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ABSTRACT Cohen–Grossberg neural networks with delays provide a very powerful tool in the study of
information processing, parallel computation, pattern recognition and solving of optimization problems.
The robust stability behavior of such neural network models is essential in their numerous applications.
Also, since the effect of various types of impulsive perturbations has been found to be remarkably important
in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing
popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable
impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen–Grossberg
neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are
established for the nominal system under impulsive control. Then, the robust stability results are proposed.
Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend
some known robust stability results considering stability with respect to manifolds instead of isolated states
stability.

INDEX TERMS Cohen–Grossberg neural networks, h-manifolds, impulsive control, variable impulsive
perturbations, robust stability, mixed delays, uncertain parameters.

I. INTRODUCTION
Classification, information processing, parallel computing,
associative memory and nonlinear optimization problems are
crucial tasks in the investigation of many real-life phenomena
and engineering systems. The role of the specific class of
Cohen–Grossberg neural networks, initially proposed in [1]
becomes progressively prominent in the above artificial intel-
ligence technologies. The significance of their applications
stimulated a great deal of research interest to the analysis
of their dynamic properties. Since 1983 Cohen–Grossberg

The associate editor coordinating the review of this manuscript and
approving it for publication was Daniel Ho.

neural networks are ones of the most investigated neu-
ral network models, and numerous qualitative results have
been reported in the literature [2]–[6]. The emergence of
new results on Cohen–Grossberg type of neural networks
demonstrates the importance of research on their dynamic
analysis for mathematical, computational, neurophysiolog-
ical and engineering theories, as well as of their real
applications [7], [8].

Also, many authors introduced delays in Cohen–Grossberg
type of neural networks and studied the dynamics of delayed
classes of Cohen–Grossberg neural network models. In fact,
the effects of time delays, that are mainly due to signal
transmissions and switching, cannot be ignored in practical
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neural network systems. It is well known that time delaysmay
corrupt the neural network system performance or destabilize
the system [9], [10]. The importance of delayed Cohen–
Grossberg neural networks for the theory and applications
is evidenced by the presence of numerous results on their
analysis [11]–[14].

One type of time delays which effects are extremely stud-
ied is the type of distributed delays that more adequately
reproduce the realistic actions [15]. Also, neural network
systems with distributed delays extend the differential models
to integro-differential ones. Hence, the behavior of Cohen–
Grossberg neural networks with distributed and mixed
delays have been intensively investigated. See, for example,
[16]–[18] and some of the references therein.

In addition, uncertain parameters and robustness in neu-
ral network models are principal research challenges for
applied fields such as biology, neurosciences and comput-
ing. For Cohen–Grossberg types of neural networks, several
researches have developed robust stability criteria in order to
advance the analysis in the fields of applications. For exam-
ple, in the article [19] the global robust exponential stability
behavior of the equilibrium point and the periodic solution
of a type of interval Cohen–Grossberg neural networks with
time-varying delays and infinite distributed delays is investi-
gated. The research in [20] is devoted to sufficient conditions
for the global exponential robust stability of the equilibrium
point of Cohen–Grossberg neural networks with both time-
varying and distributed delays. The authors in [21] studied the
global robust exponential stability of the equilibrium point of
interval Cohen–Grossberg neural networks with time-varying
delays. In [22] important robust stability criteria have been
obtained for a class of switched Cohen–Grossberg neural
networks with mixed time-varying delays. The global robust
exponential stability for second-order Cohen–Grossberg neu-
ral networks with multiple delays has been studied in [23].
In a very resent paper [24] the global robust stability behavior
of the equilibrium point for Cohen–Grossberg neural net-
works with time-varying delays is investigated.

Nonetheless, the cited above robust stability results treated
only single states of the considered Cohen–Grossberg neural
network models, such as equilibrium points and periodic
solutions. Indeed, it has been proven that the stability analysis
of an equilibrium point or a periodic solution is important
in the design and applications of neural network models.
Then, a question arises: which approach is appropriate for
the cases where it is difficult or even impossible to design
a controller that guarantees the robust stability properties
of single states? For such cases and in order to extend the
research in the field of robustness, in this paper we propose to
study a more general robust stability behavior, namely robust
stability with respect to manifolds. The results in [19]–[24]
will be particular cases of the proposed here findings.

The h−stability concept is related to a stability defined
by a real-valued function, not necessarily, the distance. The
motivation to consider such a generalized concept of sta-
bility with respect to manifolds comes from its properties.

From one side, it generalizes the stability of a single state
notion, when the used function is the distance from the
selected state. From the other side, it relaxes this stabil-
ity concept allowing the state trajectories to converge to a
neighborhood of the equilibrium or even to a set of solu-
tions without disrupting its stability properties. Among the
proved applications of stability with respect to manifolds
notion are observer designs [25], celestial mechanics [26],
maneuvering systems [27]. Because of the great possibil-
ities for applications, the topic of h−stability whether or
not related to equilibrium states has been studied for differ-
ent types of systems [28]–[30], including some very recent
results [31]–[34].

However, due to the complexity of the problem,
the reported results on h−manifolds stability for
Cohen–Grossberg neural network systems are still quite
limited. To the best of our knowledge, there is only one
paper [35] devoted to the study of this extended stability
concept for a class of bidirectional associative memory
Cohen–Grossberg neural networks with time-varying delays.
However, distributed delays, uncertain parameters and robust
stability are not considered in this unique investigation.
Hence, the h−manifold robust stability notion is not devel-
oped for Cohen–Grossberg neural network models and is still
a challenging problem.

In order to study the robust stability behavior of a Cohen–
Grossberg neural network with uncertain parameters and
distributed delays with respect to h−manifolds, an effective
approach is proposed in this research using discrete control
via variable impulsive perturbations. To this end, we will
apply the theory of impulsive differential equations, which
are useful tools in the design of impulsive control strate-
gies [30], [36]–[38]. Impulsive controllers and impulsive
control methods have been intensively applied to different
mathematical models [39]–[45] including neural network
systems [46]–[50]. The fact that such discontinuous con-
trollers are preferred by researchers is mainly due to their very
simple structure. Also, ‘‘when the synchronization impulses
are sent to the receiving systems at discrete time instants,
it can greatly decrease the information redundancy in the
transmitted signal and increase robustness against the dis-
turbances’’ [48]. Hence, some progress in the investigations
of impulsive Cohen–Grossberg neural network systems has
been made [51]–[56].

Robust stability analysis has been conducted for impul-
sive Cohen–Grossberg neural network models in just few
research papers. In [57] the global robust exponential stability
of equilibrium point for impulsive Cohen–Grossberg neu-
ral networks with distributed delays and reaction–diffusion
terms has been investigated. The authors in [58] studied
the contribution of impulsive perturbations at fixed times
to the robust stability of a class of the impulsive bidi-
rectional associative memories neural networks that pos-
sesses a Cohen–Grossberg dynamics and incorporates time
delays and variable coefficients. The paper [59] is devoted
to the robust exponential stability of the zero solution for
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Markovian jump impulsive stochastic Cohen-Grossberg neu-
ral networks with mixed time delays and known or unknown
parameters.

However, all existing robust stability results for impulsive
Cohen–Grossberg neural network models again treated only
a solo state of the model under consideration and stability
with respect to the norm. Also, only impulsive perturbations
at fixed instances are investigated. To extend and improve the
existing results we will consider robust stability with respect
to h−manifolds in our analysis. Also, different from all pro-
posed techniques, we will first propose stability results via an
impulsive control to the ‘‘nominal’’ system without uncertain
parameters, and then we will add boundedness criteria for
these system parameters. In addition, the great possibilities
for applications motivated our control strategy to robustness
which includes a discrete control via variable impulsive per-
turbations rather than at fixed instances. In fact, impulses at
variable instances are more realistic and include as a special
case fixedmoments of impulsive jumps [60]–[62]. To the best
of the authors’ knowledge, variable impulsive perturbations
have been discussed for Cohen–Grossberg neural networks
in the recent papers [35] and [63]. However, the research
in [35] does not include robust stability analysis, and [63] is
devoted to the stability of a single almost periodic solution
with respect to the distance. Both papers do not consider
distributed delays.

Motivated by the above analysis, in this paper we will
present results on impulsive control via impulses at vari-
able times on the h−manifolds robust stability for Cohen–
Grossberg neural networks with time-varying and distributed
delays.

The novel contribution of our research is in the following
aspects:

(1) we consider h−robust stability of the model, which
generalizes and extends numerous robust stability concepts;

(2) the developed approach consists of two steps, including
stability analysis of the ‘‘nominal’’ system without uncertain
parameters, which allows the flexibility in the conditions
about their effect;

(3) the proposed impulsive control strategy is in variable
times, which improves some existing results on impulsive
inputs at fixed times.

The structure of the manuscript is the following. Section II
will propose our Cohen–Grossberg-type neural network
model with mixed delays. The impulsive control strategy
via variable impulsive perturbations will be also introduced.
In addition, some main definitions will be given. Section III
is devoted to the stability analysis of the ‘‘nominal’’ system
without uncertain parameters. Section IV offers robust stabil-
ity criteria. In section V we illustrate our results via examples
and simulations. The developed approaches and results are
summarized in section VI.

II. MODEL DESCRIPTION AND PRELIMINARIES
In this paper we will use the following standard notations:Rn

is the n−dimensional Euclidean space with elements x ∈ Rn,

x = (x1, x2, . . . , xn)T , ||x|| =
∑n

i=1 |xi| is the norm of x ∈
Rn, R+ = [0,∞).

A. MODEL DESCRIPTION
Let u = u(t), u ∈ Rn, u(t) = (u1(t), u2(t), . . . , un(t))T ,
and t ∈ R+. We will study the robust stability behavior of
the following Cohen–Grossberg neural network model with
time-varying and distributed delays and uncertain parameters

u̇i(t) = −di(ui(t)) [γi(ui(t))

−

n∑
j=1

(
aij + ãij

)
fj(uj(t))

−

n∑
j=1

(
bij + b̃ij

)
gj(uj(t − sij(t)))

−

n∑
j=1

(
cij + c̃ij

) ∫ t

−∞

mij(t − τ )vj(uj(τ ))dτ

−(Ii + Ĩi)
]
, i = 1, 2, . . . , n,

(1)

where n denotes the number of the nodes in the model, t > 0,
ui(t) correspond to the state of the i−th node at time t , fj,
gj and vj are the activation functions of the j−th node at the
corresponding times, di(ui(t)) is the amplification function
for the state ui at time t , γi(ui(t) is an appropriately behaved
function at time t that guarantees the boundedness of the
states of the model (1), aij, bij and cij are the connection
coefficients, Ii is an input on the i−th node from outside of the
network, the transmission time-varying delay sij(t) satisfies
0 ≤ sij(t) ≤ sij = const , the functions mij : R+ → R+
are the delay kernels for the distributed delays, ãij, b̃ij and
c̃ij are the constant uncertain parameters in the connection
coefficients, Ĩi represents the uncertainty in the external input
of the i−th unit.
It is clear that the considered uncertain parameters may

affect the stability behavior of the models of type (1). Hence,
finding efficient criteria for their robust stability is an impor-
tant and challenging issue.

Let φ : (−∞, 0] → Rn be a bounded and continuous
function. Consider an initial condition for the model (1) in
the form

u(τ ) = φ(τ ), τ ≤ 0. (2)

B. IMPULSIVE CONTROL VIA VARIABLE IMPULSIVE
PERTURBATIONS INTRODUCTION
We will now introduce a discrete control strategy on the
qualitative behavior of the units in themodel (1) via impulsive
perturbations at not fixed times.

Let τ0(u) = 0 for u ∈ Rn. Consider the continuous
functions τk : Rn

→ R+, k = 1, 2, . . . such that

0 < τ1(u) < τ2(u) < . . . , τk (u)→∞ as k →∞

uniformly on u ∈ Rn. Define the hypersurfaces

σk : t = τk (u), k = 1, 2, . . . .
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The impulsive control is applied at some moments tlk at
which the integral curve (t, u(t)) of the model (1) meets the
hypersurfaces σk , so that the states trajectories are instantly
changed from the position (t, u(t)) = (t−, u(t−)) into the
position (t+, u(t+)), where u(t+) = u(t−) + Pk (u(t−)) +
P̃k (u(t−)), Pk and P̃k are matrices of continuous func-
tions. The matrices Pk = diag(P1k ,P2k , . . . ,Pnk ), Pik :
R → R, i = 1, 2, . . . , n, k = 1, 2, . . . . The matri-
ces P̃k = diag(P̃1k , P̃2k , . . . , P̃nk ), P̃ik : R → R,
i = 1, 2, . . . , n, k = 1, 2, . . . are uncertainties in the
impulsive controls.

On the basic of the above assumptions, we formu-
late the following impulsive control model with uncertain
parameters



u̇i(t) = −di(ui(t)) [γi(ui(t))

−

n∑
j=1

(
aij + ãij

)
fj(uj(t))

−

n∑
j=1

(
bij + b̃ij

)
gj(uj(t − sij(t)))

−

n∑
j=1

(
cij + c̃ij

) ∫ t

−∞

mij(t − τ )vj(uj(τ ))dτ

−(Ii + Ĩi)
]
, t 6= τk (u),

ui(t+) = ui(t)+ Pik (ui(t))
+P̃ik (ui(t)), t = τk (u),

(3)

where i = 1, 2, . . . , n, t > 0. The impulsive control instances
tk (0 < t1 < t2 < · · · < tk < tk+1 < . . . ) in the model (3)
are defined such that:

• t1 is the first moment when the integral curve of the
problem without impulses (1) meets some of the hyper-
surfaces σk . The number of this hypersurface is denoted
by l1.

• t2 is defined as t2 = τl2 (u(t2)) = min{t : t =
τk (u(t))}, t > t1, i.e., t2 is the first bigger than t1
moment when the integral curve of (3) meets some of
the hypersurfaces σk . The number of this hypersurface
is denoted by l2,

etc.
Note that, it is possible for the integral curve (t, u(t)) of the

model (3) to not meet the hypersurface σk at the moment tk ,
i.e., k 6= lk , k = 1, 2, . . . , in general.

The proposed control technique generalizes the considered
in [57]–[59] impulsive control at fixed times. It is clear that,
in the case of variable impulsive perturbations the discrete
control instances depend on the solution u(t). Hence, different
solutions may have different control inputs. This leads to
complexities in the investigation of systems of type (3).

C. NOMINAL SYSTEM
When all uncertain parameters are zeros, we will receive the
so-called ‘‘nominal’’ [64], [65] system corresponding to (3)

in the form

u̇i(t) = −di(ui(t)) [γi(ui(t))

−

n∑
j=1

aijfj(uj(t))

−

n∑
j=1

bijgj(uj(t − sij(t)))

−

n∑
j=1

cij

∫ t

−∞

mij(t − τ )vj(uj(τ ))dτ

−Ii] , t 6= τk (u),
1ui(t) = Pik (ui(t)), t = τk (u),

(4)

where 1ui(t) = ui(t+)− ui(t), i = 1, 2, . . . , n, t > 0.
We will analyse the system (4) with initial conditions of

the form {
u(τ ; 0, ϕ0) = ϕ0(τ ), τ ≤ 0,
u(0+) = ϕ0(0),

(5)

where the initial function ϕ0 : (−∞, 0] → Rn is bounded
and piecewise continuous with points of discontinuity of the
first kind at which it is continuous from the left. The set of all
such functions will be denoted by PC.

We will first study the Cohen–Grossberg neural network
model (4) under the following basic assumptions on the sys-
tem parameters and impulsive functions:

(A1) The amplification functions di, i = 1, 2, . . . , n are
continuous and there exist positive constants d i and d i such
that 1 < d i ≤ di(χ ) ≤ d i for χ ∈ R.

(A2) For the functions γi there exist positive constants 0i
such that

γi(χ1)− γi(χ2)
χ1 − χ2

≥ 0i,

for any χ1, χ2 ∈ R, χ1 6= χ2 and i = 1, 2, . . . , n.
(A3) For the activation functions fi, gi, vi there exist posi-

tive constants Fi, Gi, Vi such that

Fi = sup

∣∣∣∣ fi(χ1)− fi(χ2)χ1 − χ2

∣∣∣∣ ,
Gi = sup

∣∣∣∣gi(χ1)− gi(χ2)χ1 − χ2

∣∣∣∣ ,
Vi = sup

∣∣∣∣vi(χ1)− vi(χ2)χ1 − χ2

∣∣∣∣ ,
for any χ1, χ2 ∈ R, χ1 6= χ2 and i = 1, 2, . . . , n.
(A4) The delay kernels mij are continuous, and there exist

positive numbers µij such that∫ t

−∞

mij(t − τ ) dτ ≤ µij <∞

for all t ≥ 0, and i, j = 1, 2, . . . , n.
(A5) The jump functions Pik (χ ) are continuous for χ ∈ R,

i = 1, 2, . . . , n, k = 1, 2, . . . .
(A6) The functions τk (u) are continuous for u ∈ Rn and

τk (u+ Pk (u)) ≤ τk (u) for any u ∈ Rn and k = 1, 2, . . . .
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In addition, we introduce the following assumption
(A7) For the model (4) there exists a unique equilibrium

u∗ = (u∗1, u
∗

2, . . . , u
∗
n)
T such that

γi(u∗i ) =
n∑
j=1

aijfj(u∗j )

+

n∑
j=1

bijgj(u∗j ))

+

n∑
j=1

cij

∫ t

−∞

mij(t − τ )vj(u∗j )dτ

+Ii] , t 6= τk (u),
1u∗i (t) = 0, t = τk (u).

(6)

Note that, the existence of the equilibrium state u∗ can be
easily proven using conditions (A1)-(A4) for the continuous
part of the model and conditions (A5) and (A6). In fact, since
all conditions of Theorem 1 in [16] are satisfied, then the
equilibrium u∗ exists for t 6= τk (u) for any k = 1, 2, . . . .
Conditions (A5) and (A6) [30], [60], [63], [65] guarantee that
it exists for any t ≥ 0.

D. H-STABILITY
Consider a function h : R × Rn

→ Rl , l ≤ n, such that the
set

M = {u ∈ Rn
: h(t, u) = 0}

is an (n − l)−dimensional manifold in Rn, and any solution
of the u(t) model (3) that satisfies

||h(t, u(t))|| ≤ H <∞

is defined for t ≥ 0 for any values of the uncertain parameters.
We will adopt the notion of stability of solutions with

respect to h−manifolds [28]–[34] to the equilibrium state of
the Cohen–Grossberg model u∗ of (4) as follows:
Definition 1: The equilibrium state u∗ of (4) is said to be

globally exponentially stable with respect to the function h,
if for any initial function ϕ0 ∈ PC, we have

||h(t, u(t)− u∗)|| ≤M(ϕ0)e−µt

for t ≥ 0, where u(t) = u(t; 0, ϕ0), M(0) = 0, and M is
Lipschitz continuous with respect to its variable ϕ ∈ PC.
Remark 1: Note that, the function h is of a very general

structure. For example, if l = 1, and the function h(t, u −
u∗) = u − u∗, then Definition 1 reduces to the Lyapunov-
type global exponential stability definition of the equilibrium
state u∗.
Definition 2: The equilibrium state u∗ of (4) is said to

be globally robustly exponentially stable with respect to the
function h, if for any initial function ϕ0 ∈ PC, and any values
of the uncertain parameters ãij, b̃ij, c̃ij and Ĩi, the equilibrium
of (3) is globally exponentially stable with respect to the
function h.

E. LYAPUNOV METHOD ESSENTIALS
In order to investigate the robust stability of the equilibrium
state of (4) we will apply the proven Lyapunov function
approach.

We will consider a class V0 of piecewise con-
tinuous Lyapunov-type functions defined as: V0 =

{V : R+ × Rn
→ R+, V is continuous for (t, u) ∈ R+×Rn,

t 6= τk (u), k = 1, 2, . . . , locally Lipschitz continuous with
respect to its second argument u, V (t, 0) = 0, for any k =
1, 2, . . . and (t̃, u(t̃)) ∈ σk , V (t̃−, u(t̃−)) and V (t̃+, u(t̃+))
are well defined and finite, and V (t̃−, u(t̃−)) = V (t̃, u(t̃))

}
.

Following [30], for a function V ∈ V0, we will consider
the following upper right-hand derivative of V given by

D+V (t, ϕ(0))

= lim
χ→0+

sup
1
χ

[
V (t + χ, u(t + χ ))− V (t, ϕ(0))

]
,

where (t, ϕ) ∈ R+ × PC.
Here is a basic assumption for a function V ∈ V0.
(A8) For the function h(t, u) there exists a Lyapunov-type

function V ∈ V0 such that

||h(t, u)|| ≤ V (t, u) ≤ �(H )||h(t, u)||, t ∈ R+,

where �(H ) ≥ 1 exists for any 0 < H <∞.
In the next section we will use the following lemma

from [30].
Lemma 1: If V ∈ V0 is such that for t ∈ [0,∞), ϕ ∈ PC

satisfies the following assumptions:
(i) V (t+, ϕ(0)+1ϕ) ≤ V (t, ϕ(0)), t = τk (ϕ),

k = 1, 2, . . . ,
(ii) D+V (t, ϕ(0)) ≤ −µV (t, ϕ(0)), t 6= τk (ϕ), k =

1, 2, . . . for V (t + ξ, ϕ(ξ )) ≤ V (t, ϕ(0)), −∞ < ξ ≤ 0.
then

V (t, u(t; 0, ϕ0)) ≤ sup
−∞<ξ≤0

V (0+, ϕ0(ξ )) exp(−µt)

for t ∈ [0,∞).

III. IMPULSIVE CONTROL VIA VARIABLE IMPULSIVE
PERTURBATIONS ON THE NOMINAL SYSTEM
In this section, we will use a suitable Lyapunov-type function
to derive criteria for global exponential stability with respect
to a function h of the steady state u∗ of the nominal system
(4) under variable impulsive perturbations.

The impulsive control is designed as follows.
(A9) For t = τk (u(t), the impulsive functions Pik are such

that

Pik (ui(t)) = −νik (ui(t)− u∗i ), 0 < νik < 2

and

d |1− νik | ≤ |1− ν̂k | ≤
d

d
,

where ν̂k = min1≤i≤n νik , i = 1, 2, . . . , n, k = 1, 2, . . . ,
d i = min1≤i≤n di, d = max1≤i≤n di.

222894 VOLUME 8, 2020



J. Cao et al.: Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability

Theorem 1: Under the assumptions (A1)–(A8), if there is
a positive number µ = µ1 − µ2 such that

µ1 = d min
1≤i≤n

(
0i − a

+

ii Fi −
n∑

j=1, j6=i

|aji|Fi
)

> µ2 = d max
1≤i≤n

n∑
j=1

(
|bji|Gi + |cji|µjiVi

)
, (7)

where a+ii = max{|aii|, 0},i = 1, 2, . . . , n, then the equilib-
rium u∗ of the model (4) is globally exponentially stable with
respect to the function h under the impulsive control (A9).

Proof: Denote yi(t) = ui(t) − u∗, i = 1, 2, . . . , n.
Consider the Lyapunov-type function

V (t, y(t)) =
n∑
i=1

∫ yi(t)

0

sgn(ξ )
θi(ξ )

dξ,

where θi(yi(t)) = di(yi(t)+ u∗i ).
Since

1

d
||y(t)|| ≤ V (t, y(t)) ≤

1
d
||y(t)||, (8)

then, for t = τk (u), k = 1, 2, . . . and ϕ ∈ PC, from (A9) we
derive the following estimate

V (t+, ϕ(0)+1ϕ) ≤
1
d
||ϕ(0)+1ϕ||

=
1
d

n∑
i=1

|ϕi(0)+1ϕi| =
1
d

n∑
i=1

|1− νik ||ϕi(0)|

<

n∑
i=1

|1− νik ||ϕi(0)| ≤
|1− ν̂k |

d

n∑
i=1

|ϕi(0)|

≤
1

d

n∑
i=1

|ϕi(0)| =
1

d
||ϕ(0)|| ≤ V (t, ϕ(0)). (9)

For the derivative of the Lyapunov-type function V for
τk−1(u) < t < τk (u), we calculate

d
dt
V (t, y(t)) = −

n∑
i=1

sgn(yi(t))
(
γ̃i(yi(t))−

n∑
j=1

aij f̃j(yj(t))

−

n∑
j=1

bijg̃j(yj(t − sij(t)))

−

n∑
j=1

cij

∫ t

−∞

mij(t − τ )ṽj(yj(τ ))dτ
)
,

where γ̃i(yi(t)) = γi(yi(t)+u∗i )−γi(u
∗
i ), f̃j(yj(t)) = fj(yj(t)+

u∗j ) − fj(u
∗
j ), g̃j(yj(t)) = gj(yj(t) + u∗j ) − gj(u

∗
j ), ṽj(yj(t)) =

vj(yj(t)+ u∗j )− vj(u
∗
j ).

From the above estimate, using the conditions of
Theorem 2, we get for t 6= τk (ϕ), k = 1, 2, . . .

D+V (t, ϕ(0))

≤

n∑
i=1

(
− 0i|ϕi(0)| + a

+

ii Fi|ϕi(0)|

+

n∑
j=1, j6=i

|aij|Fj|ϕj(0)| +
n∑
j=1

|bij|Gj|ϕj(−sij(0))|

+

n∑
j=1

|cij|µijVj sup
−∞<τ≤0

|ϕj(τ )|
)

≤ −

n∑
i=1

(
0i − a

+

ii Fi −
n∑

j=1, j6=i

|aji|Fi

)
|ϕi(0)|

+

n∑
i=1

n∑
j=1

(
|bji|Gi + |cji|µjiVi

)
sup

−∞<τ≤0
|ϕi(τ )|.

From the last inequality and (8), for t 6= τk (ϕ), k =
1, 2, . . . , we get

D+V (t, ϕ(0)) ≤ −µ1 V (t, ϕ(0))+ µ2 V (t, ϕ(0)),

and by (7) it follows that
D+V (t, ϕ(0)) ≤ −µV (t, ϕ(0)), (10)

for V (t + τ, ϕ(τ )) ≤ V (t, ϕ(0)), −∞ < τ ≤ 0.
It follows from (9), (10) and Lemma 1, that

V (t, u(t; 0, ϕ0)−u∗)≤ sup
−∞<τ≤0

V (0+, ϕ0(τ )−u∗) exp(−µt)

for t ∈ [0,∞).
Hence, from assumption (A8), we obtain
||h(t, u(t; , 0, ϕ0)− u∗|| ≤ V (t, u(t)− u∗)

≤ �(H ) sup
−∞<τ≤0

||h(0+, ϕ0(τ )− u∗)|| exp(−µt), t ≥ 0.

Set M = M(ϕ0) = �(H ) sup−∞<τ≤0 ||h(0
+,

ϕ0(τ )− u∗)||.
Then,

||h(t, u(t)− u∗)|| ≤M(ϕ0)e−µt , t ∈ R+

which shows that the equilibrium state u∗ of the nominal
system (4) is globally exponentially stable with respect to the
function h under the impulsive control (A9), and the proof is
complete.
Remark 2: Theorem 2 offers global exponential stability

criteria with respect to the function h of the equilibrium u∗

of the nominal system (4). This result generalizes the existing
global stability results for equilibria considering a manifold
defined by the function h. In addition, the result can be used
alone in the absence of uncertain terms, and is a first step in
the robust stability analysis of the model (4).

IV. ROBUST STABILITY CRITERIA
In this section we will present global robust stability criteria
for the equilibrium u∗ of the model (4) with respect to the
function h.
We consider the following assumptions for the uncertain

parameters and the uncertainties in the impulsive controls.
(A10) The constants ãij, b̃ij, c̃ij and Ĩi are bounded and

d min
1≤i≤n

(
0i −

(
a+ii + ã

+

ii

)
Fi −

n∑
j=1, j6=i

(
|aji| + |ãji|

)
Fi

)

> d max
1≤i≤n

n∑
j=1

((
|bji| + |b̃ji|

)
Gi +

(
|cji| + |c̃ji|

)
µjiVi

)
,

where ã+ii = max{|ãii|, 0}, i, j = 1, 2, . . . , n.
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(A11) The uncertainties in the impulsive controls
P̃ik (ui(t)) = −ν̃ik (ui(t) − u∗i ) and the unknown constants ν̃ik
are such that 0 < ν̃ik < 2−νik , i = 1, 2, . . . , n k = 1, 2, . . . .
The next result is a direct corollary of Theorem 2.
Theorem 2: Under the assumptions (A1)–(A8), (A10),

the equilibrium u∗ of the model (4) is globally robustly
exponentially stable with respect to the function h under the
impulsive control (A9), (A11).
Remark 3: The researchers in [19]–[24] proposed robust

stability results for some classes of Cohen–Grossberg-type
neural networks with delays. However, the impulsive control
is not considered in these papers. For impulsive models,
robust stability results have been proposed in [57]–[59].
The considered impulses in these papers are at fixed points.
It is well known, that systems with fixed moments of impul-
sive perturbations are particular cases of systems with vari-
able impulsive perturbations. In fact, if we denote the fixed
instances of discrete impulsive jumps as t = tk , k = 1, 2, . . . ,
then for σk : t = tk} the results in [57]–[59] can be
considered as corollaries of Theorem 3.
Remark 4: Different from the proposed in [19]–[24] and

in [57]–[59] robust stability approaches, the developed in
this paper approach consists of two steps. The first one is the
global stability of the nominal system. This allows a flexibility
in the criteria for the uncertain parameters in the system.
In addition, we apply the generalized h−stability con-

cept in our investigation. Thus, our results extend and gen-
eralize all existing results on robust stability of delayed
Cohen–Grossberg neural network models.

V. ILLUSTRATIONS
Example 1: As an example, consider the model (3) for

n = 2, u(t) = (u1(t), u2(t))T , t > 0, fi(ui) = gi(ui) =

vi(ui) =
1
2
(|ui + 1| − |ui − 1|), sij(t) = et/(1 + et ), 0 ≤

sij(t) ≤ 1, di(ui) = 1, γi(ui) = 4, µij(s) = e−s, i, j = 1, 2,
I1 = 2.85, I2 = 4.3,

(aij) =
(
a11 a12
a21 a22

)
=

(
0.6 0.7
−0.8 0.5

)
,

(bij) =
(
b11 b12
b21 b22

)
=

(
−0.4 0.3
0.6 −0.5

)
,

(cij) =
(
c11 c12
c21 c22

)
=

(
−0.3 0.2
0.2 −0.3

)
,

τk (ui) = |ui| + k, k = 1, 2, . . . .
Let the impulsive functions Pik (ui) be such that

P1k (u1) =
(
1
k
− 2

)
(u1 − 0.5),

P2k (u2) =
(

1
2k
− 2

)
(u2 − 1.5), (11)

for any k = 1, 2, . . . .
Then, all assumptions (A1)–(A3) are satisfied for

d i = d i = 1, 0i = 4, Fi = Gi = Vi = 1. The assumption
(A4) is also satisfied, since

∫
∞

0 e−sds = 1.

FIGURE 1. The global robustly exponentially stable behavior of u1 and u2
with respect to the function h under the impulsive control (11), (12).

We can also check that the nominal model has an equilib-
rium state at u∗ = (u∗1, u

∗

2)
T
= (0.5, 1.5)T and the condition

(7) is satisfied for µ1 = 2.6 > µ2 = 1.5.
In addition, the impulsive control on the nominal system

via the impulsive functions Pik (ui) is designed according to
(A9) and is performed via variable impulsive perturbations
that satisfy (A5) and (A6).
Consider the function h : R2

→ R2, h = (h1, h2)T ,
h1 = u1 − u∗1, h2 = u2 − u∗2, for which assumption (A8)
is achieved.
Since all conditions of Theorem 2 are satisfied, it guaran-

tees that the equilibrium u∗ of the nominal model is globally
exponentially stable with respect to the function h under the
impulsive control (11).
We can also realize that, if the uncertain parameters satisfy

the boundedness condition

1.1+ min
1≤i≤n

(
ã+ii +

n∑
j=1, j6=i

|ãji|
)

> max
1≤i≤n

n∑
j=1

(
|bji| + |c̃ji|

)
,

and the uncertainties in the impulsive controls
P̃ik (ui(t)) = −ν̃ik (ui(t)− u∗i ), i = 1, 2, are such that

0 < ν̃1k (u1) <
1
k
,

0 < ν̃2k (u2) <
1
2k

(12)

for any k = 1, 2, . . . , then according to Theorem 3 the
equilibrium u∗ is globally robustly exponentially stable with
respect to the function h under the impulsive control (11),
(12). The stable behavior for initial data u1(τ ) = u2(τ ) = 2,
−∞ < τ < 0, u1(0+) = u2(0+) = 2, is shown in Figure 1.
Remark 5: Criteria for robust stability of impulsive

Cohen–Grossberg-type neural networks with delays are pro-
posed in [57]–[59]. The proposed conditions are specific for
each uncertain parameter in the correspondingmodel. Exam-
ple 1 shows again that our boundedness criteria are more
general, and therefore our approach allows more flexibility in
the work with uncertain terms, and that is how it outperforms
the proposed in the existing literature approaches.
Example 2: Consider again the model (3) with particular

parameters determined in Example 1. Let, instead of the
boundedness conditions for the uncertainties in the impulsive
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FIGURE 2. The unstable behavior of u∗

1 with respect to the function h.
Under the impulsive perturbations (11), (13) u1 is ‘‘beating’’ on τ1(u1).

controls (12), the constants ν̃ik , i = 1, 2 be such that

ν̃1k =
2
k
,

0 < ν̃2k (u2) <
1
2k

(13)

k = 1, 2, . . . .
Since the condition (A11) is not satisfied, we can not

make a conclusion about the global robust exponential stable
behavior of the equilibrium u∗ with respect to the function h
by means of Theorem 3. However, the numerical simulations
show that in this case, even the uncertain parameters satisfy
(A10), the impulses destroy the exponential stability of the
equilibrium which is shown in Figure 2. In fact, we observe
the ‘‘beating’’ phenomenon, when u1(t) beets infinitely many
times τ1(u1), and is not continuable after it.
Remark 6: Example 2 demonstrates that the impulsive

control strategy is essential for the robust stability of the equi-
librium states. Particularly, when the control is conducted via
variable impulsive perturbations, the control instances for
distinct states are not, in general, the same, and difficulties
such as ‘‘beating’’ of solutions exist. However, since such
perturbations are more relevant to reality, it is important to
study their effect on the behavior and control of numerous
systems studied in widespread areas of the mathematical,
physical, chemical, engineering, and statistical sciences.

VI. CONCLUSION
In this research we investigate a Cohen–Grossberg neural
network model with mixed delays. The main research ques-
tion evaluated in the paper is about the robust stability of the
model with respect to a general type function not necessarily a
distance. The proposed notion extends various robust stability
notions. Thus, our robust stability criteria generalize and
complement some existing robust stability results. We also
propose an impulsive control strategy via variable impulsive
perturbations. Since the proposed robust stability concept
and the impulsive control technique have a great potential in
applications, it is expected that our research will inspire the
researchers to apply the proposed approach to different neural
networks models of diverse interest.
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