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ABSTRACT Existing results on dealing with unknown high-frequency gain signs (UHFGSs) mainly adopt
the Nussbaum-type functions. A new kind of control algorithms with nonlinear PI functions are presented to
cope with UHFGSs. It is rigorously proven that the proposed algorithms with properly selected nonlinear PI
functions can guarantee consensus for high-order multi-agent systems (MASs) under switching topologies
with uniformly quasi-strongly δ-connected graphs (UQSGs). Furthermore, we also investigate the output
leaderless consensus of heterogeneous agents with UHFGSs. Finally, the numerical examples are illustrated
to show the validity of the proposed results.

INDEX TERMS Switching topologies, high-order agents, nonlinear PI functions.

I. INTRODUCTION
For the last several decades, the cooperative control problems
of designing algorithms that achieve consensus inmulti-agent
systems (MASs) have attracted much attention in the field
of system control [1]–[4]. The important feature of these
control algorithms is that, while the agents make use of only
local information to implement their own local controllers,
the resulting global algorithms can achieve consensus with
the global networked agents [5]–[8].

Recently, many efforts were devoted to designing dis-
tributed algorithms of MASs with unknown high-frequency
gain signs (UHFGSs) [9]–[11] that guarantee state or out-
put consensus, since practical applications may not have
access to the high-frequency gain signs in advance [12], [13].
Therefore, the consideration of UHFGSs when designing
consensus control algorithms is certainly necessary. One of
the challenging problems in this context is the problem of
dealing with UHFGSs. In [14], the Nussbaum-type functions
was first proposed to solve the stability problem of dynamics
with UHFGSs, and then the method was widely adopted to
deal with various systems with UHFGSs [15]–[18].

More recently, the problem of MASs with UHFGSs is
a demanding topic, since MASs has attracted significant
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attention. Due to the constraints imposed on the multiple
control inputs with UHFGSs, such problems are very dif-
ficult to solve, where the critical challenge is dealing with
the problem of multiple Nussbaum-type functions. The early
studies on dealing with this issue are assuming that UHFGSs
are all identical. For the nonidentical UHFGSs in some of
the literature, partially known UHFGSs are required in [19],
and global network information is used in [20]. To break
this limit, the work of [21] can construct a partial Lyapunov
function in which one Nussbaum-type function exists for
each agent, and then the problem of multiple Nussbaum-type
functions is solved. According to this method, the leaderless
consensus ofMASs with nonidentical UHFGSs was achieved
for linear MASs under switching topologies [22] and for
nonlinear MASs [23]. In addition, the control algorithms
were illustrated in [24]–[26] to cope with the problem of
nonidentical UHFGSs by using the output regulation.

Note from the above literature that the Nussbaum-type
function is the key technique to solve the problem of
UHFGSs. However, a major drawback of the Nussbaum-type
function was that designed controllers suffer from large
control overshoot [27], and this would limit the appli-
cation of these controllers in practical engineering appli-
cations. Suppressing therefore the large control overshoot
when designing distributed control algorithms is a demand-
ing task. One method is introducing nonlinear PI functions

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 222025

https://orcid.org/0000-0003-2045-2920


Q. Wang: Nonlinear PI Control for High-Order Agents With UHFGSs Under Switching Topologies

[28]–[30], where the consensus of linearMASswith noniden-
tical UHFGSs was achieved under switching topologies with
balanced/unbalanced subgraphs.

Motivated by the aforementioned literature, in this paper
we will design a class of control algorithms for high-order
agents with UHFGSs under switching topologies, where the
nonlinear PI functions will be used to deal with the UHFGSs.
It will be proven that the proposed algorithms with properly
selected nonlinear PI functions can guarantee the consen-
sus of MASs under switching topologies with uniformly
quasi-strongly δ-connected graphs (UQSGs). Moreover, the
results are extended to the output leaderless consensus of
heterogeneous agents with UHFGSs. The contributions are
presented as follows.

1) A new class of nonlinear PI functions are employed in
order to deal with nonidentical UHFGSs and ensure
that the designed algorithms can achieve leaderless
consensus. Different from existing results [30], the
proposed algorithms in this paper are suitable for the
consensus of first-order dynamics with UHFGSs.

2) The considered results are extended to the case of
output leaderless consensus of heterogeneous agents
with UHFGSs. To our best knowledge, this is the first
result that achieves output leaderless consensus for net-
works of high-order agents under switching topologies
with UQSGs. As we know, the communication network
is the mildest condition for MASs with nonidentical
UHFGSs, which implies a major improvement.

The following sections of this paper are organized as fol-
lows. Section II gives some preliminaries and the problem
is formulated, while the algorithms with nonlinear PI func-
tion are presented in Section III. Two simulation examples
are provided in Section IV, and this paper is concluded in
Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
Notation: The notations L∞ and L2 represent the bounded
and square integrable signals, respectively.

{
tj
}
j∈I is the dis-

continuity points with I = {1, 2, . . .} ⊆ N+. The vectors and
matrices use bold symbols.

A. PRELIMINARIES
Lemma 1 [29]: The piecewise right continuous differen-

tiable function is denoted by ρ : [0,∞) → R, and the
discontinuity points is represented by

{
tj
}
j∈I . Assume that

the bounded derivative exists for ρ, and limt→∞
∫ t
0 ρ(τ )dτ ∈

L∞. Suppose tj+1 − tj > ε for some ε > 0 with j ∈ I , then
limt→∞ ρ(t) = 0.
Lemma 2 [29]: Suppose the function M :

[
0, tf

)
→ R is

piecewise right continuous, and the function S :
[
0, tf

)
→ R

is continuous, piecewise differentiable. If

Ṡ(t) = [α1 + α2S(t) cos(S(t))]M (t)

in which the parameters α1 and α2 6= 0 are real, it is obtained
|S(t)− S(0)| ≤ 2 (π + |α1/α2|) for t ∈

[
0, tf

)
.

The basic concepts of directed graph are omitted in this
paper, and the detailed introduction can be referred in the
work of [22]. Some related definitions on directed graphs
are revisited in the following. A directed graph is defined
as G(t) = (V, E(t),A(t)), where the set of nodes is V =
{v1, v2, . . . , vN }, the set of edges is E(t) ⊆ V × V and the
adjacency matrix is A(t) = [aik (t)] ∈ RN×N . For a center
node, it means other nodes are reachable from this node. The
graph G(t) is quasi-strongly connected if it has a center. If we
give a constant δ > 0, the definition of δ-arc is the arc with
the property that

∫ t2
t1
aji(t)dt ≥ δ in the interval [t1, t2). The

definition of δ-path is a path in the interval [t1, t2) with the
δ-arc.
Definition 1 [31]: The UQSGs is that for the interval

[t, t + T ) where T > 0 and t ≥ 0, the δ-arcs of G(t) contains
a quasi-strongly connected graph.
Lemma 3 [31]: Consider N first-order agents. The i-th

dynamic of agent is

ξ̇i(t) = −
N∑
k=1

aik (t) (ξi(t)− ξk (t))+ %i(t) (1)

with i = 1, 2, . . . ,N , in which the function %i(t) is a
continuous on [0,∞). Suppose G(t) is the UQSGs and it
is satisfied that %i ∈ L∞ with limt→∞ %i(t) = 0, then
limt→∞ (ξi(t)− ξk (t)) = 0 with i, k = 1, 2, . . . ,N .

B. PROBLEM FORMULATION
Consider a network of N agents with nth-order and the
dynamics are

x(n)i (t) = biui(t) (2)

for all i = 1, 2, . . . ,N , where the order n > 1, x(m)i (t) ∈ R,
m = 1, 2, . . . , n − 1 are the high-order states, bi ∈ R is the
gain and its sign is unknown, and the control input is ui(t) ∈
R.
Assumption 1: The value of bi 6= 0, is unknown, and its

sign is unknown, constant.
The objective is to design nonlinear PI control algorithms

for MASs (2) with Assumption 1 under UQSGs such that
consensus is reached, i.e.,{

limt→∞ (xi(t)− xk (t)) = 0

limt→∞

(
x(m)i (t)− x(m)k (t)

)
= 0

(3)

where m = 1, 2, . . . , n− 1, i, k = 1, 2, . . . ,N .

III. MAIN RESULTS
We first introduce nonlinear PI control algorithms for MASs
under UQSGs, and then the results are extended to output
leaderless consensus of heterogeneous agents. Before stating
the main results of this section, we introduce the following
lemma.
Lemma 4 [32]: Let x(t) be the smooth function, and

suppose the initial conditions x(0), x(m)(0) ∈ L∞,
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m = 1, 2, . . . , n− 1. Let

w(x, t) =
(
γ +

d
dt

)n−1
x(t), (4)

where the constant γ > 0. If |w(x, t)| ≤ k with k > 0 and
t ≥ 0, then it is satisfied that∥∥∥x(m)(t)∥∥∥ ≤ 2mk

γ n−m−1
, t ≥ T0 (5)

for m = 1, 2, . . . , n− 1, in which the finite time T0 depends
on the initial conditions.Moreover, if limt→∞ w(x, t) = w∗ ∈
L∞, then limt→∞ x(t) = x∗ ∈ L∞ and limt→∞ x(m)(t) =
x∗m ∈ L∞. If limt→∞ w(x, t) = 0, then limt→∞ x(t) = 0 and
limt→∞ x(m)(t) = 0, m = 1, 2, . . . , n− 1.

To facilitate the technical development, we define the fol-
lowing states:

zi(t) =
(
γ +

d
dt

)n−1
xi(t)

= C0
n−1γ

n−1xi(t)+ C1
n−1γ

n−2ẋi(t)

+ · · · + Cn−2
n−1γ x

(n−2)
i (t)+ Cn−1

n−1 x
(n−1)
i (t) (6)

and

qi(t) = C0
n−1γ

n−1ẋi(t)+ C1
n−1γ

n−2ẍi(t)

+ · · · + Cn−3
n−1γ

2x(n−2)i (t)+ Cn−2
n−1γ x

(n−1)
i (t) (7)

where γ > 0, and C j
i s’ are coefficients of the binomial

expansion.

A. NONLINEAR PI CONSENSUS CONTROL FOR MASs
In this subsection, we will propose nonlinear PI control algo-
rithms forMASs with UHFGSs under UQSGs, and one of the
main results is summarized:
Theorem 1: Consider the MASs ( 2) with Assumption 1

under UQSGs defined in Definition 1. The consensus objec-
tive (3) is achieved if the distributed control algorithms are
designed

ui(t) = Ri(t) cos (Ri(t)) [κφi(t)+ qi(t)+ ėi(t)] (8)

with PI term

Ri(t) =
1
2
φ2i (t)+ κ

∫ t

0
φ2i (τ )dτ (9)

and {
φi(t) = zi(t)+ ei(t)

ėi(t) =
∑N

k=1
aik (t) (zi(t)− zk (t))

(10)

where κ > 0 is a constant.
Proof: Denote by xcl =

[
zT , eT ,ϕT ,hcT

]T
is a state

vector with z = [z1, z2, . . . , zN ]T , e = [e1, e2, . . . , eN ]T ,

ϕT = [ϕ1,ϕ2, . . . ,ϕN ]T with ϕi =
[
xi, ẋi, . . . , x

(n−2)
i

]T
,

and hc = [hc1, hc2, . . . , hcN ]T where for each i =
1, 2, . . . ,N ,

hci = κ
∫ t

0
φ2i (τ )dτ . (11)

The closed-loop systems (2) with (8), (9) and (10) are
żi = Wi (xcl)

[
κ (zi + ei)+ qi + εiTL(t)z

]
+ qi

ėi = εiTL(t)z
ϕ̇i = Aϕi + Bzi
ḣci = κ (zi + ei)2

(12)

and 
Wi (xcl) = biRi cos (Ri)

Ri =
1
2
(zi + ei)2 + hci

qi = βT (Aϕi + Bzi)

(13)

with

A =


0 1 · · · 0

0 0
. . .

...

0 0 · · · 1
−C0

n−1γ
n−1

−C2
n−1γ

n−3
· · · −Cn−2

n−1γ


(14)

and

B =
[
0 0 · · · 1

]T
, (15)

where

β =
[
C0
n−1γ

n−1 C1
n−1γ

n−2
· · · Cn−2

n−1γ

]T
, (16)

and εi is the i-th column of the identitymatrix. In view of (12),
we can know that the dynamics ẋcl = f (xcl , t) is piecewise
continuous and locally Lipschitz with mapping f . Therefore,
xcl (·) has a unique and continuous solution, and its solution
satisfies

[
0, tf

)
[33]. Thus, we have

Ṙi(t) = [1+ biRi(t) cos(Ri(t))]φi(t) [κφi(t)+ qi(t)+ ėi(t)]

with t ∈
[
0, tf

)
. In view of Lemma 2, it is obtained

|Ri(t)− Ri(0)| ≤ 2 (π + 1/|bi|) .

It is seen that Ri(t) is bounded with
[
0, tf

)
. According to (9),

we have the boundedness of φi(t) and
∫ t
0 φ

2
i (τ )dτ . Therefore,

we have hci is bounded. Moreover, we see from (10) that

ėi(t) = −
N∑
k=1

aik (t) (ei(t)− ek (t))+ %ei (t) (17)

with

%ei (t) =
N∑
k=1

aik (t) (φi(t)− φk (t)) (18)

where i = 1, 2, . . . ,N . For the equation (18) with the bound-
edness of φi(t), it is obtained %ei (t) is bounded.
According to Lemma 4.3 in [31] with (17), the bound-

edness of ėi(t) and ei(t) can be obtained. This implies the
boundedness of zi(t) with (10). Also, in view of Lemma 4
and (6), since zi(t) is bounded, we can obtain that xi(t) and
x(m)i (t), m = 1, 2, . . . , n− 1 are all bounded. Therefore, it is
easy to get the boundedness of ϕi(t) and qi(t). Therefore, the
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boundedness of xcl is obtained and its solution is suitable for
tf = ∞ since the bounds are unchanged with tf = ∞, that is,
Ri(t), zi(t), qi(t), ei(t), ėi(t), hci(t), φi(t),

∫ t
0 φ

2
i (τ )dτ ∈ L∞.

Therefore, we can obtain from (8) that ui(t) ∈ L∞, which
implies x(n)i (t) ∈ L∞. Thus, it is obtained from (10) that
φ̇i(t) = żi(t) + ėi(t) = x(n)i (t) + qi(t) + ėi(t) ∈ L∞. In view
of the Barbalat’s lemma with φ̇i(t) ∈ L∞, φi(t) ∈ L∞ and∫ t
0 φ

2
i (τ )dτ ∈ L∞, we obtain limt→∞ φi(t) = 0.

Since φi(t) ∈ L∞ and limt→∞ φi(t) = 0, the equation (18)
implies that %ei (t) ∈ L∞ and limt→∞ %

e
i (t) = 0. Thus,

we can see that (17) is the form of (1) with ξi(t) = ei(t) and
%i(t) = %ei (t). Since we have assume that G(t) is UQSGs,
according to Lemma 3, it has limt→∞ (ei(t)− ek (t)) =
0 with i, k = 1, 2, . . . ,N . According to (10) with
limt→∞ φi(t) = 0, it has limt→∞ (zi(t)− zk (t)) =

limt→∞ [(φi(t)− φk (t))− (ei(t)− ek (t))] = 0 with i, k =
1, 2, . . . ,N . Since limt→∞ (zi(t)− zk (t)) = 0, in view of
Lemma 4, it is obtained limt→∞

(
x(m)i (t)− x(m)k (t)

)
= 0with

m = 1, 2, . . . , n − 1 and i, k = 1, 2, . . . ,N . Therefore, it is
easy to get from (6) that limt→∞ (xi(t)− xk (t)) = 0 with
i, k = 1, 2, . . . ,N . The proof is completed.
Remark 1: Different from the proposed algorithm in [30]

including żi(t), which limits that the proposed algorithms
cannot be applied to the first-order agents, the proposed algo-
rithms (8)-(10) in Theorem 1 in this paper can be suitable for
the cooperative control of first-order agents with UHFGSs.
Therefore, the state zi(t) = xi(t) with qi(t) = 0 when n = 1.

B. OUTPUT CONSENSUS OF HETEROGENEOUS AGENTS
We deal with the case of output consensus of heterogeneous
MASs with UHFGSs under UQSGs.

Consider N heterogeneous agents with dynamics{
x(ρi)ρi,i (t) = biui(t)

yi(t) = xρi,i(t)
(19)

with i = 1, 2, . . . ,N , where ρi (ρi > 1) is the order of the
ith agent, and the high-order states of agent i are x(m)ρi,i(t) ∈ R,
m = 1, 2, . . . , ρi − 1. The signals bi, ui(t) ∈ R are the same
as defined in (2), and yi(t) ∈ R is the output of the agents.

The aim is to construct nonlinear PI control algorithms for
heterogeneous MASs (19) with Assumption 1 under UQSGs
such that output leaderless consensus is reached, that is,

lim
t→∞

(yi(t)− yk (t)) = 0 (20)

for all i, k = 1, 2, . . . ,N .
For the MASs (19), our main results are as follows.
Theorem 2: Consider N heterogeneous agents (19) with

Assumption 1 and the UQSGs. The output consensus (20) is
guaranteed if the algorithms are

ui(t) = Sρi,i(t) cos (Sρi,i(t))

×
[
κφρi,i(t)+ qρi,i(t)+ ėρi,i(t)

]
(21)

with PI term

Sρi,i(t) =
1
2
φ2ρi,i(t)+ κ

∫ t

0
φ2ρi,i(τ )dτ (22)

and {
φρi,i(t) = zρi,i(t)+ eρi,i(t)

ėρi,i(t) =
∑N

k=1
aik (t)

(
zρi,i(t)− zρi,k (t)

) (23)

where

zρi,i(t) =
(
γ +

d
dt

)ρi−1
xρi,i(t)

= C0
ρi−1γ

ρi−1xρi,i(t)+ C
1
ρi−1γ

ρi−2ẋρi,i(t)

+ · · · + Cρi−2ρi−1
γ x(ρi−2)ρi,i (t)+ Cρi−1ρi−1

x(ρi−1)ρi,i (t)

(24)

and

qρi,i(t)

= C0
ρi−1γ

ρi−1ẋρi,i(t)+ C
1
ρi−1γ

ρi−2ẍρi,i(t)

+ · · · + Cρi−3ρi−1
γ 2x(ρi−2)ρi,i (t)+ Cρi−2ρi−1

γ x(ρi−1)ρi,i (t) (25)

with κ > 0, γ = 1, and C j
i s’ are coefficients of the binomial

expansion.
Proof: In view of (11)-(18), it is similarly obtained

φρi,i(t) ∈ L∞ and limt→∞ φρi,i(t) = 0. According to (23),
it is obtained

ėρi,i(t) = −
N∑
k=1

aik (t)
(
eρi,i(t)− eρi,k (t)

)
+ %eρi,i(t) (26)

with

%eρi,i(t) =
N∑
k=1

aik (t)
(
φρi,i(t)− φρi,k (t)

)
. (27)

It is known that φρi,i(t) ∈ L∞ and limt→∞ φρi,i(t) =
0. According to (27), we have %eρi,i(t) ∈ L∞ and
limt→∞ %

e
ρi,i(t) = 0. Suppose ξi(t) = eρi,i(t)

and %i(t) = %eρi,i(t) with Lemma 3, we obtain
limt→∞

(
eρi,i(t)− eρi,k (t)

)
= 0. In view of (23) with

limt→∞ φρi,i(t) = 0, it is obtained limt→∞
(
zρi,i(t) −

zρi,k (t)
)
= 0 for all i, k = 1, 2, . . . ,N . Note from (23) that

limt→∞ ėρi,i(t) = 0. Furthermore, in view of Lemma 4.3
in [31], since %eρi,i(t) ∈ L∞ with (26), it is seen that ėρi,i(t) ∈
L∞ and eρi,i(t) ∈ L∞, which implies zρi,i(t) ∈ L∞. Along
with limt→∞ ėρi,i(t) = 0, it implies that limt→∞ eρi,i(t)
exists and is a constant. Therefore, it is known from (23) that
limt→∞ zρi,i(t) = z∗ is a constant due to limt→∞ φρi,i(t) = 0.

Since zρi,i(t) ∈ L∞ and limt→∞ zρi,i(t) = z∗, accord-
ing to Lemma 4 with (24), it is obtained xρi,i(t) ∈ L∞,
limt→∞ xρi,i(t) = x∗ρi,i, x

(m)
ρi,i(t) ∈ L∞ and limt→∞ x(m)ρi,i(t) =

x∗ρi,im for each m = 1, 2, . . . , ρi− 1. Since limt→∞ xρi,i(t) =
x∗ρi,i, ẋρi,i(t) ∈ L∞, ẍρi,i(t) ∈ L∞, according to the
Barbalat’s lemma, we obtain limt→∞ ẋρi,i(t) = 0. Simi-
larly, it is easy to obtain limt→∞ x(m)ρi,i(t) = 0 with m =

2, 3, . . . , ρi − 2. Furthermore, due to x(m)ρi,i(t) ∈ L∞ for all
m = 1, 2, . . . , ρi − 1, we know that qρi,i(t) is bounded.
In view of (21), it is easy to know ui(t) ∈ L∞. Thus, it has
x(n)ρi (t) = biui(t) ∈ L∞. Since limt→∞ x(ρi−2)ρi,i (t) = 0,

222028 VOLUME 8, 2020



Q. Wang: Nonlinear PI Control for High-Order Agents With UHFGSs Under Switching Topologies

FIGURE 1. The switching topologies G(t) described by the UQSGs.

FIGURE 2. The state trajectories of xi and ẋi (i = 1, . . . ,4).

x(ρi−1)ρi,i (t) ∈ L∞ and x(ρi)ρi,i (t) ∈ L∞ for all i = 1, 2, . . . ,N ,

we can also obtain that limt→∞ x(ρi−1)ρi,i (t) = 0. Thus, we have

limt→∞ x(m)ρi,i(t) = 0 for each m = 1, 2, . . . , ρi − 1. Along
with (24), γ = 1 and limt→∞

(
zρi,i(t)− zρi,k (t)

)
= 0,

we have limt→∞
(
xρi,i(t)− xρk ,k (t)

)
= 0, and this implies

limt→∞ (yi(t)− yk (t)) = limt→∞
(
xρi,i(t)− xρk ,k (t)

)
= 0.

Remark 2: In view of Theorem 2, we deal with the out-
put consensus of heterogeneous MASs with UHFGSs under
UQSGs, which extends the results in Theorem 1 to the more
general case.

IV. SIMULATION EXAMPLES
We give two examples to verify the performance of the pro-
posed algorithms for state and output consensus of MASs
under UQSGs, respectively. Furthermore, the considered
UQSGs is illustrated in Fig. 1.
Example 1: The effectiveness of proposed

algorithms (8)-(10) is verified by one simulation example.
The network topology ofMASs with four six-order dynamics
described by Fig. 1, where the transitions are G1 → G2 →
G3→ G1→ · · · . The switching sequence is

G(t) =


G1, when t mod 2 ∈ [0, 0.5)
G2, when t mod 2 ∈ [0.5, 1)
G3, when t mod 2 ∈ [1, 2) .

The initial states
[
x(5)i (0), x(4)i (0), x(3)i (0), ẍi(0), ẋi(0), xi(0)

]T
,

i = 1, . . . , 4, are [5,−2, 1, 2,−1, 3]T ,
[
− 2, 4,−2.5, 0.5,

FIGURE 3. The state trajectories of ẍi and x (3)
i (i = 1, . . . ,4).

FIGURE 4. The state trajectories of x (4)
i and x (5)

i (i = 1, . . . ,4).

FIGURE 5. The output yi (i = 1, . . . ,4) for heterogeneous agents.

0.3,−0.4
]T , [1,−3, 0.3, 1, 0.2, 1]T and big[−1, 3,−2,

−0.4, 5, 3
]T , and the UHFGSs are b1 = 1, b2 = 3, b3 = 2,

b4 = −1. In control algorithms (8)-(10), the parameter
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FIGURE 6. The state trajectories of ẋi (i = 1, . . . ,4) for heterogeneous
agents.

FIGURE 7. The state trajectories of ẍi and x (3)
i (i = 1,2) for

heterogeneous agents.

FIGURE 8. The state trajectories of x (4)
i and x (5)

i (i = 1,2) for
heterogeneous agents.

κ = 1. It is observed from Fig. 2-4 that under the UQSGs,
the consensus objective can be reached.

Example 2: In this example, we verify the proposed algo-
rithms (21)-(23) by one simulation example. The topology
is selected as the switching topologies shown in Fig. 1,
where agent 1 and agent 2 are six-order dynamics, and
agent 3 and agent 4 are second-order dynamics. The ini-

tial states
[
x(5)i (0), x(4)i (0), x(3)i (0), ẍi(0), ẋi(0), xi(0)

]T
, i =

1, 2, are randomly given as [5,−2, 1, 2,−1, 3]T and
[−2, 4,−2.5, 0.5, 0.3,−0.4]T , respectively. The initial con-
ditions of agent 3 and agent 4 [ẋi(0), xi(0)]T , i = 3, 4, are
given as [−3,−2]T and [−4, 1]T . The parameter of control
algorithms (21)-(23) is κ = 1, and the nonidentical unknown
high-frequency gain signs are b1 = 1, b2 = 3, b3 = 2,
b4 = −1. It can be observed from Fig. 5 that the output
consensus of heterogeneous agents is achieved.

V. CONCLUSION
This paper has proposed the nonlinear PI control algorithms
for consensus of high-order agents with UHFGSs under
switching topologies. It has been proven that the proposed
algorithms with properly selected nonlinear PI functions
can guarantee the consensus for MASs under the UQSGs.
Moreover, the existing results have been extended to the
output consensus of heterogeneous agents with UHFGSs.
At last, two examples have been given to present the effi-
ciency of the proposed algorithms. Further research direc-
tion will be the cooperative control of MASs with complex
dynamics.
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