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ABSTRACT Wireless channel scene recognition plays a key role in cognitive radio (CR) mobile com-
munication systems. This paper proposes a wireless channel scene identification framework based on
the autocorrelation function and deep learning. First, a feature extraction (FE) method is developed to
perform a channel scene date analysis based on the autocorrelation function (AF). The AF is used to
realize the FE method because it can be combined with Fourier transform (FT) to accurately extract the
characteristics accurately from a time-varying channels scene. Second, a deep belief network (DBN) with
a robust learning approach is introduced to perform wireless channel scene recognition. A novel learning
architecture is employed, which combines the feature parameter and classification techniques to achieve
a high classification correct recognition rate. Third, the k-step contrastive divergence (CD-k) algorithm
is introduced as the preliminary training method to optimize the traditional DBN network. This method
can effectively calculate the logarithmic gradient of the Boltzmann machine. Moreover, the up-down
optimization algorithm is applied to optimize the network parameters. Finally, the theoretical implementation
is described in detail, and the method is verified by constructing an experiment platform for an engineering
application. The experimental results indicate that the proposed classifier is an excellent approach to realize
channel scene recognition through advanced methods. The classification accuracy of the proposed approach
is higher than that of several existing techniques.

INDEX TERMS Wireless channel, scene recognition, autocorrelation function, deep belief network (DBN).

I. INTRODUCTION
Cognitive radio has developed rapidly in recent years. The
main goal is to achieve reliable communication by enhanc-
ing the spectrum utilization. To this end, the key step is
to identify and analyse the scene of the wireless channels.
In wireless communication, we call the different types of
wireless channels models in different environments as wire-
less channel scenarios. After identifying the wireless channel
scene, the physical layer technology suitable for the channel
can be adapted to further enhance the performance of the
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approving it for publication was Jenny Mahoney.

communication system. However, the electromagnetic envi-
ronment is complex, with diverse signals that change rapidly
in the wireless communication domain [1], [2]. More-
over, the wireless channel environment involves large-scale
fading [3], [4], small-scale fading [5], [6], and Doppler
effects [7], [8]. Consequently, realizing scene recognition
in wireless channels is challenging. In this scenario, it is
necessary to adopt an advanced intelligent method to compre-
hensively identify the complex communication environments
comprehensively. Therefore, the study of wireless channel
scene recognition is of significance.

To solve the problem of the challenging identification in
an additive noise channel environment, an unbiased blind
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adaptive channel identification and equalization algorithm
was proposed in [9]. The considered structural property can
be observed inmany array processing applications. Paper [10]
recommended measures for non-line-of-sight (NLOS) identi-
fication, which is based on the space-time-frequency channel.
This method can achieve a high recognition performance for
line of sight (NLOS) andNLOS channels. To reduce the influ-
ence of noise in blind channel identification, a subspace track-
ing algorithm was proposed in [11], based on the recursive
least squares (RLS) approach. However, RLS-based algo-
rithms are widely known to be sensitive to the impulse noise
in an actual scene. Paper [12] proposed a channel recognition
scheme to overcome this dilemma, which based on the robust
statistics subspace tracking method. However, this method
is applicable for only three different types of time-varying
channel scenarios. A blind channel identification method
based on a weighted statistical mixture model was introduced
in [13] for indoor scenario clustering. It is a weighted statisti-
cal mixture model [13]. However, this method is suitable for
only for indoor wireless channel scenarios. In [14], a method
to realize wireless channel classification was introduced to
combine convolutional neural networks, and this technique
was successfully applied to realize modulation recognition.
In [15], the authors proposed a channel status classifica-
tion approach by using the Received Signal Strength Indica-
tor (RSSI) in indoor scenarios. The threshold was changed
according to the statistical features in the special channel
environment. This algorithm yielded a classification accuracy
of approximately 85%.

However, in general, transmitters are located far away from
the base station, and there are many reflectors are present.
Consequently, no direct path exists between the transmitter
and receiver, and the channel obeys a Rayleigh distribu-
tion [16]. Clarke first proposed the classical Clarke model
for the Rayleigh time variation channel in [17]. Jakes opti-
mized the Clarke model; however, the model could not main-
tain the stability of the broadband [18]. Thus, an improved
model was proposed by Pop and Beaulieu [19]. In addition,
certain channels have been proposed for different channel
scenarios and research fields. In general, Research on the
wireless channels can be examined through computer sim-
ulations and platform construction. The simulation models
can be divided into deterministic and statistical models [20].
Deterministic models are also known as sum-of-sinusoids
methods, in which the key aspect is to simulate the character-
istics of the fading channel by superposing a large number of
sinusoidal signals with different information. In the statistical
models is also known as the formed filter methods [21],
the power spectral density is modified through white Gaus-
sian noise to simulate different wireless channel scenarios.

In recent years, artificial intelligence has been widely
developed, and pattern recognition method based on neural
network has been widely used. Wireless channel recogni-
tion based on neural network mainly includes feature extrac-
tion and classification recognition. A wireless channel often
exhibits randomness and time variability, which increases the

difficulty of extracting the wireless channel feature extrac-
tions. Certain researchers [22] used the wavelet transform
technology to extract the fingerprint features of a wire-
less network. Moreover, an array-based feature extraction
method was proposed to determine the radio frequency fin-
gerprint [23]. The characteristic parameters were estimated
considering the rotation invariance. The feature extraction
functions usually involve a Fourier transform [24], Hilbert
transform [25], linear discriminant analysis [26], principal
component analysis [27], or other dimensionality reduction
techniques [28]. However, it is difficult to extract the charac-
teristic parameters of channel scenes. In this paper, a feature
parameter extraction method based on the autocorrelation
function is proposed. The power spectral density with more
robust characteristics can be obtained by combining the auto-
correlation function with Fourier transform, and PSD has
more vital characteristic attributes. To realize channel scene
recognition, after extracting the characteristic parameters the
classification algorithm should be employed. The existing
classification and recognition methods can be divided into
two categories: decision theory-based methods and pattern
recognition methods [29], [30]. The identification problem
is considered to be a compound hypothesis test problem
based on the decision theory, and an appropriate thresh-
old value is selected as the decision basis. For example,
the power weighted statistical model applied is a decision-
theory-based method to realize indoor wireless channel scene
clustering [31]. However, this method cannot be widely
applied owing to its complicated derivation and high oper-
ation cost. Methods based on pattern recognition can be
roughly divided into neural network methods [32], radial
basis neural network methods (RBF) [33], support vector
machine methods (SVM) [34], and multiple kernel relevance
vector machine (MKRVM) techniques [35]. These methods
have been widely used in classification and recognition tasks.
However, in the wireless channel scenarios with fast time-
variations, large broadband, and multiple-dimensions, these
traditional methods cannot achieve high recognition accu-
racy. To enhance the identification effect, this article proposes
a wireless channel scene classification method based on a
deep learning network. Compared with the traditional neural
network method, the pattern recognition method based on
deep learning has more vigorous learning and classification
ability.

A new scene recognition method mainly includes two pro-
cesses: feature extraction and classification based on the AF
and DBN, respectively. The key contributions of this paper
can be summarized as follows.

(1) A feature extraction method based on the AF is
proposed for a wireless channel based on AF. The AF is
derived through the complex baseband impulse response
in the wireless channel. The characteristic parameters are
obtained by using the AF combined with a Fourier transform.
In particular, a Fourier transform, windowing, and normal-
ization are realized to achieve high quality characteristic
parameters.
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(2) A method is proposed to realize wireless channel scene
recognition based on a DBN. This method constructs a hybrid
classifier model by using the Boltzmann machine. The model
includes both undirected and directed parts.

(3) The training of deep learning networks is realized using
two processes, specifically, non-supervised pre-training and
supervised parameter tuning. The CD-k learning algorithm
is used to optimize the DBN network to promptly calculate
the log-likelihood gradient of the constrained Boltzmann
machine. The upper and lower algorithms are adopted to
avoid large deviation during classification.

4) Two approaches are employed to verify the correctness
and accuracy of the proposed method. One method is to
obtain the Rayleigh fading channel of different scenarios
through the forming filter method, and then the channel
recognition is realized using the proposed approach. The
other method is to build a wireless channel scene simulation
platform by combining hardware and software. Subsequently,
the proposed method in this paper is used to test and verify
the wireless channel scene data collected by the platform.

The remaining paper is arranged as follows. In Section II,
describes the Rayleigh time-varying channel and the process
of feature parameter extraction, along with the DBN network.
The DBN design and model structure of the recognition
algorithm are described in Section III. The experiment and
results analysis are presented in Section IV. Specifically,
the section involves two parts. Part one corresponds to the
channel simulation and method verification, and part two
corresponds to the experiment platform and results in analysis
of the results. Section V presents the concluding remarks.

II. RAYLEIGH TIME VARIATION CHANNEL AND FEATURE
PARAMETER EXTRACTION
First, we describe the Rayleigh time variation channel, fol-
lowed by the solution of the autocorrelation algorithm in the
wireless domain. Subsequently, we describe the process of
the feature parameters extraction by using the autocorrelation
algorithm.

A. RAYLEIGH TIME VARIATION CHANNEL
In this section, we describe the modelling of the time-
dependent channel variation with themovement of themobile
terminal. The actual environment is shown in Fig.1. A plane
wave arrives at an angle. Suppose that a station moves at a
certain velocity, and the wave arrives x → y horizontally in
the plane.

When x(t) is the baseband transmitting signal, the corre-
sponding baseband transmitting signal is:

x̃ (t) = Re
[
x (t) ej2π fct

]
(1)

where, Re [(t)] represents the real part.
Given a velocity υ and wavelength λ, the Doppler fre-

quency shift can be defined as

fi = fD cos θi =
v
λ
cos θi (2)

FIGURE 1. Non-line-of-sight communication environment.

where, fD is the maximum Doppler shift, and θi is the angle
of arrival (AOA) corresponding to the ith plane wave.
After the baseband transmitting signal passes the scattering

channel through a strip propagation path, the received signal
in the passband can be expressed as

ỹ (t) = Re
[
y (t) ej2π fct

]
=Re

[
I∑
i=1

Cie−jφi(t)x (t−τi) ej2π fct
]
(3)

where, y (t) is the baseband signal; Ci and τi respectively
represent the channel gain and delay of the fi propagation
path; fi represents the Doppler frequency shift, with φi (t) =
2π {(fc + fi) τi − fiτi}. Therefore, the baseband signal can be
modelled as a linear time-varying filter, as in formula (3), and
the complex baseband impulse response can be defined as
follows:

h (t, τ ) =
I∑
i=1

Cie−jφi(t)δ (t, τi) (4)

where, δi (·) is the Dirac delta function. When the sampling
period Ts is considerably larger than the path delay difference,
the path delay τi can be approximated as τ̃ .

Therefore, equation (4) can be expressed as

h (t, τ ) = h (t) δ (t − τ̃ ) (5)

In this case, h (t) =
I∑
i=1

Cie−jφi(t). When the baseband

transmitting signal x (t) = 1, the passband receiving signal is

ỹ (t) = Re
[
y (t) ej2π fct

]
= Re

[{
hI (t)+ jhQ (t)

}
ej2π fct

]
= hI (t) cos (2π fct)+ hQ (t) sin (2π fct) (6)

where hI (t) =
I∑
i=1

Ci (t) cosφi (t) is the coaxial component,

hQ (t) =
I∑
i=1

Ci (t) sinφi (t) is the orthogonal component,

φ0 is the phase offset, and φi (t) == 2π fcτi (t)− φDi − φ0 is
the delay.

If I is sufficiently large, the central limit theorem can be
used to approximate hI (t) and hQ (t) jointly as Gaussian
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random processes. The Gaussian property holds for I when
the φi (t) is evenly distributed on [−π, π], and Ci (t) obeys
the Rayleigh distribution.

B. AUTOCORRELATION FUNCTION FOR WIRELESS
CHANNELS
In this paper, the autocorrelation algorithm is used to extract
the characteristic parameters in different channel scenar-
ios. We use hI (t) and hQ (t) to represent the in-phase and
quadrature received signal components, respectively. Our
derivations are based on certain key assumptions which are
applied to different Rayleigh channel models. The multipath
is defined as τi (t), is defined as Ci, and Doppler frequency is
defined as fDi (t). We assume that these parameters change
gradually and can be considered as constants for a brief
period. Thus, Ci (t) ≈ Ci, fDi (t) ≈ fDi , and τi (t) ≈ τi.
Therefore, φDi (t) =

∫
t 2π fDidt = 2π fDi t . In this case,

the phase is φi (t) = 2π fcτi − 2π fDi t − φ0. Thus,

E [hI (t)] = E

[∑
i

Ci cosφi (t)

]
=

∑
i

E [Ci]E [cosφi (t)] = 0 (7)

where the equality indicates that the Ci and cosφi (t) are
independent, and follows from the uniform distribution per-
taining to φi. Similarly, as we can prove that E

[
hQ (t)

]
= 0.

Therefore, considering the autocorrelation of the hI and hQ,
we can obtain the following expression:

E
[
hI (t) hQ (t)

]
=

∑
i

∑
j

E
[
CiCj

]
E
[
cosφi (t) sinφj (t)

]
=

∑
i

E
[
C2
i

]
E [cosφi (t) sinφi (t)] = 0

(8)

Thus, hI (t) and hQ (t) are uncorrelated, since these two
variables are Gaussian processes.

We can obtain the autocorrelation AhI (t, τ ) if following a
similar derivation from formula (8).

AhI (t, τ ) = E [hI (t) hI (t + τ)]

=

∑
i

E
[
C2
i

]
E [cosφi (t) cosφi (t + τ)] (9)

By substituting φi (t) = 2π fcτi − 2π fDi t − φ0 and
φi (t + τ) = 2π fcτi − 2π fDi (t + τ) − φ0 in formula (7),
we can obtain

E [cosφi (t) cosφi (t + τ)]

= 5E
[
cos

(
2π fDiπ

)]
+ 5E

[
cos

(
4π fcτi − 4π fDi t − 2π fDiτ − 2φ0

)]
(10)

Since 2π fcτi changes rapidly and is uniformly distributed,
so the second expectation part in (10) becomes zero.

Therefore,

AhI (t, τ ) = 5
∑
i

E
[
C2
i

]
E [cos (2π fDτ)]

= 5
∑
i

E
[
C2
i

]
cos (2πvτ cos θi/λ) (11)

Assume that fDi = v cos θi/λ is fixed. Since AhI (t, τ ) =
AhI (τ ), and AhI (t, τ ) depends only on τ , thus hI (t) is a
wide-sense stationary random process.

A similar derivation yields similar results for the hQ (t)
autocorrelation as hI (t) = hQ (t). The cross-correlation
between the hI (t) and hQ (t) can be expressed as

AhI ,hQ (t, τ ) = AhI ,hQ (τ )

= E
[
hI (t) hQ (t + τ)

]
= −5

∑
i

E
[
C2
i

]
sin (2πvτ cos θi/λ)

= −E
[
hQ (t) hI (t + τ)

]
(12)

Thus ỹ (t) = hI (t) cos (2π fct) + hQ (t) sin (2π fct) is also
wide-sense stationery (WSS), and

Ah (τ ) = E [h (t) h (t + τ)]

= AhI (τ ) cos (2π fcτ)+ AhI ,hQ (τ ) sin (2π fcτ) (13)

We consider certain assumptions to simplify (11) and (12)
in the context of the wireless communication environment,
with the emphasis on ensuring a uniform scattering envi-
ronment. We assume the angle of arrival of the multipath
scattering components, θn = i1θ , where 1θ = 2π/N , and
hypothesize that each multipath component has the identi-
cal received power, therefore E

[
C2
i

]
= 2Ph/N . Ph is the

received power. In this case, (13) can be expressed as

Ah (τ ) = E [h (t) h (t + τ)]

= AhI (τ ) cos (2π fcτ)+ AhI ,hQ (τ ) sin (2π fcτ) (14)

We substitute N = 2π/1θ into formula (14), and consider
the limit of the number N → ∞, and 1θ → 0. In this case
then the summation in (14) can be expressed as an integral
in (15).

AhI (τ ) =
Ph
2π

∫
cos (2πvτ cos (θ/λ)) dθ = PhJ0 (2π fDτ)

(15)

where J0 (x) = 1
π

∫ π
0 e−jx cos θdθ is a Bessel function.

Similarly, we obtain the autocorrelation AhI ,hQ (τ ) of a
uniform scattering environment.

AhI ,hQ (τ ) =
Ph
2π

∫
sin (2πvτ cos (θ/λ)) dθ = 0 (16)

C. FEATURE PARAMETERS EXTRACTION THROUGH
AUTOCORRELATION
The power spectral density (PSD) of hI (t) and hQ (t) can be
expressed as by SI (f ) and SQ (f ), respectively, acquired by
the Fourier transform of the corresponding autocorrelation
functions. Since the autocorrelation functions are equal, they
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have the same PSD. Thus, the PSD of the in-phase received
signal components can be expressed as

ShI (f )=F
[
AhI (τ )

]
=


Ph

2π fD

1√
1−

(
f
fD

)2 , |f | ≤ fD
0, |f | > fD

(17)

The PSD of the received signal ỹ (t) is obtained using
formula (13), with AhI ,hQ (τ ) = 0, and the properties of the
Fourier transform are used to determine the DSP formula of
the classical model.

Sh (f ) = F [Ah (τ )] = 25
[
ShI (f − fc)+ ShI (f + fc)

]
=


Ph

4π fD

1√
1−

(
|f−fc|
fD

)2 , |f − fc| ≤ fD
0, else

(18)

where fD is the maximum Doppler frequency shift.
fD = fc · (v/c), where fc is the carrier frequency, v is the
vehicle speed, and c is the velocity of light.
Following a similar derivation, the DSP can be theoret-

ically obtained for other kinds for Rayleigh time-varying
channels.

The DSP formula of a flat fading channel is expressed by

Sh (f ) =
Ph
2fD

, −fD ≤ f ≤ fD (19)

The DSP expression of the Rayleigh Gaussian channel can
be expressed as

Sh (f ) =
Ph√
2πσ 2

g

e
−

f 2

2πσ2g , −fD ≤ f ≤ fD (20)

where σg is the statistical variance of fD.
The DSP formula of the rounded fading channel can be

expressed as

Sh (f ) = Ph

[
a0 + a2 ∗

(
f
fD

)2

+ a4 ∗
(
f
fD

)4
]

(21)

where the coefficients a0, a2, and a4 correspond to the poly-
nomial, Polynomial= [a0 a2 a4], which is a finite real vector,
where −fD ≤ f ≤ fD.

The DSP expression of the Butterworth fading channel can
be expressed

Sh (f ) =
Ph

π fD

√
1−

(
f
fD

)2 , −fD ≤ f ≤ fD (22)

The PSD corresponds to the difference in the five different
channels, determined by the Fourier transform of the cor-
responding AF respectively. Thus, the PSD can be used as
a characteristic parameter to identify the different channel
scenes.

III. DBN DESIGN AND MODEL STRUCTURE OF THE
WIRELESS CHANNEL RECOGNITION ALGORITHM
This section describes the design of the DBN networks clas-
sifier, and channel scene recognition algorithm.

A. DESIGN OF THE DEEP BELIEF NETWORKS CLASSIFIER
The DBN network established in this paper is a hybrid
model network, as shown in Fig.2. The top two layers are
undirected graphs that form an associative memory network,
and while the other layers form a directed graph. From
the bottom up, a visible vector and the hidden layer vector
hk =

(
hk,1, hk,2, · · · hk,n

)T are present G1, and the recog-
nition weight is represented by W 1. k = 1, 2, · · · , r . r
represents the number of layers.

FIGURE 2. The architecture of the DBN.

The generated weights between the (k − 1) hidden layer
and the fD hidden layer are denoted asGk , and the recognition
weights are represented as W k . However, the associative
memory constitutes an undirected connection between the
(r − 1) hidden layer and the r hidden layer, the connec-
tion weights between these layers are known as associative
weights W r . The bias is represented by the visible layer,
and the generation bias is represented as bk . Identification
offset is represented as bk . (1 ≤ k ≤ r − 1), and br+1 is the
identification offset of the label layer.

The joint probability distribution of the DBN can be
expressed as

p (v, y, h1, h2, · · · , hr |θ )

= p (v |h1 ) p (h1 |h2 ) · · · p (hr−2 |hr−1 ) p ((y, hr−1) , hr )

(23)

Parameter set θ=
{
W k,Gk , bk , bk ,W r , br ,W r+1, br+1, a

}
.

Moreover, p ((y, hr−1) , hr ) is computed as a constrained
Boltzmann machine, (y, hr−1) is the visible vector, and hr is
the implicit vector.
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Using the probability sum technique to eliminate the label
vector, the marginal distribution can be obtained as

p (v, y, h1, h2, · · · , hr |θ )

= p (v |h1 ) p (h1 |h2 ) · · · p (hr−1, hr ) (24)

The output classification probability can be calculated by
using the maximum flexible output function:

p (y = ei |hi ) = soft maxi
(
W r+1hr + br+1

)
(25)

For the remaining layers, there are

p (hk−1 |hk ) =
∏
i

p
(
hk−1,i |hk

)
, ∀1 ≤ k ≤ r − 1 (26)

B. CHANNEL SCENE RECOGNITION ALGORITHM
Compared with general classifiers, the DBN network exhibits
a stronger deep representation ability and can effectively
solve classification problems well. Therefore, this paper
employs a deep learning network.

Algorithm 1 Learning Algorithm of DBN
Step 1: numbers close to 0, where 1 ≤ i ≤ r + 1.
Step 2: Using the CD-k algorithm to train the first RBM,

the visual layer of the RBM is v and the
hidden layer is h1.

Step 3: For 1 ≤ i ≤ r − 1, take hi−1 as the visual layer of
the ith RBM and hi as the hidden layer of the ith
RBM, use the CD-k algorithm to train the
RBM layer by layer.

Step 4: For i = r , taking the whole of hr−1 and y as the
visual layer and hr as the hidden layer, construct a
classifier RBM, and use the label CD-k algorithm
for training.

Step 5: The pre-trained DBN is expanded into a
deep perceptron.

Step 6: The up-down optimization algorithm is used
to optimize the network parameters.

Step7: Stop trainingwhen the errormeets the requirements.

In the unsupervised pre-training phase, the two adjacent
layers (hk−1, hk) are treated as an RBM of the deep belief
network with no labels. Moreover, the top two layers are
treated as classification constrained Boltzmann machines,
trained using CD-k algorithm to initialize a,W k ,Gk , bk ,
and W r , br ,W r+1, and br+1. The training process is aimed
at using the conditional probabilities Q (hk |hk−1 ) and
Q (hr |hr−1, y ) of these constrained BMs to estimate the
conditional probabilities p (hk |hk−1 ) ≈ Q (hk , hk−1) and
p (hr |hr−1, y ) = Q (hr |hr−1, y ), respectively.

In the up-down optimization phase, the recognition
weights Gk =

(
W k

)T are used to initialize the generated
weights. All the networks are then tuned using the upper and
lower algorithms. The up-down algorithm is a variation of
the waking algorithm, which consists of waking and sleeping
stages, as shown in Fig.2.

The learning discrimination process of the DBN is as
algorithm 1. Step 1 - step 4 is the unsupervised training stage.
Step 5 - step 7 is the supervised tuning phase.

In the sleep phase, to estimate the generation weights and
generate offsets using the recognition weights and recogni-
tion bias are used repeatedly. The wake phase is aimed at
realizing overall tuning according to the estimated recogni-
tion weight and identification bias.

In step 5, in the supervised tuning phase, the DBN is first
expanded into a deep perceptron. The weight and bias are
initialized usingW k , bk , respectively, trained layer by layer in
the deep perceptron, and through the back-propagation algo-
rithm to optimize the global network. Moreover, the back-
propagation algorithm is used to optimize the overall
adjustment.

The overall architecture of the DBN based classification is
shown in Fig.3. The architecture involves four major parts,
a wireless channel, feature extraction, deep learning network
construction and training, and classification.

FIGURE 3. The overall architecture of the DBN based classification.

IV. EXPERIMENT AND ANALYSIS RESULTS
This section describes the experiment and the results of the
recognition method based analysis. This section consists of
two parts. The first part corresponds to the channel simulation
and method verification, and the second part describes the
experiment platform and results in analysis results.

Considering the static or quasi-static nature of the indoor
channel, outdoor channels can be typically characterized
according to the time variation of the channel gain, which
depends on the mobile platform. The outdoor channel is
mostly characterized by a Doppler spectrum that governs
the time variation in the channel gain. In this paper, channel
scenarios are examined through two paths of the theoretical
simulation and channel simulator. The method is applied
to the simulated and the measured channels pertaining to
the feature extraction and classification, respectively. This
part is divided into two subparts. Section A describes the
implementation of the proposed method of this paper through
a simulation experiment. Section B describes the accuracy
validation of the proposed channel scenario platform.

A. WIRELESS CHANNEL SCENE AND VERIFICATION OF
THE RECOGNITION METHOD
The simulation methods of the Rayleigh fading channel
include the sinewave superpositionmethod and forming filter
method. Although the formed filter method has a high design
complexity, its statistical accuracy is higher than that of the
sinusoidal superposition method, and it can better simulate
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the fading channel model. In this paper, the Doppler filter
method is used to generate Rayleigh fading channel, and the
channel implementation model is shown in Fig.4.

FIGURE 4. The wireless channel simulation model.

The channel model is devised under the assumption that
the scattering components around a mobile station are uni-
formly distributed with an equal power for each component.
Fig.4 shows the block diagram for the channel model, involv-
ing two branches, one branch corresponds to the real part, and
the other branch corresponds to the imaginary part. In each
branch, a complex Gaussian noise is first generated in the
frequency domain and filtered by a Doppler filter such that
the frequency component is subject to the Doppler shift.
Finally, the Doppler-shifted Gaussian noise is transformed
into the time-domain signal through an IFFT block. Since the
output of the IFFT block must be a real signal, its input must
always be conjugate symmetric. By constructing a complex
channel gain by adding a real part to the imaginary part of the
output, a channel following the Rayleigh distribution can be
generated.

1) RELATED PARAMETER SETTINGS IN THE RAYLEIGH
WIRELESS CHANNEL SCENE SIMULATION
Sample rate = 104; random number seed = ’m19937ar with
seed’; seed = 34; maximum Doppler shift fD = 500 Hz;
channel length = 6000 ( function calls the impulse response
points of a channel); The Gaussian parameters σ 2

g = 0.7071;
The cycle number of channel produces = 20; The length of
the window function is 100, and the overlap number for each
segment is window∗3/4; The waveforms of the five kinds of
simulated channels are shown in Fig. 5.

2) CHANNEL ASSESSMENT
Mutual movement occurs between the transmitter and
receiver. The time-varying characteristics correspond to the
scattering multipath channel, and the amplitude sum is
the time-varying aspect of the in-phase component and
the orthogonal component, which belong to the received
signal. It has been proved that the Rayleigh distribution can
be applied when the multipath number I is sufficiently large
enough. This characteristic is used to evaluate the simulation
channel model.

According to the definition of the Rayleigh distribution,
the amplitude of PDF (p (ỹ)) should obey amplitude (27)
belongs to the received signal ỹ (t):

p (ỹ) =
ỹ
σ 2 exp

(
−

ỹ2

2σ 2

)
(27)

FIGURE 5. The waveforms of the five simulation.

When fD = 500 Hz,Ts = 50 [µs] is statistically the
envelope of the received signal ỹ (t).

The probability statistics method is used to calculate the
amplitude in the five channels. The channel validation results
are shown in Fig.6. All five channels exhibit Rayleigh chan-
nel characteristics. Equations (16) indicate that hI (t) and
hQ (t) are simultaneously independent of each other at the
same time. When fD = 500Hz,Ts = 50 [µs], and statis-
tical analysis was conducted considering the phase of the
different channel scenarios. The statistical results are shown
in Fig.6 (b). The results indicate that all five channels exhibit
a Rayleigh distribution.

FIGURE 6. The statistical distribution of five different channel scenarios.
(a) Amplitude statistical properties of five different channels. (b) Phase
statistical properties of five different channels.

Five hundred Monte Carlo simulations were performed
for each channel. The extraction method was used to extract
the feature parameter for the five channels in this paper.
The PSD functions were obtained for the in different chan-
nels. Fig.7 shows the 200 groups characteristic parameters
obtained using theMonte Carlomethod in four kind channels.
The X-, Y-, and Z-axes show the Doppler frequency, experi-
ment number and power of the PSD, respectively.
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FIGURE 7. The feature parameters extracted results by the autocorrelation method in different channel scenarios.
(a) PSD in Classical fading channel. (b) PSD in Flat fading channel. (c) PSD in the Gaussian fading channel. (d) PSD in the
Butterworth fading channel. (e) PSD in the Rounded fading channel.

Fig.7 indicates that the characteristic parameters are signif-
icantly different in different channel scenarios. The extracted
feature parameters can represent the essential features of
varying channel scenes. The proposed method can be noted
to be highly effective, and the extracted feature parameters
can be used as training data for the DBN.

Parameter setting of the DBN: The number of nodes in the
input layer is 1401. Three hidden layers exist 12-8-6-4,
the softmax is set to have five nodes in the output layer, and
the learning rate and penalty factor are set as 0.1 and 0.1,
respectively. For each layer, the activation function adopts the
sigma function. The number of pre-training iterations is 400,
set to be 100 times of the fine-tuning iterations.

The results of the proposed method were compared with
those of the BP neural network method, support vector
machine (SVM) method, and Radial Basis Function (RBF)
neural network method.

The number of nodes in the input layers and output layer
of these three recognition methods was the same as those of
the proposed DBN. The training and testing data of all the
methods were the same, and several classification methods
were trained and tested. During the training process, we per-
formed the manual tuning of several methods. To present
the comparative results more objectively, the final relevant
experimental parameters of the identification methods are
presented.
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The hidden layer structure of the BP neural network cor-
responded to 128-4. The learning rate of the BP was 0.1,
and the training accuracy was 10−3. The BP was trained
through the adaptive gradient descent method, and training
da was used as the training function. The optimal parameter
(penalty factor) of the SVM was obtained through cross-
validation. The kernel function of the SVM was the radial
basis function, and the training accuracy of the SVM was
set as 10−3. The RBF neural network was built automati-
cally using the Newrbe function in MATLAB. The spread
of the radial basis functions was set as 0.5. The Gaussian
function was selected as the transfer function of the RBF
neural network. The two-dimensional feature distribution is
shown in Fig.8.

Fig.8 (a) shows the two-dimensional feature distribution
diagram results obtained using the back-propagation (BP)
neural network. As shown in Fig.8 (a), the curves for the
Gaussian channel and rounded channel are partially over-
lapped, indicating that these curves cannot be well differenti-
ated by the BP neural method. Moreover, the flat channel and
Butterworth channel exhibit results that are overlapped to a
certain extent, indicating that the neural network method had
a mediocre performance in the recognition task.

Fig.8 (b) shows the effect of the application of the SVM
neural network method in the scene recognition task. The
three channels overlapped to different degrees from the
two-dimensional feature diagram. This result indicates that
the method cannot well distinguish the Gaussian channel
from the rounded and Butterworth channels.

Fig.8 (c) shows the two-dimensional feature distribution
diagram for the scene recognition based on the RBF neu-
ral network. Although this method can effectively classify
the rounded, classical, and Gaussian channels, a consider-
able overlap occurs between the flat channel and Butter-
worth channel. This method cannot effectively identify the
two-channel scenarios.

Fig. 8 (d) shows the two-dimensional feature distribution
diagram corresponding to the proposed method. The two-
dimensional features exhibit a notable degree of differen-
tiation for the different channel scenes. No overlap occurs
between the different channels, which indicates that this
method exhibits a satisfactory scene recognition effect.

To clearly illustrate the recognition effect for dif-
ferent methods in the simulation channel environment.
Table 1 presents the correct recognition rates for the four
different scene recognition methods.

Table 1 indicates that the optimal channel scene recog-
nition corresponds to the proposed method, which has a
theoretical correct recognition rate of 100%. The BP neu-
ral network based method has the worst recognition effect,
with a correct recognition rate of only 72.6%. The results
of SVM and RBF results are comparable, with the cor-
rect recognition rates of 82.4% and 87.4%, respectively.
The theoretical experimental results show that the proposed
DBN method has a more powerful learning ability than the
other methods. The proposed deep learning method exhibits

FIGURE 8. Two-dimensional feature distribution based on different
methods under the simulation environment. (a) Based on the BP neural
network method. (b) Based on the SVM method. (c) Based on RBF neural
network method. (d) Based on this paper method.

a better representation and classification ability in terms of
the channel characteristics.
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TABLE 1. Comparison of correct recognition rates of four different methods under simulation environment.

TABLE 2. Confusion matrix of the channel scenario recognition on deep learning under physical platform.

TABLE 3. Comparison of correct recognition rates of four different methods under physical platform.

B. EXPERIMENT PLATFORM AND RESULTS
To further verify the accuracy of the proposed method,
the author builds a comprehensive platform for the wireless
channel scenario simulation was developed and analyzed.
The application value of the method was further verified.
A photograph of the comprehensive analysis test physical
platform is shown in Fig.9. An analog signal generator and a
vector signal generator were used to generate low-frequency
signals and radio frequency signals, respectively. The signal
analyzer conducted Doppler translation monitoring for the
generated RF signal. A sub-5 GHz radio channel emulator
with a bandwidth of 150 MHz, including eight input ports
and eight output ports was employed. A radiofrequency (RF)
down converter was combined with a 1-to-8 RF splitter in
one module. Moreover, an RF upconverter was combined
with one 8-to-1 RF combiners in another module, as shown
in Fig.9. The frequency response of the channel simulator was
recorded using a vector network analyser. The tested wireless
channel data were imported into the computer processor to
verify the recognition effect of the proposed method.

The test platform was used to test the signals of different
wireless channel scenarios, using the autocorrelation function
method to extract the parameters.

Fig.10 shows the extracted characteristic parameters in
different Rayleigh channels through a physical platform.
According to the extracted feature parameters, the proposed
feature extraction method in this paper is still effective
even in the actual simulation channel platform. The method
can extract the characteristic parameters of different wire-
less channel scenarios. The characteristic parameters are

FIGURE 9. Channel scenario and analysis test physical platform.

significantly different in different channel scenarios. More-
over, the extracted feature parameters can also be used as the
training data of the DBN.

The DBN was trained and tested using the test data. The
relevant parameter settings were the same as those described
in Sections A-C). The results were compared with those of
the BP method, SVM method, and RBF method. The two-
dimensional feature distribution corresponding to the wire-
less channel scene recognition results is shown in Fig.11.

Fig.11 (a) shows the two-dimensional feature distribution
diagram of the scene recognition results obtained by using
the BP neural network. As shown in Fig.11 (a), the curves for
the Gaussian and Rounded channel are overlapped, indicating
these channels cannot be well differentiated using the BP neu-
ral method. Moreover, the flat channel and the Butterworth
channel are overlapped to a certain extent, indicating that the
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FIGURE 10. The extracted feature parameters from the physical platform.
(a) PSD in the Classical fading channel. (b) PSD in Flat fading channel.
(c) PSD in Gaussian fading channel. (d) PSD in Butterworth fading
channel. (d) PSD in Rounded fading channel.

neural network method exhibits a mediocre performance in
the recognition task. The platform test results are similar to
the simulation results.

Fig.11 (b) shows the application effect of applying the
SVMmethod in the scene recognition task. The four channels
exhibit varying degrees of overlap, with considerable overlap
between the Gaussian and rounded channels. This finding
indicates that the BP method cannot well distinguish the
Gaussian channel from the round and Butterworth channels.

Fig.11 (c) shows the two-dimensional feature distribution
diagram of the scene recognition based on the RBF neural
network. The RBF method can effectively identify the classi-
cal and Gaussian channels. However, a critical overlap occurs
between the flat channel and the Butterworth channel. This
method cannot effectively identify the two-channel scenarios.

Fig.11 (d) shows the two-dimensional feature distribution
diagram for the proposed method. The two-dimensional fea-
tures for different channel scenes exhibit a notable differenti-
ation. Only a small amount of overlap can be noted between
the Gaussian and rounded channels.

Table 2 presents the confusion matrix of the recognition
results for the proposed method. The proposed method can
accurately identify the scenes for the five channels when
using the physical platform, with an extremely high correct
recognition rate.

FIGURE 11. Two-dimensional feature distribution pertaining to different
methods, obtained using the physical platform (a) Used BP neural
network method (b) Used SVM method (c) Used RBF neural network
method (d) Proposed method.

Table. 3 presents the correct recognition rates for four
different scene recognition methods. The classical fading
channel can be identified through the four methods, with an
accuracy rate of 100%. This result indicates that the four
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methods can well identify the Gaussian fading channel. For
the flat and Butterworth fading channels, the recognition rate
of the proposed method is 100%, even though the recogni-
tion rates for the other three conventional methods are low.
The results indicate that for these two channels, the repre-
sentation based on deep learning is the highest performing
approach. For the Rayleigh Gaussian channel and Butter-
worth fading channel, the recognition rate of the proposed
method is higher than that of the other three methods. The
experimental results show that compared with other methods,
the proposed deep learning method has a stronger learning
ability for wireless channel scenarios. This method can more
effectively realize the feature extraction and classification.

As shown in Table.3, the proposed method can realize
the most effective channel scene recognition. The overall
correct recognition rate of the proposed method is 99.2%.
The BP method exhibits the worst recognition effect, with
a correct recognition rate of only 69.2%. The results of the
SVM and RBF are comparable, with a correct recognition
rate of 82.4% and 87.4%, respectively. In the wireless chan-
nel scenarios with fast time-variations, large broadband, and
multiple dimensions, the traditional methods cannot achieve
a high recognition accuracy. Overall, the proposed identifica-
tion method exhibits the strongest recognition ability.

V. CONCLUSION
This paper proposes a wireless channel scene recognition
method based on feature parameter extraction and deep
learning. The autocorrelation function is used to extract the
characteristic parameters of a wireless channel scene. The
windowing and overlap techniques are adopted to realize
the process of time-frequency transformation. Normalized
pre-processing is recognized in the frequency domain, and
the satisfactory characteristic parameters are obtained from
the wireless channel. A deep learning algorithm with a robust
taxonomy ability is applied to realize the wireless channel
scene recognition. A hybrid model is built by using the
restricted Boltzmann machine of the DBN. The CD-k learn-
ing algorithm is used to initialize the network parameters,
and the up-down-optimization algorithm is used to optimize
the identification weights and offset parameters. The the-
oretical simulation results demonstrate the correctness and
accuracy of the method. Finally, a wireless channel scene
recognition platform is built by combining hardware and
software. The experimental results show that the proposed
algorithm exhibits high performance in the wireless channel
scene recognition task. The proposed method can accurately
identify the different channel scenes and thereby demon-
strates high engineering application value.
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