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ABSTRACT Speech classification is one of the most convenient objective measures of internal state
exhibited during a problem-solving task that requires verbal communication. This study investigates the
hypothesis of speech acoustic characteristics being indicative of trust between team members and team
members’ familiarity with each other. Speech recordings from 27 dyadic teams (26 males and 28 females)
were made during a distributed threat perception task, determining safe points along a route through the
town to be visited by a VIP. Before the threat detection mission, 26 team members knew each other, and
the remaining 28 had no prior knowledge of their partners. Two levels (Low Trust and High Trust) of two
trust constructs, TTP (Trust, Trustworthiness, Propensity to trust), and RIS (Reliance Intentions Scale), were
estimated based on numerical responses to pre- and post-mission surveys. Speech recordings of individual
speakers were divided into 1-second intervals and converted into RGB images of amplitude spectrograms.
The images were classified using a pre-trained convolutional neural network ResNet-18 fine-tuned to
recognize either the trust level or familiarity. In the baseline classification scenario, the speech was classified
using a single transfer learning into Low/High-trust categories separately for RIS and TTP constructs before
and after the mission yielding an average classification accuracy of 82%-86%. Single transfer learning
classification into Know/Unknown-partners categories led to 85% accuracy. Application of double transfer
learning, i.e., first tuning the ResNet-18 on Know/Unknown labels and then on Low/High-trust, increased
the trust classification accuracy up to 89%. When tuning the ResNet-18 on Low/High-trust and then on
Known/Unknown labels, the accuracy of partner familiarity recognition was also increased up to 89%. These
results support the hypothesis of speech acoustics being indicative of trust and familiarity between team
members and show that by adding prior related knowledge to the model, more efficient learning can be
achieved without increasing the training data size.

INDEX TERMS Inter-personal trust prediction, inter-personal familiarity prediction, speech classification,
transfer learning, convolutional neural networks.

I. INTRODUCTION
Interpersonal trust is commonly defined as the willingness to
accept vulnerability to another person’s actions or decisions.
Trust is a vital component of daily human interactions and
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decision-making processes with a partner. Interpersonal trust
has high importance in all aspects of life. Understanding of
subjective and objective factors affecting trust is an active
topic of research in psychology, social studies, and recently in
artificial intelligence andmachine learning. A comprehensive
review of the interpersonal trust research from the perspec-
tive of behavioral psychology can be found in [1]. Recently
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investigated objective trust indicators include emotional
states [2], facial expressions [3], and speech attributes [4].
From the machine learning perspective, speech as an objec-
tive factor affecting interpersonal trust is of particular interest.
Through the mapping of social attributes of trustworthiness
into synthetic speech and machine-made decision-making
processes, higher social acceptance of all kinds of human-
machine interactions can be achieved. Synthetic speech pro-
duced by robots can be more friendly when characterized by
acoustic and verbal signs of empathy, affection, and trustwor-
thiness. Verbal human-machine communications containing
acoustic traits of trust are vital for achieving high performing
human-machine teams working on high-responsibility tasks
of public security and defense.

This paper investigates the hypothesis of acoustic charac-
teristics of speech being indicative of inter-personal trust and
team members’ familiarity with each other. Two fundamental
research questions underlie this study. Firstly, we wanted to
find out if it is possible to predict the trust and familiarity of
teammembers working on a distributed problem-solving task
from the acoustic characteristics of their speech. Secondly,
we wanted to determine if having a pre-requisite knowledge
of familiarity can improve the prediction of trust and vice
versa.

In general, there are two types of trusters [3]: individuals
who do not trust others until they gather clear evidence that
the trust can be granted and individuals who exhibit a high
degree of prior trust in others until they obtain evidence that
their trust cannot be granted anymore. These two groups
were identified in this work by conducting pre- and post-
mission surveys determining how much team members trust
each other. Given the two trust labels (pre- and post-mission),
an automatic prediction of pre- and post-missional trust was
conducted using speech collected from teammembers during
the problem-solving mission.

The remaining parts of the paper are organized as follows.
Section II provides an overview of related studies. Section III
describes the speech data and the methodology of speech
classification. Section IV describes the experiments and dis-
cusses the results. Section V concludes the paper.

II. RELATED WORKS
Trust has been analyzed from the perspective of several disci-
plines, including sociology, psychology, philosophy,manage-
ment, economics, automation, and communication networks.
In general, trust can be defined as a relationship between two
entities denominated trustor (evaluator) and trustee (evalu-
ate), based on a given criterion [5]. Trust is amultidisciplinary
concept that can be applied to human-human interactions
as well as to other types of relationships, such as human-
machine interactions.

Although there is neither a multidisciplinary trust model
nor a standard metric for the quantification of trust
measurements, there are some common tendencies in trust
investigations. In particular, there is a recently growing inter-
est in studies of trust between humans and artificial agents

(human-robot interactions). As a result, several trust models
have been proposed, which can have an online or offline
structure [6]. In behavioral economics, the ‘‘Trust Game,’’
designed in [7], is commonly applied to evaluate the level of
trust in economic decisions. One of themost widely used trust
models was developed by Mayer et al. [8] in the context of
organizational management. This model defines trust using
three dimensions: ability, benevolence, and integrity (ABI
framework). The gender rules of interpersonal trust based
on a research questionnaire [9] revealed that male college
students have more difficulty trusting other students than
female college students. In a search for objective predictors
of trust, facial expressions have been considered as a guide
to trustworthiness. It has been observed that physical facial
attributes, as well as the degree of similarity to oneself, can
affect the perceived trustworthiness of a person. However,
the perception of acoustical qualities which might establish
trust are easier to obtain for remote teams and individuals.
In general, people more similar to oneself are perceived as
more trustworthy [10]. In the absence of cues indicating
similarity, as is the case in our current world of remote work
and teleconferencing, increased pitch and intensity are per-
ceived as indicators of deception or untrustworthiness [11].
However, as described further, trust perception in speech has
many viable indicators and what may be asked is the content
of the shared speech. There is a difference between intended
deception and determining the trustworthiness of a partner
who harbors no malintent.

Several studies have investigated the relationship between
trust perception and speech [12]–[16]. In [12], voice models
were evaluated to investigate the correlation between basic
acoustical parameters and the perception of low and high
trust. Results showed that a significant change in intonation is
related to an increase in the perception of trust. Similar studies
conducted in [13] found an inverse correlation between vocal
pitch and trust.

Experiments conducted in [14] reported that low harmonic-
to-noise ratio, low mean fundamental frequency, and a fast
speech rate are the most significant acoustic characteristics
present in the perception of high trust. Additionally, tests
comparing positive valence speakers against negative valence
ones, younger voices against those with older voices, and
female against male speakers showed that a higher perception
of trust is achieved for positive valence speakers, younger
voices, and female speakers, respectively.

Recently, studies conducted in [15] investigated how the
perception of trust is affected by the voice and accent
of a speaker. Trust was evaluated as if a statement is
believable or not, using confident and doubtful voices. The
study was conducted from the perspective of an English
Canadian listener. Three accent groups of speakers were
established: ‘‘in a group’’ (native Canadian English speak-
ers), ‘‘out group-regional’’ (Australian English accent), and
‘‘out-group/foreign’’ (Canadian French accent). The results
indicated that the accent does not affect favorable trust in con-
fident statements against doubtful ones. However, confident

225438 VOLUME 8, 2020



C. Sandoval Rodriguez et al.: Prediction of Inter-Personal Trust and Team Familiarity From Speech

statements produced by the out-group/foreign accent were
evaluated as less believable than the statements produced by
the English accent groups. Evaluation of basic acoustic fea-
tures showed that doubtful statements present lower speaker
rates and amplitude ranges than confident expressions in all
accents.

Acoustic speech properties of high and low public trust
politicians have been recently investigated in [4]. Statisti-
cal analysis and classification of low-level acoustic speech
parameters revealed strong gender differences. In general,
high trust females appeared to have higher spectral energy
for both voiced and unvoiced speech within 0 - 500 Hz
compared to low trust females (sonorant sound). It was also
revealed that trust in females is related to the timber and
non-verbal attributes of speech that are often linked to emo-
tions [17], [18]. High trust males, on the other hand, had
slightly lower energy concentration at low frequencies (more
fricative or constrained sound) compared to low trust males.
The main differences between spectral energies of high and
low trust males were found to be in the unvoiced speech
within the low-frequency band 500 – 1500 Hz. High trust
males appear to have a smaller spectral slope within this
range (i.e., smoother transitions between slowly and fast-
changing speech components). In addition, high trust males
showed larger spectral flux (i.e., larger differences between
spectra of consecutive frames). An automatic speech clas-
sification into low and high-trust politicians using a multi-
layer perceptron neural network led to an average accuracy of
81%. The outcomes of this study indicated that the acoustic
speech properties of politicians are good indicators of public
trust.

The recent advent of deep learning (DL) neural network
techniques have been particularly helpful in creating very
efficient prediction models. The availability of cloud storage
spaces and graphical processing units (GPUs) provide sup-
port for dealing with large numbers of data and vast numbers
of computations needed to train the DLmodels. Classical sig-
nal processing pipelines, including complex pre-processing
of speech followed by feature extraction and feature selection,
were simplified by application end-to-end neural network
approaches. Convolutional neural network (CNN) models,
for example, calculate their own features through the iterative
generation of correlated data and thus dropping the need
to compute problem-related features. Available pre-trained
neural network models reduce the computational and data
requirements allowing to perform specific problem-related
fine-tuning on a relatively small number of available data.
The network’s features, also known as network embeddings,
provide a highly competitive alternative to handcrafted fea-
tures for classical classifiers such as the support vector
machine (SVM), k-nearest neighbors (KNN), or the Gaussian
mixture model (GMM).

Although automated analyses of social signals can provide
supplementary information and discover trends that human
beings are not able to detect, machine learning techniques for
social signal processing have been rarely used in the studies of

human-human trust interaction. An approach to an automatic
prediction of trust in human-human interaction was presented
in [19]. The investigation did not involve speech analysis;
only features of the non-verbal behavior of the participant
(movement of the head, arms, eyes, touch, and smile signals)
were analyzed. Hidden Markov models were implemented
to investigate the temporal relationships between trust and
social signals. Trust in human-machine-human interactions
was analyzed in [20], [21] using an automated approach
that combines subjective labels and physical features. Two
scenarios were evaluated using two scripted dialogues. The
first dialogue was video recorded during a business conver-
sation, and the second one during a fire rescue. A multi-
modal analysis was performed using facial expressions, basic
acoustic features (fundamental frequency, voice/silence ratio,
mean voice power, and energy entropy), and the heart rate
variability. An ensemble classification was then applied to
predict three levels of trust using a neural network (NN) with
a fuzzy decision as a classifier.

In this study, we provide a twofold contribution to auto-
matic trust recognition from speech using convolutional
neural networks (CNNs). Firstly, we demonstrate that both
interpersonal trust between team members and team mem-
bers’ familiarity with each other can be efficiently predicted
from speech. Secondly, we show that a transfer of team
familiarity and inter-personal trust knowledge between deep
CNN models can enhance the models’ performance.

III. METHOD
A. SPEECH DATA
1) DATA COLLECTION
The speech data was collected at the Air Force Research
Laboratory (AFRL) from dyadic team partners working on
a distributed problem-solving task aided by a computer video
simulation program. The task was to approve the safety of
the travel route for a VIP. During the task, team members
were conducting verbal communication, and their speech was
recorded. When working on the task, team members were
required to make a few intermediate decisions by weighing
their own information against information obtained from the
team partner. Since the information available to each team
member was different, a certain amount of trust or mistrust
in the partner was required from team members to make the
decisions.

2) DATA LABELING
Participants were asked to provide responses to pre- and post-
mission psychology surveys with the same questions used
in both. The survey responses were used to evaluate two
trust-related construct measures called TTP (Trust, Trustwor-
thiness, Propensity to trust), and RIS (Reliance Intentions
Scale) [22]. Table 1 shows the questions used to derive the
TTP trust construct measure. The response to each TTP ques-
tion was given by the participants as an integer number on a
scale from 1 to 5. PreTTP and PostTTP scoreswere calculated
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TABLE 1. TTP Trust Construct Questions. Answers on Scale 0-5.

TABLE 2. RIS Construct Questions. Answers on Scale 0-7.

for each participant, as

PreTTP = PostTTP =
A+ B+ (6− C)+ D

4
(1)

whereA, B, C, andD denote pre- or post-mission scores given
by the participants in response to questions listed in Table 1.
Speech of individuals that obtained PreTTP and PostTTP
scores above the average estimated across all participants was
labeled as ‘‘TTPHighTrust,’’ and speech representing scores
falling below this average was labeled as ‘‘TTPLowTrust.’’
A similar speech labeling procedure was applied to the RIS

trust construct. However, it this case, the response to each RIS
question was given by the participants as an integer number
on a scale from 1 to 7, and the PreRIS and PostRIS scores
were calculated for each participant, as

PreRIS = PostRIS

=
A+ B+ C + D+ E + F + (8− G)+ H

8
(2)

where A, B, C, D, E, F, G, and H denote pre- or post-mission
scores given by the participants in response to questions
listed in Table 2. Speech of individuals that obtained PreRIS
and PostRIS scores above the average estimated across all
participants was labeled as ‘‘RISHighTrust’’ and speech rep-
resenting scores falling below this average was labeled as
‘‘RISLowTrust.’’

3) DATA CHARACTERISTICS
Speech recordings were collected from 27 dyadic teams (i.e.,
54 individuals) participating in the problem-solving task.
The data distribution across genders and team members’
familiarity with each other is summarized in Table 3. The
term ‘‘Known’’ indicates participants who knew their partners
before the data collection, and ‘‘Unknown’’ refers to partici-
pants who did not know their partners before the mission. The
duration of audio recordings collected from each participant
was 10-15 minutes.

Fig. 1 shows the data distribution across two differ-
ent trust levels (High/Low) and participant familiarity

TABLE 3. Data Distribution Across Genders And Team Members
Familiarity.

(Known/Unknown) in four cases (PreTTP, PostTTP, PreRIS,
and PostRIS). It shows apparent differences in trust assess-
ment between pre and post-missional surveys, indicating
that the problem-solving task had an effect on inter-personal
trust between team members. The trust assessment also dif-
fers between TTP and RIS surveys and depends on team
members’ familiarity. Given these observations, we wanted
to determine if these differences can be predicted through
an automatic speech classification. To do so, we conducted
speech classification experiments on the following binary
categories (Low vs. High trust), team familiarity (Known vs.
Unknown), and trust change during the problem-solving task
(Change vs. No Change). In addition, we have investigated
a multilabel classification combining two labels (trust and
team familiarity) and three labels (trust, team familiarity, and
trust change). Since the team familiarity and interpersonal
trust are likely to be correlated, we also wanted to know if
a classification system capable of familiarity prediction can
be trained more efficiently to determine trust compared to a
system trained only to predict trust without prior knowledge
of familiarity and vice versa.

B. SPEECH CLASSIFICATION METHOD
1) SPEECH CLASSIFICATION FRAMEWORK
Given the limited size of available data and computational
resources, the option of training a designated trust-prediction
CNN ‘‘from scratch’’ was not feasible. We have, therefore,
adopted a classification approach proposed in [23] for the
prediction of speech emotions. However, instead of AlexNet,
the more advanced convolutional neural network (CNN)
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FIGURE 1. Participants characteristics based on responses to TTP and RIS questions pre- and post-experiment. The term known indicates team
members who knew each other before the experiment, and the term unknown refers to team members that did not know each other before the
experiment.

FIGURE 2. CNN model training and testing framework.

structure of ResNet-18 [24] was applied. Fig. 2 shows an
overview of the classification procedure consisting of the
training and the testing stages. The following paragraphs
provide brief descriptions of each processing step shown
in Fig. 2.

2) PRE-PROCESSING
The pre-processing step included speech normalization into
the range −1 to +1 and removal of silence intervals. The
silence was detected using an empirically chosen energy

threshold. No speech pre-emphasis filter was applied. Since
the signal was recorded from personal headset microphones
within a quiet room, the signal to noise ratio was relatively
high, and there was no need for the removal of noise or any
other interference. The sampling rate was 16 kHz giving the
8 kHz signal bandwidth.

3) SPLITTING INTO BLOCKS
Pre-processed waveforms of speech samples were divided
into short 1-second blocks to conduct block-by-block
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spectrogram computation. A short, 10-millisecond stride was
applied between subsequent blocks. For each block, a single
spectral amplitude array was calculated and converted into
a color RGB image. Waveforms remainders that did not fill
up to 1-second frame length were discarded. The 1-second
block-duration of 1 second was consistent with the previ-
ously reported duration used in speech-based prediction of
speaker’s states [24]–[26]. The stride time between subse-
quent blocks was chosen in an arbitrary way. By chang-
ing the stride duration, a smaller or larger number of CNN
input images could be generated. The 10-millisecond stride
allowed to generate a relatively large number of training
images ensuring sufficient generalization of the CNN model.

4) GENERATION OF SPECTROGRAM IMAGES
A short-time Fourier transform was performed on each
1-second block of speech waveforms. The resulting pairs of
real and imaginary outputs were converted into real-valued
spectral magnitudes and concatenated across all subsequent
frames within a given block to form a time-frequency spectral
magnitude array of 257 x 259 real-valued numbers represent-
ing a given block. Where 257 was the number of discrete-
frequency values, and 259 was the number of discrete-time
values for which the spectrogram arrays were evaluated. The
time scale of the magnitude spectrograms was linear, span-
ning the range from 0 to 1 second. The frequency scale, on the
other hand, was logarithmic, spanning the entire bandwidth
range from 0 to 8 kHz. The logarithmic frequency scale was
previously reported to give superior performance compared
to linear, mel, and ERB scales [16], [20].

The advantage of using the logarithmic scale is that com-
pared to the other scales, it compresses the high-frequency
details and expand the low-frequency range where the vital
information regarding the speaker’s fundamental frequency
and the first formant values is given.

Spectral magnitude arrays were converted into the RGB
image format represented by three color-component arrays.
As shown in [23], the RGB images of amplitude spectrograms
provide higher speech classification performance compared
to the greyscale images or raw spectrogram arrays. This
is largely due to the fact that conversion to the RGB for-
mat decomposes the spectrogram array into three amplitude
components, which are then passed into the three parallel
processing channels of the network. This way, complimen-
tary information is analyzed by each channel rather than
a copy of the same information given to each channel
when raw spectrogram arrays (or greyscale images) are pro-
cessed. To normalize the color intensity range across all
images, the minimum and maximum values of the spectral
magnitude were estimated over the entire speech database
and mapped into the normalized dynamic range of the
RGB images spanning from Min [dB] to Max [dB] val-
ues. The normalization step was critical in achieving good
visualization of speech spectral components. The Min and
Max values were chosen to maximize the subjective vis-
ibility of contours outlining time-frequency evolution of

fundamental frequency (F0) speech formants and harmonic
components of F0.

Since the required input size for ResNet-18 was 224 x
224 pixels, the original image arrays of 257 x 259 pixels were
resized. Consistent with [23], [25], [26], the resizing was very
small, causing no significant distortion to the spectrogram
images and having no effect on the model training results.
Each color component of the RGB images was passed as an
input to a separate channel of ResNet-18.

5) CNN MODEL
The classification was achieved using a pre-trained
ResNet-18 CNN model, which has a residual network block
architecture comprised of 18 layers. The network is defined
by 11.5 million parameters; it requires a storage space
of 44 MB. Natural image classification experiments based
on ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) dataset [28], containing 1.2 million images with
1000 classes, demonstrated that the ResNet-18 model offers
a very good balance between the computational cost and the
quality of performance [29]. In comparison with other pre-
trained CNNs, ResNet-18 achieves higher accuracy than pop-
ular models with linear architectures such as AlexNet [30].
It is also significantly faster than other residual block net-
works (ResNet-50, ResNet-101) without compromising the
classification accuracy [24]. ResNet18 has shown good per-
formance in comparison with other pre-trained CNN models
in speech classification tasks such as, for example, intoxi-
cation detection [31], depression detection [32], and speech
command recognition [33]. In the current study, the original
last fully connected layer of ResNet-18, the Softmax layer,
and the output layer were modified to have the number of
class outputs required by a given experiment.

6) TRAINING AND TESTING THE CNN MODEL
The entire dataset of speech samples was divided into the
training/validation subset consisting of 80% of data and the
testing sub-set composed of 20% of data. In both subsets, all
speakers were represented in a balanced way. The testing data
was not used in the training process. Each of the classifica-
tion experiments described in Section IV was repeated three
times with different mutually exclusive training and testing
sets, and the results were given as average values over all
repetitions.

C. CLASSIFICATION PERFORMANCE MEASURES
To determine the quality of the classification outcomes,
the accuracy Aci , was estimated for each class ci (i =
1, . . . ,N ) using (3) [27].

Aci =
tpi + tni

tpi + tni + fpi + fni
(3)

where, N denotes the number of classes, tpi and tni are the
numbers of true-positive and true-negative classification out-
comes, respectively. Similarly, fpi and fni denote the numbers
of false-positive and false-negative classification outcomes,
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respectively. In cases when the classification was based on
unbalanced data, the F-Score was calculated as,

Fci = 2
pci × rci
pci + rci

(4)

where, pci , denotes the precision parameter given as,

pci =
tpi

tpi + fpi
(5)

whereas rci is the recall parameter given as,

rci =
tpi

tpi + fni
(6)

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SCHEDULE
This section describes experiments validating the concept of
speech-based prediction of interpersonal trust and familiar-
ity between team members. The experimental scenarios are
explained in the following sub-sections.

B. PREDICTION OF PRE- AND POST-MISSION TRUST
USING SINGLE TRANSFER LEARNING
In this experiment, we wanted to determine if inter-personal
trust can be predicted directly from the acoustic charac-
teristics of speech. Speech recordings were automatically
classified into two categories, Low/High trust, using a pre-
trained CNN model ResNet-18. The ResNet model was pre-
trained on over onemillion images to perform a general image
classification task of object recognition. Here, we have fine-
tuned this model to solve the more specific and more abstract
task of trust prediction from our much smaller collection of
spectrogram images. Due to the pre-existing relevant image
classification knowledge embedded into the model, it was
possible to accomplish the training (fine-tuning) process
within a relatively short time andwith amuch smaller number
of training images compared to what would be required to
train the CNN model ‘‘from scratch’’ (i.e., without any prior
knowledge built into the network). We refer to this approach
as ‘‘single transfer learning.’’ The training and classification
tasks were performed in four separate cases corresponding
to RIS, and TTP trust construct labels made before and after
the mission (i.e., PreRIS, PreTTP, PostRIS, and PostTTP).
The numbers of spectrogram images per class used to train the
model were: 27661 for PreTTP, 27654 for PostTTP, 20935 for
PreRIS, and 39087 for PostRIS. Fig. 3 shows the results of
this experiment. General observations stemming from this
figure are:

• In all cases of single transfer learning presented in Fig. 3,
the trust classification accuracy is above 80%, varying
from 82% to 86%. It indicates that acoustic speech
characteristics are correlated with interpersonal trust.
Therefore, speech classification can provide quite an
efficient prediction of trust.

• Prediction of trust before the mission is only slightly
lower than after the mission.

FIGURE 3. Prediction of trust between team members, using a
single or double transfer learning. The double transfer learning was
achieved by pre-training the network to recognize team familiarity.

• Before the mission, the RIS based prediction is 3.8%
higher than the TTP based prediction. However, after the
mission, both constructs give very similar outcomes.

• The best performing single transfer learning trust pre-
diction models are given by the CNN trained on the
PostTTP trust, and the CNNs trained on the PreRIS
or PostRIS construct; in both cases, the achieved accu-
racy was about 86%.

C. PREDICTION OF TEAM FAMILIARITY USING SINGLE
TRANSFER LEARNING
Our aim in this experiment was to determine if acoustic
speech characteristics are indicative of team familiarity. As in
the first experiment, a single transfer learning was applied to
predict if team members knew each other before the mission.
However, this time, the pre-trained ResNet-18 model was
fine-tuned to perform binary classification of speech into
two categories Known/Unknown. The number of spectro-
gram images per class used to train the model was 34956.
Fig. 4 shows that after training, the model could predict team
members’ familiarity with an accuracy of 85.16%. It supports
the proposition that acoustic speech characteristics are corre-
lated with team members’ familiarity.

D. PREDICTION OF PRE- AND POST-MISSION TRUST
USING DOUBLE TRANSFER LEARNING
In this experiment, the aim was to determine if the addition
of closely related pre-requisite knowledge into the model
can improve the prediction of trust. From the previous two
experiments (Sections IV-B&C), we knew that both interper-
sonal trust and team members’ familiarity influence speech
acoustics. Therefore, if there was a dependency between
trust and familiarity, a network model having a pre-requisite
knowledge of team members’ familiarity could hypothet-
ically outperform a model that did not have such a pre-
requisite knowledge. To investigate this assumption, we have
conducted a double transfer learning experiment. The CNN
model generated through transfer learning from ResNet-18
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FIGURE 4. Prediction of team members familiarity, using a single or
double transfer learning. The double transfer learning was achieved by
pre-training the network to recognize TTP or RIS trust (assessed
pre- or post-experiment).

(described in Section IV-C) to predict prior knowledge of
team members was further trained to predict trust between
teammembers. The transfer of knowledge during this process
occurred twice, the first time when transferring the general
image object classification knowledge from ResNet-18 to
train the CNN model to recognize if the team members know
each other, and the second time when this knowledge was
transferred to further train the CNN model to recognize trust
between team members. We refer to this approach as double
transfer learning.

The training and classification tasks within this scenario
were conducted in four cases. This included the prediction
of RIS and TTP constructs labeled before and after the mis-
sion described by four types of binary trust/no-trust labels
(PreTTp, PostTTP, PreRIS, and PostRIS). The numbers of
spectrogram images per class used to train the model were:
27661 for PreTTP, 27654 for PostTTP, 20935 for PreRIS, and
39087 for PostRIS. The results are presented in Fig. 3, give
the following general observations:

• In all four cases, the double transfer learning pro-
vided improvement upon the single transfer learning
approach. For PreTTP trust the improvement was the
highest, by 4.1%, for PostTTP by 2.1%, for PreRIS by
2.2%, and for PostRIS by 3.3%. It indicates that there
is a strong correlation between interpersonal trust and
pre-requisite familiarity between team members. There-
fore, a network model having knowledge of familiarity
provided a better prediction of trust than a network
predicting without this knowledge.

• Like in the case of single transfer learning, the double
learning prediction of trust before the mission appears
to be slightly lower than after the mission.

• Prediction of trust before the mission when using the
TTP construct is 1.9% higher when using the RIS than
when using the TTP construct. This difference is smaller
compared to the single transfer learning (Section IV-B).
After the mission, both constructs TTP and RIS give
similarly high outcomes of about 89%.

• The best performing double transfer learning trust pre-
diction model was given by the CNN fine-tuned on the
PostRIS trust construct; it achieved an accuracy of 89%.

E. PREDICTION OF TEAM FAMILIARITY USING DOUBLE
TRANSFER LEARNING
This experiment was a reversed version of the experiment
described in Section IV-D. Our aim was to find out if the
addition of related pre-requisite knowledge of interpersonal
trust can improve prediction of the pre-mission familiarity
between team members. The CNN model generated through
transfer learning from ResNet-18 (described in Section IV-B)
to predict trust between team members was further trained to
predict the pre-missional familiarity of team members. This
included the prediction of familiarity based on models pre-
trained on four different trust constructs (PreTTp, PostTTP,
PreRIS, and PostRIS). The number of spectrogram images
per class used to train the model was 34956 for PreTTP,
PostTTP, PreRIS, and PostRIS constructs. The results are
presented in Fig. 4 lead to the following observations:

• Compared to the single transfer learning baseline accu-
racy of 85.2%, in all four cases, double transfer learning
increased the prediction accuracy of team members’
familiarity. For the model pre-trained on the PreTTP
trust construct, the increasewas by 1.3% for the PostTTP
by 3.4%, for the PreRIS by 3.2%, and for the PostRIS
by 3.8%. It indicates that pre-requisite knowledge of
interpersonal trust can improve the prediction of the pre-
mission familiarity between team members.

• The best performing double transfer learning familiar-
ity prediction model was given by the CNN fine-tuned
on the PostRIS trust construct; it achieved an accuracy
of 89%.

F. JOINT PREDICTION OF TRUST AND TEAM FAMILIARITY
USING SINGLE TRANSFER LEARNING
To observe the difference between the concept of double
transfer learning between trust and familiarity, and a simul-
taneous prediction of these two categories, we have trained
a separate CNN model to perform a joint prediction of trust
and familiarity based on a single transfer learning. Unlike in
double transfer learning, where there was a gradual build-
up of cognition components, in the multilabel classification,
all components were generated simultaneously. The speech
labels and the number of spectrogram images for each class
used in the process of training are shown in Table 4. The
results in Fig. 5 show the following:

• The achieved accuracy was ranging between 80% and
84% depending on the type of the applied trust construct.
Given that for the four classes, the pure guess was 25%,
these results are relatively high. It confirms that both
trust and familiarity are affecting speech acoustics.

• The RIS based prediction was higher than the TTP based
prediction (by 5% for the PreRIS and by 1.2% for the
PostRIS).
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TABLE 4. Numbers of Training Images Across Classes in Joint Prediction
of Trust and Team Members Familiarity.

TABLE 5. Numbers of Participants Who Changed or Not Their Trust in
Partner Assessment After the Experiment.

G. PREDICTION OF CHANGE IN TRUST
One of the observations given by the data characteristics
in Fig. 1 is that some of the participants changed their trust
in partners after the mission. As shown in Table 5, 28 partic-
ipants (51.8% of the total of 57 participants) did not change
their TTP trust assessment, and 36 (66.6%) did not change
their RIS trust. The shift from High to Low trust occurred
in 24 cases (44.4%) of TTP trust and in 16 cases (29.6%)
of RIS trust. The opposite shift from Low to High trust
was observed in 4 TTP cases (7.02%) and in 2 RIS cases
(7.4%). Generally, the majority of participants did not change
their trust assessment. When the change occurred, it was
mostly from High to Low and only in very few cases from
Low to High. We have already shown in Sections IV-B&D
that speech classification can be used to predict trust level;
however, in this experiment, we wanted to find out if we
can use speech classification to predict a change in the trust
after the problem-solving mission. Speech data was, in this
case, labeled as Change/No-Change. 38744 images per class
were used to train the model based on TTP trust construct,
and 26624 images for the model based on RIS construct. The
results illustrated in Fig. 6 show that the trust change predic-
tion based on the RIS construct achieved 86% accuracy; thus,
outperforming the TTP based prediction by 3.59%. In both
cases, the prediction accuracy was above 80%, confirming
that speech classification can be used to obtain a good pre-
diction of trust change.

H. JOINT PREDICTION OF TRUST, TEAM FAMILIARITY,
AND TRUST CHANGE
In this experiment, we tested a more complex classifica-
tion scenario of simultaneous prediction of trust, familiarity,
and trust change given eight different class labels, as listed
in Table 6. Due to the fact that there was no data avail-
able to represent some of the classes, the classification was

FIGURE 5. Multi-label prediction of trust (PreTTP and PostRIS) and team
familiarity.

FIGURE 6. Prediction of trust (TTP and RIS) change before and after
experiment.

TABLE 6. Numbers of Training Images Across Classes in Joint Prediction
of Trust and Team Members Familiarity and Trust Change.

unbalanced; therefore, the results of this experiment shown
in Fig. 7 include both accuracy and F-scores. Both accuracy
and F-score values shown in Fig. 7 are within a narrow
range of 80%-82%, indicating that in all four cases (PreTTP,
PostTTP, PreRIS, and PostRIS), the classification outcomes
were very similar. Given that the accuracy and F-score values
were very close to each other, the imbalanced cases did not
affect the overall performance in a significant way, and there
was a good balance between false positive and false negative
classification outcomes. As expected, the increased number
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FIGURE 7. Multi-label prediction of trust (pre and post TTP and RIS), team
familiarity and trust change.

of classes led to a slightly reduced classification accuracy
(by about 1%) compared to two-class prediction (trust and
familiarity) in Fig. 5.

V. CONCLUSION
We have investigated acoustic speech characteristics as indi-
cators of interpersonal trust and familiarity. A number of
CNN models were trained to differentiate between different
classes of trust, team members’ familiarity with each other,
and trust change after a team-based problem-solving mission.

The experimental results provided a strong indication
that all three categories can be efficiently predicted from
speech. In addition, we have shown that models having a
pre-requisite knowledge of team members’ familiarity can be
more efficiently trained to predict trust between team mem-
bers compared with models not having such pre-requisite
knowledge. Similarly, models having a pre-requisite knowl-
edge of trust between team members can be more efficiently
trained to predict familiarity.

In general terms, the results of our study indicate that the
more related pre-requisite knowledge that is embedded in
the model, the faster and less data-consuming is the learn-
ing of a new task. Using an analogy with human learning,
for example, a person who already knows three different
languages is likely to learn a new language faster and with
fewer examples than a person who knows one language only.
Likewise, a tennis player can most likely learn baseball faster
than a person who never played any sports before. In both
examples, the prior, task-related knowledge is the key factor
increasing the learning efficiency.

One of the important general implications of our observa-
tions is that the embedding of pre-requisite, related knowl-
edge into the model can be viewed as a way of dealing with
the scarcity of specific task-related training data. Namely,
instead of increasing the training set size by generating
synthetic or augmented data, the model can be enriched with
a pre-requisite knowledge and learn from the small in size,
but actual data.

Our future research will investigate applications of the
findings described here into human-machine interactions.

We will also look into potential applications of multiple
transfer learning to counteracting the data imbalance in the
automatic monitoring of human-machine interactions.
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