
LEAST SQUARE METHOD
A. LIMITATION OF THE FOURIER TRANSFORM
The most typical signal in engineering is trigonometric poly-
nomial. Its analytical expression is given by

y(t) =
m∑
i=1

bi cos(2π fit + ϕi) (13.1)

cos(x + y) = cos x ∗ cos y− sin x ∗ sin y (13.2)

The trigonometric formula (13.2) is used here in order
to decompose the phase ϕ into the form of sine func-
tion plus cosine function. The design matrix can, therefore,
be expressed concisely. The analytical expression of the sig-
nal is:

y(t) =
m∑
i=1

[a2i−1 cos(2π fit)+ a2i sin(2π fit)] (14)

where m is the quantity of frequency component; fi is the
frequency components of the signal; a2i−1 is the amplitude
of the sine or cosine components.

An example of a single frequency signal is given by

y (t) = 3 cos (2π10t)+ 4 sin (2π10t) (15)

The time-domain figure of (15) is shown in Fig. 1.
Another example of a double frequency signal is given by

y (t) = 3 cos (2π10t)+ 4 sin (2π10t)

+ 3 cos (2π12t)+ 4 sin (2π12t) (16)

FIGURE 1. Single frequency signal.

FIGURE 2. Double frequency signal.

The time-domain figure of Eq. (16) is shown in Fig. 2.
Assuming the sampling frequency is 1024Hz, and the

sampling number is 1024, (15) and (16) is processed using
FFT. The frequency spectrum X (k) of each signal is shown
in Fig. 3 and Fig. 4. There is no spectral leakage, and all the
parameters of the analyzed signals, i.e., amplitude, frequency,
and phase, are the same as the true signal. Assuming the
sampling frequency is 1000Hz, and the sampling number
is 1024, (15) and (16) is processed again using FFT. The
frequency spectrum X (k) of each signal is shown in Fig. 5 and
Fig. 6. Spectral leakage occurs, and the value of the spectral
line is the envelope function value at the corresponding point.
There are differences between the FFT results and the true
signal. When the sampling time is not an integer multiple of
the signal period, spectrum leakage will occur.

In addition, the spectral lines of the two frequency com-
ponents interfere with each other, and the main peak became
higher at a shifted location. This phenomenon is called spec-
tral interference.
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FIGURE 3. Single frequency signal without spectral leakage.

FIGURE 4. Double frequency signal without spectral leakage.

In general, if the total time is not the integral multiple of
the period of the signal, spectral leakage will happen. Simul-
taneously, provided that two adjacent frequency components
are too close, spectral interference will occur. It is hard to
realize the above-mentioned conditions in signal processing.
The character calculated by FFT is not accurate enough and
will cause an error in the following calculation. Therefore,
an improved method is needed to process the signal in order
to obtain the right signal characteristics.

B. EXTRACTIONE METHOD FOR SIGNAL
CHARACTERISTICS OF PERIODIC SIGNALS
In this section, we will introduce the method on how to use
the precision evaluation criteria of the least square method to
realize the least square fit.

1) SUM OF RESIDUAL SQUARES OF THE FITTING CURVE
AND FREQUENCY ERROR
If there is only one frequency component (or the adjacent
frequencies is far enough), the real frequency is located
between the corresponding highest spectral line and the

second-highest spectral line. If two adjacent frequencies are
so close that the side lobes of two real frequencies interfere
with each other, the real frequency may disappear from the
frequency section bounded by the highest and the second-
highest spectral line. In this case, an enlarged section is
needed to retain the real frequency.

In general, the real frequency is contained in the section
given by

fi ∈
[
(ki − 1)

Fs
N
, (ki + 1)

Fs
N

]
= [fia, fib] (17)

where fi is the ith real frequency component, and ki is the
spectral line number.

The frequency converted from the highest spectral line is
defined as the estimated frequency. It follows

fei = ki
Fs
N

(18)

The difference between estimated frequency and real fre-
quency is named frequency error, which is given by

1fi = fei − fi (19)

The residual sum of squares of the curve is big, which is
fitted by using the design matrix composed of the estimated
frequency. The sampling signal is given by

y (t) =


a1 cos (2π f1t1)+ a2 sin (2π f1t1)+ · · ·
a1 cos (2π f1t2)+ a2 sin (2π f1t2)+ · · ·

...

a1 cos (2π f1tN )+ a2 sin (2π f1tN )+ · · ·

+a2m−1 cos (2π fmt1)+ a2m sin (2π fmt1)
+a2m−1 cos (2π fmt2)+ a2m sin (2π fmt2)
...

+a2m−1 cos (2π fmtN )+ a2m sin (2π fmtN )

 (20)

The design matrix is given by

F =


cos (2π (f1 +1f1) t1) sin (2π (f1 +1f1) t1)
cos (2π (f1 +1f1) t2) sin (2π (f1 +1f1) t2)

...
...

cos (2π (f1 +1f1) tN ) sin (2π (f1 +1f1) tN )

cos (2π (fm +1fm) t1) sin (2π (fm +1fm) t1)
cos (2π (fm +1fm) t2) sin (2π (fm +1fm) t2)

...
...

cos (2π (fm +1fm) tN ) sin (2π (fm +1fm) tN )

 (21)

From (10) and (21), the residual sum of the squares of the
curve is computed by

δ2 = (y− FA)T (y− FA)

=

(
y− F

((
FTF

)−1
FTY

))T
×

(
y− F

((
FTF

)−1
FTY

))
(22)
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FIGURE 5. Single frequency signal with spectral leakage.

FIGURE 6. Double frequency signal with spectral leakage.

The influence of the frequency error on the sum of squared
residuals will be discussed next. Take the following signal as
an example.

y (t) = 3 cos [2π (10+1f ) t]

+ 4 sin [2π (10+1f ) t]+ 3 cos (2π20t)

+ 4 sin (2π20t) (23)

There are two frequency components in the signal, f1 =
10 Hz and f2 = 20 Hz. f1 is ranged and f2 is fixed. Using the
least square method to fit the curve, the sum of squared resid-
uals is calculated by using f2 and variable f1 (to simulate fe1).
The relationship between frequency error and the sum of
squared residuals is shown in Fig. 7. The difference between
the real frequency f1 and the estimated frequency fe1 is the
abscissa and the sum of squared residuals is the ordinate.

As is shown in Fig. 7, the residual sum of squares δ2 = 0
in the circumstance of frequency error1f = 0. With increas-
ing frequency error, the sum of squares of residuals also
increases. When 1f continues to increase, δ2 will increase

FIGURE 7. Influence of frequency error on δ2 at the different sampling
frequency.

FIGURE 8. Relationship between 1fm and Fs.

proportionally. When 1f increases to a certain value 1fm,
δ2 will reach the maximal value, and then fluctuation occurs.
In section [0, 1fm], the relationship between 1f and δ2 is a
monotone increasing relation. At the same time, it is worth
noticing that the value of 1fm changes with the variations
of sampling frequency. Fig. 8 shows that 1fm and Fs have a
linear relationship with different sampling number N . Fig. 9
shows that1fm and N have an inversely proportional relation
at different sampling frequency Fs. A conclusion that can be
drawn from this is that 1fm ≈ Fs/N .

2) EXTRACTION METHOD FOR SIGNAL CHARACTERISTICS
BASED ON THE LEAST SQUARE METHOD
Since the residual sum of squares, δ2 will decrease with the
diminution of 1fi in [0, 1fm], the real frequency fi can be
approached by seeking the estimated frequency fei with the
least residual sum of the square.

The specific procedures are listed as follows:
a: Applying FFT on the signal with sampling number N

and sampling frequency Fs; spectral lines ki can be obtained
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FIGURE 9. Relationship between 1fm and N .

to be the original estimated frequencies fei = ki × Fs/N . The
estimated sections are listed as follows:[

fei −
Fs
N
, fei +

Fs
N

]
= [fia, fib]

b: Update the first estimated frequency by fe1 = (1 − α)
f1a + α × f1b, α ∈ [0, 1]. Keep changing coefficient α. Least
square fitting is done by using fe1 and another fei, and the
residual sum of squares δ2 in the corresponding different
α is obtained. The smaller δ2 is, the better α is. If α is
good enough, the estimated frequency fe1 related to this α
can approach real frequency f1. Replace the first estimated
frequency by it. The method of searching the best coefficient
α can be carried out by searching α related to the smallest and
sub smallest δ2 in the specified shrinking frequency interval.
The interval is initially defined by [fia, fib] and then is divided
into several small intervals, 10, for instance. The new interval
is determined by frequencies related to the smallest and sub
smallest δ2 in the last interval.
c: Renew other frequencies in sequence, repeat step 2) and

other real frequencies can be confirmed.
d: After all frequencies are confirmed, repeat step 2)-3) to

improve the accuracy of the result.
Fig. 10 shows the calculation flow diagram.

C. CHARACTERISTIC EXTRACTION FOR ATTENUATION
SIGNAL ADDED IN A PERIODIC SIGNAL
The condition usually encountered is that the attenuation
signal is added to a periodic signal when shock acts on a shaft
in steady operation. The damping coefficient and vibration
frequency can reflect the over damped oscillator and nature
frequency well, so they are important parameters.

It is assumed that the signal is measured from the moment
T0, and the measured signal is periodic. After a period of
time T , a shock occurs on the shaft, and a new signal com-
ponent is added. The signal is an attenuation signal because
of the damping coefficient α. The measurement stops at the
moment T1.

During the time period [T0, T ], the signal is expressed by

yt = a1 cos(2π f1t)+ a2 sin(2π f1t)

+ · · · + a2m−1 cos(2π fmt)+ a2m sin(2π fmt) (24)

During the time period [T , T1], the newly added signal is
expressed by

ye = ε (t-T) · eα(t−T )

{b1 cos [2π f0(t − T )]+ b2 sin [2π f0(t − T )]} (25)

where ε(t-T ) is the step function, which is given by

ε (t-T) =

{
0, t − T < 0
1, t − T > 0

(26)

From (24) and (25), the signal is represented by

f (t) = ye + yt = ε (t-T) · eα(t−T ) ·

{b1 cos [2π f0(t − T )]+ b2 sin [2π f0(t − T )]}

+ a1 cos (2π f1t)+ a2 sin (2π f1t)+ · · ·

+ a2m−1 cos (2π fmt)+ a2m sin (2π fmt) (27)

1) CALCULATION FOR COEFFICIENT MATRIX OF PERIODIC
SIGNAL AND CONFIRMATION
Because (27) is superimposed by two functions, and the time
of shock occurrence cannot be confirmed, the curve cannot be
fitted directly. The function section is divided into two parts
for discussion, i.e., [T0, T ] and [T , T1].
In [T0, T ], the method mentioned in section II. B. is used

to fit the periodic signal.
In the general situation, Fig. 11, for example, the sam-

pling number N1 belongs to [T0, T ] can be obtained through
observation. However, the sampling number of some complex
signals, Fig. 12, for example, cannot be obtained through
inspecting the length of the signal section. The method is
introduced as follows.

Suppose a time section; there are Ni sampling points in the
section. If the Ni points are in front of the moment T , the
residual sum of square δ2 calculated by themethodmentioned
in section II. B. will be close to 0 (the correlation coefficient
R will approach 1). On the contrary, if some points out of the
scope, δ2 will deviate from 0 (R will deviate from 1).
Change Ni from the dimension of the coefficient matrix to

a certain value. Using the method in section II. B. to calculate
the coresponding δ2 (or R), respectively. The derived curves
are shown in Fig. 13 and Fig. 14.

As is shown in Fig. 13 and Fig. 14, before the N th
1 point,

the curve fits nicely. From the (N1+1)th point, the residual
sum of square δ2 and correlation coefficientR begin to deviate
from the former value sharply. It means that the moment T is
between the time represented by the N th

1 point and (N1+1)th

point. Since T is limited by [N1/Fs, (N1+1)/Fs], the T with
higher accuracy can be obtained by improving the sampling
frequency Fs. Then the signal in [T0, T ] is confirmed by the
method mentioned in section II. B.
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FIGURE 10. Calculation flow diagram.
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FIGURE 11. Attenuation signal added in a periodic signal.

FIGURE 12. Complex attenuation signal added in a periodic signal.

FIGURE 13. The relationship between R and N .

2) CONFIRMATION FOR THE DAMPING COEFFICIENT OF
ATTENUATION SIGNAL
In [T0, T1], the periodic signal is superimposed by periodic
signal yt and attenuation signal ye. ye can be calculated by

FIGURE 14. The relationship between δ2 and N .

calculating the difference between y and yt . The scope of f0
is estimated through FFT.

In order to eliminate the interference of T , we reset the
time, and (N1+1)/Fs is set as the origin time. In this way,
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FIGURE 15. The relationship between R and α.

a new signal matrix is obtained. The time matrix Y′e = (y′e1,
y′e2, . . . , y

′

e(N−N1)) and T ′ = (t ′1, t
′

2, . . . , t
′

N−N1). (25) are
transformed as

y′e = e−αt
′ [
b′1 cos

(
2π f0t ′

)
+ b′2 sin

(
2π f0t ′

)]
(28)

After y
′

e is divided by e−αt
′

, (28) is transformed as

y′ee
αt ′
=
[
b′1 cos

(
2π f0t ′

)
+ b′2 sin

(
2π f0t ′

)]
(29)

It is a trigonometric polynomial on the right side of the
equation and easy to be fitted. The only task left to do is
to search for a right damping coefficient α to minimize the
residual sum of square δ2.
Assuming α ∈ [a, b], the procedure of acquiring α is listed

as follows.
a: Select the appropriate interval boundary a and b,

α ∈ [a, b].
b: Set α = (1 − c)a + cb, c ∈ [0, 1]. Keep changing

coe- fficient c. Curve fitting is done by using the method
in section II. B, and the residual sum of squares δ2 (or the
correlation coefficient R) in the corresponding difference c is
obtained. α1 and α2, which represent the minimum and the
second-minimum δ2 are used for estimating the final α. If the
accuracy is ok, α ≈ α1.

c: If a higher high-precision α is needed, select α1 and
α2 got from the last step to build a new section [α1, α2],

repeat step 2)-3) to improve the accuracy.
As is shown in Fig. 15 and Fig. 16, the best fitting is at the

extreme point of the δ2 (or R) curve. Therefore, the value of
α and the frequency is confirmed.

IV. CALCULATING EXAMPLES
In order to verify the correctness and accuracy of the sig-
nal feature extraction method introduced in Section II, this
method is compared with the existing signal processingmeth-
ods of rectangular window function and Hanning window
function to highlight its advantages in signal feature extrac-
tion; some examples are designed in this section. These
signals, which have 16 significant figures, are processed by
FFT with the assumed parameters. The sampling frequency

FIGURE 16. The relationship between δ2 and α.

is 1000 Hz, and the sampling number is 1024. MATLAB
is used for programming. Relative errors of frequencies and
amplitudes are calculated through the program.

A. PERIODIC SIGNAL EXAMPLES
A single frequency signal is given by

f (t) = 10 cos
(√

405× 2π t
)
+ 10 sin

(√
405× 2π t

)
(30)

Iterations are set as aof = 20 and aof1 = 0; the results
of the fitted frequencies of the signal frequency signal are
listed in TABLE 1, the results of the Fitted amplitudes of
the single frequency signal are listed in TABLE 2; the results
show that the relative error between the fitting value and the
real value is smaller than that of the traditional rectangular
window function and Hanning window function when the
signal features are extracted by the proposed data processing
method.

This method can calculate a single frequency signal accu-
rately with less iterations (aof1 = 0). Relative errors of fre-
quency and amplitude are caused by the truncation error of
the signal.

A multiple frequency signal is given by

f (t) = 10 cos (20× 2π t)+ 10 sin (20× 2π t)

+ 10 cos (21.2× 2π t)+ 10 sin (21.2× 2π t)

+ 10 cos
(√

9980× 2π t
)
+ 10 sin

(√
9980× 2π t

)
(31)

It is a quasi-periodic signal. In the signal, there are two
adjacent frequencies, of which the frequency difference is 1.2
spectral bin. Iterations are set as aof = 20 and aof1 = 60; the
results of the calculation are listed in TABLE 3 to TABLE 4.

TABLE 3 shows the Fitted frequencies of the multiple
frequency signals; TABLE 4 shows the results of Fitted
amplitudes of the multiple frequency signals. The results
show that the accuracy of the proposed method is higher
than that of the traditional rectangular window function and
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TABLE 1. Fitted frequencies of the single frequency signal.

TABLE 2. Fitted amplitudes of the single frequency signal.

TABLE 3. Fitted frequencies of the multiple frequency signals.

TABLE 4. Fitted amplitudes of the multiple frequency signals.

Hanning window function when extracting the signal features
of multiple frequency signals.

The proposed method can accurately calculate the multiple
frequency signal. Two adjacent frequencies and their ampli-
tudes can be extracted. More iterations are needed comparing
to the previous example.

A multiple continuous frequency signal is

f (t) = 10 cos (101× 2π t)+ 10 sin (101× 2π t)

+ 10 cos (103× 2π t)+ 10 sin (103× 2π t)

+ 10 cos (105× 2π t)+ 10 sin (105× 2π t)

+ 10 cos (107× 2π t)+ 10 sin (107× 2π t) (32)

In this signal, there are four adjacent frequencies, of which
the difference is two spectral bins. Iterations are set as
aof = 20 and aof1 = 5. The results are listed in TABLE 5 to
TABLE 6.

TABLE 5 shows the results of the Fitted frequencies of
the multiple frequency signals; TABLE 6 shows the results
of Fitted amplitudes of the multiple frequency signals. The

VOLUME 8, 2020 224101



Y. Wang et al.: Vibration Signal Extraction Based on FFT and Least Square Method

TABLE 5. Fitted frequencies of the multiple frequency signals.

TABLE 6. Fitted amplitudes of the multiple frequency signals.

results show that the relative error between the fitting value
and the real value is smaller than that of the traditional
rectangular window function and Hanning window function
when the signal features are extracted by the proposed data
processing method.

When multiple frequencies which are continuous and
closed, fitting accuracy is lower than the results of the single
frequency. The simulation shows that the residual sum of
the square cannot be reduced due to the influence of the
storage bit number. When one of the four frequencies is
changed, the change in frequency causes a small change in
the sum of squares of residuals. When the maximum number
of storage bit is reached, the smaller residual variation cannot
be reflected in the computer data, but from the relative error
between the fitting results and the real results, the recognition
accuracy can still meet the general engineering requirements.

B. ATTENUATION SIGNAL ADDED IN THE PERIODIC
SIGNAL EXAMPLE
An attenuation signal added in the periodic signal is given by

f (t) = ε (t-0.5311) e−
√
1.5(t−0.531){

10 cos
[√

5000× 2π (t − 0.5311)
]

+10 sin
[√

5000× 2π (t − 0.5311)
]}

+ 10 cos (23.2× 2π t)+ 10 sin (23.2× 2π t)

+ 10 cos (45.8× 2π t)+ 10 sin (45.8× 2π t)

+ 10 cos (63.5× 2π t)+ 10 sin (63.5× 2π t)

(33)

Iterations are set as aof = 20 and aof1 = 1, according to
the method in section II. C. Points before 531 are periodic
signals.

The results of the periodic signal are listed in TABLE 7.
The results of the attenuation signal are shown in TABLE 8.

V. EXPERIMENTAL VERIFICATION
This section uses percussion experiments to verify the
accuracy of the data processing method in this paper; the ver-
ification experiments are divided into rotor-bearing system
percussion experiment and straight blade vibration percus-
sion experiment.

A. VERIFICATION EXPERIMENT 1
Verification experiment 1 uses the rotor-bearing system
experiment platform to carry on the percussion experiment
to verify the accuracy of the data processing method in this
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TABLE 7. Results of the periodic signal.

TABLE 8. Results of the attenuation signal.

FIGURE 17. Rotor-bearing system test bench.

paper. Fig. 17 shows the rotor-bearing system experimental
platform. The experimental device includes the main body of
the test bench, driving motor, signal acquisition, processing
and analysis system. The main body and driving motor of
the experimental platform are positioned by the slot slide rail
and fixed on the cast iron platform by bolts. A single-wheel
disc rotor is supported by two sliding bearings, and the sliding
bearings are independently supplied with oil by oil cups. The
diameter and thickness of the disc are 78 mm and 14 mm,
respectively. The driving motor is a 22 Kw DC motor. The
speed of the DC motor is controlled by the photoelectric
speed sensor. The main body of the test bench and the driving
motor are connected by elastic corrugated coupling. A set
of eddy current displacement sensor is installed near the
rotor disc to measure the vertical and horizontal displacement
of the rotor. The displacement signals are displayed and
recorded by the data acquisition system.

After the installation and debugging of the test bench, the
percussion experiments are carried out on the rotor-bearing
system test bench. When the rotating shaft is stationary, and
the rotating speed is 500 rpm, the rotor disc is excited by
the rubber hammer. The time-domain curves of the vertical
displacement change of the rotor-bearing system after being
excited are collected by the signal acquisition system. The
sampling frequency is 16384 Hz, and the sampling number
is 16384.

When processing the data signals collected by the rotor-
bearing system test bench, Firstly, the vibration signal feature
extraction method based on FFT and least square method
described in this paper is used to identify the frequencies
and amplitudes of periodic signals, By subtracting the iden-
tified periodic signals from the original time-domain sig-
nals, the time-domain signals with attenuation motions can
be obtained. Furthermore, the attenuation coefficients and
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FIGURE 18. Time-domain at 0 rpm.

FIGURE 19. Time-domain at 500 rpm.

frequencies of attenuation motions are extracted, and the
curve fitting is carried out. The fitting results are evaluated
by coincidence between the fitting curves and the actual
attenuation curves.

Fig. 18 and Fig. 19 show the time domain curves of the
rotor-bearing system in the vertical direction of the shaft after
being excited by a hammer when the shaft is stationary, and
the rotating speed is 500 rpm. The vibration signal feature
extraction method based on FFT and least square method
described in this paper is used to process the collected signals.
Fig. 20 and Fig. 21 are the comparison diagrams of the actual
attenuation curves and the fitted curves of the attenuation
signals after the acquisition signals are processed. The red
curves represent the fitting curves, and the black curves repre-
sent the actual attenuation curves of the attenuation motions.
TABLE 9 shows the results of attenuation signals.

According to the time-domain curves of the signals col-
lected from the two taps, the time-domain signals of the
shaft before being excited by the rubber hammer is Periodic.
When the shaft is excited by the rubber hammer, the vertical
displacement increases and decays. Due to the large damping
ratio of the system, the attenuationmotion disappears quickly,
and the time-domain signal of the rotating shaft returns to the
periodic signal. Using the vibration signal feature extraction
method based on FFT and least square method described
in this paper to process the collected signals and intercept
a section of the attenuation curves for feature recognition.
TABLE 9 shows the rotating speed and attenuation frequen-
cies of the identified attenuation signals; from Fig. 20 and

FIGURE 20. Comparison of attenuation signal and fitting curve at 0 rpm.

FIGURE 21. Comparison of attenuation signal and fitting curve 500 rpm.

TABLE 9. Results of the attenuation signals.

FIGURE 22. Experimental platform for blade vibration characteristics
research.

Fig. 21, the attenuation curves are fitted by the attenuation
coefficients of the identified attenuation signals, and the
attenuation frequencies are in good agreement with the actual
attenuation curves in the intercepted time periods.

B. VERIFICATION EXPERIMENT 2
Verification experiment 2 uses the blade vibration character-
istics research experimental platform to perform percussion
experiments to verify the accuracy of the data processing

224104 VOLUME 8, 2020



Y. Wang et al.: Vibration Signal Extraction Based on FFT and Least Square Method

FIGURE 23. Time-domain at 0 Hz.

FIGURE 24. Time-domain at 35 Hz.

method in this paper. Fig. 22 shows the experimental platform
for blade vibration characteristics research. The experimental
equipment mainly includes the blade vibration excitation
system, the blade vibration experimental platform, the signal
acquisition and analysis system. The blade vibration test
bench includes a straight blade and blade fixing devices.
Straight blade with length, width, and thickness of 390 mm,
82 mm, and 2 mm are fixed on the blade vibration test bench.
The electric vibration exciter provides the power source of
blade vibration, and the exciting end of the vibration exciter
is connected with the straight blade through a long screw.
The acquisition probe of the accelerometer is adsorbed on the
blade at a distance of 65 mm from the free end of the blade.
The blade vibration signals collected by the acceleration
sensor are displayed and recorded by the signal collection and
analysis system. After the installation and debugging of the
test bench, the percussion experiments are carried out on the
blade vibration test bench. When the blade is stationary and
the blade is forced to vibrate at 35 Hz, the blade is excited by
the rubber hammer at the position 100mm away from the free
end of the blade. The time-domain curves of the acceleration
change of the blade in the vertical direction after being excited
are collected by the data acquisition system. The sampling
frequency of the blade vibration test is 2048 Hz, and the
sampling number is 6144.

Using the same data signal processing method as
Section V. A, Fig. 23 and Fig. 24 show the time-domain
curves when the blade is stationary, and the blade is forced
to vibrate at 35 Hz. Fig. 25 and Fig. 26 are the comparison

FIGURE 25. Comparison of attenuation signal and fitting curve at 0 Hz.

FIGURE 26. Comparison of attenuation signal and fitting curve 35 Hz.

TABLE 10. Results of attenuation signals.

diagrams of the actual attenuation curves and the fitted
curves of the attenuation signals after the acquisition sig-
nals are processed. The red curves represent the fitting
curves, and the black curves represent the actual attenua-
tion curves of the attenuation signals. TABLE 10 shows the
results of attenuation signals. From the time-domain curves
of Fig. 23 and Fig. 24, after the blade is excited by the rubber
hammer, it will decay motion under the action of system
damping and restore the original motion state after the damp-
ing motion disappears. Using the vibration signal feature
extraction method based on FFT and least square method
described in this paper to process the collected signals. When
processing the attenuated signal, intercept the less clutter
section of the attenuation curve for signal feature identifica-
tion. TABLE 10 shows the vibration frequencies and atten-
uation frequencies of the attenuation signals identified after
the blade is excited. From Fig. 25 and Fig. 26, the fitted
attenuation curves and the attenuation curves of the actual
attenuation signals are in good agreement in the intercepted
time periods.

VI. CONCLUSION
A method for vibration signal extraction to acquire high-
precision signal characteristics in the frequency domain is
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presented. Preliminary approximation information of vibra-
tion signal is obtained by Fast Fourier Transform (FFT) and
Least Square Method is introduced to fit the curve and eval-
uation criteria. The residual sum of squares and correlation
coefficient are used to evaluate the fitting results. The rela-
tionship between frequency error and residual sum of the
square, which is used to evaluate the fitting results of the
periodic signal, is discussed. Thus, an extraction method is
proposed in which spectral correction of the periodic signal
is carried out by searching for the best evaluation criteria.
In the case of attenuation signal added in the periodic signal,
the relationship between different estimated damping coeffi-
cients and the residual sum of the square of fitting results is
also discussed. Then the method for obtaining the damping
coefficient is proposed. The conclusions of this paper are as
follows:

Secondly, single, multiple-continuous, multiple, fre-
quency signals, or periodic signals with added attenuated
signals are analyzed through examples. High-accuracy signal
characteristics are extracted, which proves that the method
is correct and accurate. In addition, spectral interference
is overcome while multiple continuous frequency signal is
processed.

Thirdly, the experimental results show that the vibration
signal feature extraction method based on FFT and least
square method can solve the problems of spectrum leakage
and spectrum interference caused by FFT, the attenuation
curves fitted by the attenuation coefficients and attenua-
tion frequencies of the attenuation signals identified by the
method in this paper are in good agreement with the actual
attenuation curves of the attenuation signals.
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