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ABSTRACT Uncoded space-time labeling diversity (USTLD) is a space-time block coded (STBC) system
with labeling diversity applied to it to increase wireless link reliability without compromising the spectral
efficiency. USTLD achieves higher link reliability relative to the traditional Alamouti STBC system. This
work aims to design a bandwidth-efficient and blind wireless channel estimator for the USTLD system.
Traditional channel estimation techniques like the least-squares (LS) and the minimum mean squared error
(MMSE) methods are generally inefficient in using the channel bandwidth. The LS and MMSE channel
estimation schemes require the prior knowledge of transmitted pilot symbols and/or channel statistics,
together with the receiver noise variance, for channel estimation. A neural network machine learning (NN-
ML) channel estimator with transmit power-sharing is proposed to facilitate blind channel estimation for the
USTLD system and to minimize the required channel estimation bandwidth utilization. We mathematically
model the equivalent noise power and derive the optimal transmit power fraction that minimizes the channel
estimation bandwidth utilization. The blind NN-ML channel estimator with transmit power-sharing is shown
to utilize 20% of the LS and MMSE wireless channel estimators’ bandwidth to achieve the same bit error
rate (BER) performance for the USTLD system in the case of 16-QAM and 16-PSK modulation.

INDEX TERMS Blind channel estimation, deep learning, imperfect channel estimation, space-time codes,
space-time labeling diversity, transmit power-sharing, wireless MIMO.

I. INTRODUCTION
Uncoded Space-Time Labeling Diversity (USTLD) is a tech-
nique developed recently by [1] to increase the link reliability
of space-time block coded (STBC) systems in a multiple-
input multiple-output (MIMO) environment. It uses two dis-
tinct symbol constellation mapper designs to map bitstreams
to symbols. The first STBC timeslot sends information sym-
bols from a gray coded symbol constellation mapper. The
second timeslot sends the same information symbols picked
from the second constellation mapper designed using the
labeling technique defined in [1]. This scheme outperforms
the traditional Alamouti STBC [2] system in terms of bit error
rate (BER) performance as it has coding gain over the Alam-
outi system. In [3], the authors develop a genetic algorithm-
based mapper labeling design technique for non-symmetric
constellations since the USTLD mapper design in [1] is lim-

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

ited to symmetric constellations. In [4], the authors develop
a generic analytical framework to evaluate the BER perfor-
mance of USTLD in Rician, and Rayleigh fading wireless
channels for a three transmit antenna MIMO system. In [5],
the authors show that applying media-based modulation with
radio frequency (RF) mirrors enhances the wireless link reli-
ability of USTLD STBC schemes. The authors in [6] apply
signal space diversity (SSD) to USTLD STBC in order to
improve the error rate performance of USTLD. They show
that the SSD USTLD scheme outperforms the USTLD BER
performance. Trellis code aided high rate space-time labeling
diversity (TC-STLD) is proposed in [7] to deliver superior
spectral efficiency whilst maintaining the BER performance,
relative to that of USTLD. In [8], the authors investigate
USTLD in a three transmit antenna MIMO configuration as
the other USTLD research has only been carried out in a two
transmit antennaMIMO configuration. They develop the sec-
ond and third labeling mappers using a heuristic method
and observe that the three transmit antenna USTLD scheme
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has superior BER performance relative to the two transmit
USTLD scheme presented in [1]. Rectangular quadrature
amplitude modulation (QAM) for USTLD is investigated in
Nakagami-m fading channels in [9]. A heuristic algorithm to
design the optimal labeling mapper for the rectangular QAM
USTLD scheme is proposed. In [10], the authors develop
a high-density M-QAM labeling mapper using a heuristic
algorithm for a three transmit antennaUSTLDSTBC scheme.
They design the second and third labeling mappers using the
heuristic algorithm for 256-QAM and 1024-QAM constella-
tions since most research has developed mapper designs for
lower modulation orders.

The works discussed so far for the USTLD scheme have
assumed a perfect wireless channel estimate, whichmotivates
the investigation of USTLD under an imperfect channel esti-
mate. Recently, deep learning has been proposed to address
challenges associated with wireless channel estimators.

As stated earlier, deep learning has been proposed in the
field of wireless channel estimation. In [11], the authors pro-
pose deep learning in predicting the time-frequency response
of a fast-fading wireless MIMO channel. They show that the
proposed deep learning algorithm has a competitive mean
squared error performance relative to the traditional MMSE
channel estimator. In [12], the authors prove that their pro-
posed deep learning channel estimator outperforms the tra-
ditional compressed sensing-based algorithms for massive
MIMO wireless channel estimation. The authors in [13]
propose a deep learning channel estimation algorithm for
doubly selective wireless fading channels. Deep learning
is applied in [14] to estimate the uplink wireless channels
for massive MIMO systems at the base station with some
antennas using high-resolution analog-to-digital converters
(ADC) and others using low-resolution ADCs. The proposed
deep learning algorithm uses the high-resolution ADCs to
predict the channels of the antennas using low-resolution
ADCs. In [15], a deep learning-based channel estimation
technique is proposed for wireless energy transfer. Based on
the energy received by the energy receiver, the energy trans-
mitter channel state information (CSI) is learned using the
proposed deep learning autoencoder. The authors in [12] pro-
pose a learned denoising-based approximate message pass-
ing (LDAMP) channel estimator for beamspace millimeter-
wave massive MIMO channels with limited RF chains.
The deep learning-based LDAMP algorithm outperforms
the compressed sensing-based algorithms. In [16], a deep
learning-based channel estimator is proposed for a time-
varying Rayleigh fading channel. Its mean squared error
performance is shown to outperform that of the traditional
channel estimation algorithms. A deep learning algorithm is
proposed in [17] to handle the end-to-end wireless orthogonal
frequency division multiplexing (OFDM) channels. It implic-
itly estimates the CSI and directly decodes the transmitted
symbols. It shows robustness relative to the conventional
channel estimation techniques when fewer training pilot sym-
bols are used. In [18], deep learning-based channel estimation
and equalization scheme (DL-CE) for filter bank multicarrier

(FBMC) modulation is proposed. It is shown in [18] that
this DL-CE scheme achieves state-of-the-art performances in
channel estimation and equalization. In [19], the authors pro-
pose a deep learning-based downlink channel estimator for
fast time-varying and non-stationary wireless fading channels
present in high-speed mobile scenarios. The proposed deep
learning channel estimator proves to have better performance
relative to the traditional channel estimators whilst offering
lower computational complexity.

Research on bandwidth-efficient channel estimation has
been performed in literature largely in MIMO-OFDM sys-
tems. In the works presented in [20]–[23], the authors
develop bandwidth-efficient channel estimators for the
MIMO-OFDM environment. In [24], the authors propose
a bandwidth-efficient channel estimator for a single carrier
MIMO system with frequency domain equalization. The
channel estimator iteratively uses a series of fast-Fourier
transforms (FFT) and inverse FFT operations to reconstruct
the CSI fully. A bandwidth-efficient blind channel estimator
is proposed in [25] for a full-duplex (FD) point-to-point
wireless communication system. The blind channel estimator
simultaneously estimates the channel parameters of the FD
system without requiring time division duplex (TDD).

In summary, it is evident from the literature that LS [26]
and MMSE [27] require prior knowledge of the transmitted
pilot symbols and/or the wireless channel statistics to perform
channel estimation. The other general observation is that the
channel estimator’s mean squared error (MSE) drops as the
number of transmitted pilot symbols is increased. It will be
challenging to perform channel estimation using the tradi-
tional LS and MMSE channel estimators in environments
where the transmitted pilot symbols and channel wireless
statistics are unknown.With the high cost of licensed wireless
channel bandwidth, service providers are pressured to utilize
bandwidth efficiently. Hence, large numbers of pilot symbols
sent over a wireless channel for channel estimation may not
be desirable. Therefore, we propose a blind NN-ML chan-
nel estimator with transmit power-sharing that minimizes
the channel bandwidth usage whilst delivering a competitive
MSE and BER performance compared to the traditional LS
and MMSE schemes. We choose NN-ML because it does
not require prior knowledge of the transmitted pilot symbols,
wireless channel statistics, and receiver noise variance to
perform channel estimation.

The idea of transmit power-sharing is taken from [28],
where an optimal power fraction is derived that facilitates the
optimal sharing of transmit power between the information
symbols and a single reference symbol to improve BER per-
formance. In our case, we apply this power-sharing technique
between information symbols and multiple reference/pilot
symbols to improve the MSE and BER performance of the
NN-ML channel estimator relative to the traditional LS and
MMSE based channel estimators. This translates to lower
usage of channel bandwidth in order to deliver the same BER
performance.

The main contributions of this paper are as follows:
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• We propose a novel deep learning-based bandwidth-
efficient blind channel estimator for the USTLDMIMO
system by employing optimal transmit power-sharing
between information symbols and pilot symbols. To our
knowledge, no literature has developed a bandwidth-
efficient channel estimator using transmit power-sharing
between pilot symbols and information symbols. Over
and above that, the literature in [20]–[25] develops
bandwidth-efficient MIMO channel estimators for very
different system models compared to ours. The differ-
ences in environmental context or system model affect
the method of channel estimation bandwidth optimiza-
tion. We, therefore, cannot, for example, directly use
a MIMO-OFDM optimized channel estimator in our
system model.

• We mathematically derive a multiple pilot/reference
symbol equivalent noise power upper bound for USTLD
MIMO, unlike in [28], where the equivalent noise power
is only for a single reference symbol. No work in the
literature has derived the equivalent noise power for the
USTLD MIMO system.

• We apply differential calculus to determine the opti-
mal power fraction that minimizes the equivalent noise
power. The minimized equivalent noise power is shown
to minimize the MSE and BER of the USTLD MIMO
system. This minimization of the MSE and BER implies
a minimization of channel estimation bandwidth uti-
lization to achieve the same BER performance as the
traditional channel estimation methods.

The remainder of the paper is organized as follows: In
Section II, we present the system model for the proposed
blind NN-ML channel estimator with transmit power-sharing
for USTLD MIMO and the background theory of LS and
MMSE channel estimation. In Section III, we introduce
the proposed blind NN-ML channel estimator’s theory with
transmit power-sharing. Section III also presents the equiv-
alent noise power upper bound’s derivation and the optimal
transmit power fraction. Section IV discusses the MSE and
BER simulation results, and Section V concludes the paper.
Notation: Bold lowercase (a) and uppercase letters (A)

denote vectors and matrices, respectively. (.)H and ‖.‖F are
the Hermitian and the Frobenius norm of a vector or matrix,
respectively. tr(.) is a trace function which takes the sum total
of the major diagonal of a matrix. The symbol ∀x means for
all values of x. The operator E(.) is the statistical expecta-
tion or mean of a random variable. The functions Re(.) and
Im(.) return the real and imaginary components of a complex
number, respectively.

II. SYSTEM MODEL AND CHANNEL ESTIMATION
BACKGROUND
A. SYSTEM MODEL
A 2 × Nr USTLD system is used to evaluate the channel
estimation algorithms’ BER performance, where Nr is the
number of receive antennas, and 2 represents the number of

transmit antennas. The USTLD system is a modification of
the conventional 2×Nr Alamouti system [2]. The fundamen-
tal idea is to transmit a mapped symbol pair in the second
time slot instead of the complex conjugates. The USTLD
system generates the 2 × 2 STBC codeword matrix based
on two mappers; ωW1 and ωW2 as in [1]. For example, the two
mappers for 16-QAM signal constellations are the Gray-
coded labeling map ω16

1 and the optimized labeling map ω16
2

as per [1]. The labeling maps and their design criterion are
detailed in [1].

A bitstream consisting of 2 log2W random bits, where W
is theW-QAM/W-PSKmodulation order, d =

[
bt1 , bt2

]
is fed

into the USTLDmodulator to produce the modulated symbol
pairs x1 =

[
xt1xt2

]T and x2 =
[
x̃t2 x̃t1

]T for the first and sec-
ond time slot, respectively. Let (x1, x2) be an ordered pair,
and let χLD be a set that contains all the possible modulated
symbol pairs (x1, x2), such that (x1, x2) ∈ χLD. Based on bt1
and bt2 , where bt1 =

[
b11b

1
2 . . . b

1
m
]
, bt2 =

[
b21b

2
2 . . . b

2
m
]
with

m = log2W , the labeling map ωW1 produces xt1 and xt2 , while
ωW2 produces x̃t1 and x̃t2 , respectively, where xti and x̃ti belong
to an W-QAM/W-PSK constellation set χ , with ti ∈ [1 : W ],
E
{∣∣xti ∣∣2} = E

{∣∣x̃ti ∣∣2} = 1 and i ∈ [1 : 2].
The transmission of the 2 × 2 STBC symbols happens

over a quasi-static fading wireless channel with a constant
channel gain over one message frame, including M = 200
W-QAM/W-PSK information symbols and N channel esti-
mation pilot symbols transmitted per frame per transmit
antenna. The pilot symbols are generated using the Zadoff-
Chu sequence [29] since it can generate orthogonal complex
sequences of constant amplitude and varying phase. This is
important to avoid creating a singular square matrix XrXHr
since the LS, and MMSE channel estimation methods rely on
matrix inversion. The Zadoff-Chu sequence pilot symbols are
generated using Equation (1)

P (n) =

{
e
−jπQn(n+2q)

N , ∀N = 2∅,∅ ∈ [1,∞)

e
−jπQn(n+2q+1)

N , ∀N = 2∅ + 1,∅ ∈ [1,∞)
(1)

where n ∈ [0 : N − 1] ,P (n) ∈ C is the complex pilot sym-
bol at position n of the N -dimensional pilot symbol vector, N
is the number of pilot symbols transmitted per pilot symbol
vector, j is a complex number, q ∈ N andQ is a relative prime
number to N and obeys the equation

ϕ (N ,Q) = 1 (2)

where ϕ is the greatest common divisor function.
The wireless channel is Rayleigh frequency-flat fading.

The received pilot symbols and information/message sym-
bols at the receiver are mathematically modeled as per Equa-
tions (3) and (4):

Yr = HτXr + Nr (3)

Yi = Hτ+1Xi + Ni (4)

where Hτ+1 = Hτ = H ∈ CNr×Nt is the constant wire-
less channel matrix over one transmission frame because the
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FIGURE 1. Shows the USTLD system with blind NN-ML channel estimator
with transmit power-sharing.

wireless channel is quasi-static fading. The channel matrix
H has complex channel gains, which are independent and
identically distributed (i.i.d) according to CN (0, 1) .Xr ∈
CNt×N is the transmitted pilot symbol matrix, Xi ∈ CNt×2

is the transmitted information symbol matrix over Nt = 2,
transmit antennas, and two timeslots. The information sym-
bolmatrixXi has transmittedW-QAM/W-PSK symbols.Yr ∈
CNr×N is the received/observed pilot symbol matrix over Nr
receive antennas, Yi ∈ CNr×2 is the received information
symbol matrix over Nr receiver antennas and two timeslots
for USTLD. The additive white Gaussian noise (AWGN)
matrix Nr ∈ CNr×N is observed at the wireless receiver over
the received Nr × N pilot symbols. The AWGN matrix Ni ∈
CNr×2 is observed at the wireless receiver when receiving the
information symbols over two timeslots. The reference/pilot
noise matrix Nr and the information noise matrix Ni have
i.i.d entries that follow the complex Gaussian distribution as
follows:

nzxi ∼ CN
(
0, σ 2

i

)
and nwyr ∼ CN

(
0, σ 2

r

)
(5)

where nzxi is the information noise matrix zth row and xth col-
umn entry, σ 2

i is the average noise power for the information
receiver white noise, nwyr is the reference/pilot noise matrix
wth row and yth column entry with an average noise power of
σ 2
r .
As shown in Fig. 1, the proposed system takes a fraction

of the transmit power from the information symbol trans-
mission from the wireless transmitter side and donates this

transmit power fraction to the reference/pilot symbol trans-
mission [28]. Knowing that we haveM information symbols
transmitted per frame per transmit antenna means we donate
Mα transmit power to N pilot symbols. This implies that
each pilot symbol gets M

N α extra transmit power, and each
information symbol loses α transmit power. Mathematically
this is denoted as follows:

σ 2
i =

2
(1− α) γ

(6.1)

σ 2
r =

2(
1+ M

N α
)
γ

(6.2)

where α is the transmit power fraction, M is the number
of information symbols transmitted per frame per transmit
antenna, N is the number of pilot symbols sent per frame
per transmit antenna, and γ is the average received signal-to-
noise ratio (SNR) per receive antenna. The total power for the
transmission of M + N information and pilot symbols must
be constant. Equations (6.1) and (6.2) obey this conservation
of transmit power constraint. The optimal power fraction that
ensures the optimal BER and MSE performance is computed
using the αopt = f (Xr ,N ,M ,Nt) function that needs to be
derived.

On the wireless receiver side, the NN-ML channel esti-
mator is fed the received pilot symbol matrix Yr . The NN-
ML channel estimator then predicts the wireless channel and
feeds it into the maximum likelihood (ML) detector and this
channel estimate is done once per received frame. The ML
detector then uses the channel estimate Ĥest to detect the
transmitted symbols based on the received Yi symbol matrix.

B. BACKGROUND OF TRADITIONAL CHANNEL
ESTIMATION METHODS
The LS [26] channel estimation method is the least complex
channel estimationmethod relative to theMMSE [27]method
and the approximate linear minimum mean square error
(ALMMSE) [30]method but is generally the least performing
of the channel estimation methods. The LS method works by
generating a closed-form channel estimation formula, which
estimates a wireless channel that minimizes the square of the
Euclidean distance between the observed/received pilot sym-
bol matrix and the product of the estimated wireless channel
and the transmitted pilot symbol matrix. The formula for esti-
mating the wireless channel based on the observed/received
pilot vectors and the transmitted known pilot symbol matrix
is as shown [26]

ĤLS = YrXHr
(
XrXHr

)−1
(7)

where ĤLS is the LS estimated wireless channel matrix, Yr
is the observed/received pilot symbol matrix, and Xr is the
transmitted pilot symbol matrix. From Equation (7) it is
clear that XrXHr must be invertible and hence non-singular
in nature, which motivates the selection of orthogonal pilot
symbol vectors as entries in the transmitted pilot symbol
matrix. Equation (7) also shows that the LS channel estimator
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requires the full knowledge of the transmitted pilot symbol
matrix. The MMSE channel estimation method works by
estimating the wireless channel using Equation (8) [27]

Ĥmmse =

(
σ 2
i R
−1
HH + X

H
mmseXmmse

)−1
XHmmseYmmse (8)

where σ 2
i is the receiver noise variance, RHH =

E
(
HmmseHH

mmse
)

is the wireless channel autocorrelation
matrix, Xmmse = XHr is the MMSE pilot symbol matrix,
Ymmse = XmmseHmmse + Nmmse is the observed/received
MMSE pilot symbol matrix where Hmmse = HH . As can
be seen from Equation (8), the MMSE channel estimator
requires the full knowledge of the pilot symbol matrix, wire-
less channel autocorrelation statistics, and the noise variance
at the receiver side. These are assumed to be known without
any estimation errors.

III. PROPOSED CHANNEL ESTIMATION METHOD FOR
MIMO USTLD
The channel estimation method proposed here facilitates
blind channel estimation when the transmitted pilot sym-
bols, wireless channel second-order statistics, and the noise
variance are unknown at the receiver side. The NN-ML
channel estimator with transmit power-sharing method is a
blind machine learning channel estimator. It also reduces the
required bandwidth to achieve a good MSE and BER perfor-
mance relative to the traditional channel estimation methods.

Recently, researchers within the communications research
space have taken a keen interest in applying machine learn-
ing to solve communications-related research problems. The
problems are primarily related to wireless symbol detectors’
design using machine learning. The order of computational
complexity of current expert wireless receivers is high for
higher-order modulationW-QAM/W-PSK.Machine learning
comes with the benefit of training a mathematical function
to predict an output based on a noisy input. Once trained,
there is no need for the machine learning algorithm to search
iteratively, in a large search space for higher-order mod-
ulation orders, for an estimated transmitted symbol in the
case of a wireless receiver symbol detector. The function
will, in a much shorter convergence time, with similar BER
performance, estimate the transmitted symbol compared to a
ML detector that takes a longer time to converge to a solution.
This is critical for real-time communication environments as
link latency needs to be minimal to achieve a good quality of
service (QoS).

In the case of channel estimation, we evaluate if we can
train a machine-learning algorithm to predict the wireless
channel based on a noisy received pilot symbol matrix with
similar or better MSE and BER performance relative to the
expert method of using LS or MMSE to carry out channel
estimation. The advantage of using machine learning over
LS or MMSE is that we can blindly estimate the wireless
channel without knowing the pilot symbol matrix, channel
autocorrelation matrix, and receiver noise variance.

The work in this section is organized as follows: Sec-
tion III-A concentrates on Hyperparameter tuning of the
neural network model, Section III-B ventilates the training
phase of the neural network model and Section III-C exhibits
the derivation of the optimal transmit power fraction that
minimizes the channel estimation bandwidth utilization.

A. PROPOSED NN-ML CHANNEL ESTIMATION
HYPERPARAMETER TUNING
For a supervised machine learning algorithm to be use-
ful, it needs to be first trained using appropriate data.
Two machine learning algorithms are being trained for,
the first being the NN-ML-Channel-Estimation without
power-sharing where α = 0. The second is the NN-ML-
Channel- Estimation with power-sharing, where α = αopt .
We then generated 10 000 samples for the received pilot
symbols based on Equation (3) for α = 0 and α = αopt .
We also used the Zadoff-Chu sequences in Equation (1) to
generate the transmitted pilot symbol matrix over a range
of N pilot symbols. The 10 000 samples were generated for
each SNR value in the range [0dB to 16dB, step 2dB]. Since
this section is responsible for hyperparameter tuning, we only
tuned the hyperparameters using the 10dB SNR samples in
order to reduce the tuning time. Table 1 shows the machine
learning architecture and the training hyperparameters found
using a genetic algorithm for the cases when α = 0 and α =
αopt . The hyperparameters found through genetic algorithm
[31] optimization are the pseudo-random number generator
seed value, learning rate and training batch size. The objec-
tive function which the genetic algorithm optimized was the
validation MSE at 10dB SNR.

The NN-ML-Channel-Estimation architecture in Table 1
was invariant to the changes in the number of pilot symbols
N . However, the architecture was found to be sensitive to
the MIMO receive antenna configuration Nr . This is because
changing the value of Nr explicitly alters the MIMO channel
matrix dimensions, which also alters the number of required
neurons at the output layer of the architecture. Therefore,
we declare that the architecture in Table 1 is only valid for the
2×4MIMOconfiguration discussed in our simulation results.
Any other MIMO configuration may require a new archi-
tecture and re-training of the NN-ML-Channel-Estimation
model.

The input data dimension, of the architecture in Table 1,
is based on the number of transmitted pilot symbols (N ) per
symbol vector and the number of receive antennas Nr . At the
bottom of Table 1 are the tuneable hyperparameter values,
which we derived via a genetic algorithm.

Algorithm 1 works by generating P random population
members with randomized seed-values, batch sizes and learn-
ing rates as an initial Genetic algorithm population of possible
hyperparameters. The population members,�k , hyperparam-
eters are randomly assigned values subject to the constraints
stated in Step 1 of Algorithm 1. The algorithm then iterates
through each population member per generation. It uses each
population member’s hyperparameters to train the neural
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TABLE 1. NN-ML-channel-estimation architecture and hyper-parameters.

network architecture in Table 1, represented as 8(·) in the
Algorithm. The neural network architecture is trained with
a training dataset of 80% of the imported dataset stored in
χ . The other 20% is used as a test dataset to produce the
validation MSE at 10dB SNR. The dataset stored in χ is
produced from Equation (3), at 10dB SNR, for the power
fraction values α = 0 and α = αopt . The training dataset
is collected at a single SNR value of 10dB because at this
stage, we are merely pre-training the neural network to select
hyperparameters that produce the lowest validation MSE at
10dB SNR. At this stage, we are not fully training the neural
network for channel estimation but for tuning or selecting
optimal hyperparameters.

The population members in the current generation are
selected one after the other, and their hyperparameters,
together with the training and test datasets, are used to train
and test the neural network in Table 1 in order to evaluate
the validation MSE at 10dB SNR. This validation MSE is
saved in a list that stores the mapping between the popu-
lation member’s number k and the validation MSE associ-
ated with the population member’s hyperparameters. When
all the population members have been used to determine
the validation MSE, at 10dB SNR, for the neural network
in Table 1, the algorithm uses the stored validation MSEs
to create the next generation of population members. It does
this by computing the fitness value associated with each
population member. The fitness value is calculated based on
the validation MSE of the neural network in Table 1 and

Algorithm 1 Genetic Algorithm
Result: Gene sequence with pseudo-random seed-value,
batch size and learning rate for the population member that
produces the lowest validation MSE at 10dB SNR.
Initialization:
Nr = ε,
N = δ,
µl = 0.35
µg = 0.15
P = 10
ω [1 :P] = 0
G = 100
π = 0.20
E = 1000
Step 1: Generate P random population members with ran-
dom hyperparameter values.
Let each population member be denoted by �k where k ∈
[1 : P]. �k contains the set

{
λk , ηk , ζk

}
where λk is the

pseudo-random seed value, ηk is the learning rate and ζk is the
batch size for the k th population member. The random values
are set within the following constraints: λk ∈ [2, 1001) ∈ Z ,
ηk ∈ [0.0001, 0.01] ∈ R, and ζk ∈ [1000, 4000] ∈ Z.
Step 2: Set i = 1
Step 3: IF i ≤ G THEN
a) Set k = 1
b) IF k ≤ P THEN

I. parentk = �k
II. λk = parentk .getSeedValue()
III. ηk = parentk .getLearnRate()
IV. ζk = parentk .getBatchSize()
V. χ = Import(Dataset)
VI. ω [k]= 8

(
χ, π,E, λk , ηk , ζk ,Nr ,N

)
VII. k = k + 1
VIII. GOTO Step 3b

c) ELSE
I. Set seq = 1
II. IF seq ≤ P THEN
• τ [1 : P] = getFitnessValues (ω [1 :P])
• ρ [1 : P] =
getSelectionProbabilities (τ [1 : P])

• υ [1 : 2] = selectParents (ρ [1 : P])
• c = produceChild (υ [1 : 2])
• �seq = c
• seq = seq+ 1
• GOTO Step 3c number II.

III. i = i+ 1
IV. GOTO Step 3

Step 4: En

the formula τ [k] = 106

10(1000ω[k]−45)
. ω [k] is the k th population

member’s validation MSE at 10dB SNR. τ [k] is the k th pop-
ulation member’s fitness value. The formula for computing
the fitness values is found empirically by maximizing the
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TABLE 2. Definition of genetic algorithm parameters.

small differences between validation MSE values at 10dB
SNR. If we do not non-linearly amplify the small differ-
ences between MSE values, then the selection probabilities
will be almost identical for all population members since
their fitness values will be very close to each other. For
example, if 5 population members A, B, C, D, and F have
validation MSE values of 0.04797, 0.0478, 0.048, 0.04632,
and 0.04921, respectively, then it is obvious to see that the
selection probabilities for population members A, B, C, D,
and F will be almost identical if the fitness function does not
non-linearly amplify the validation MSE values. However,
if we use our empirical formula to calculate the fitness values,
we get the following fitness values for population members
A, B, C, D, and F: 1071.51, 1584.89, 1000, 47863.01, and
61.66, respectively. The population member F has the worst
validation MSE and the lowest fitness value of 61.66. The
population member D has the best validation MSE and the
highest fitness value of 47863.01. The difference between
the validation MSE for population members F and D is only
0.0029. However, the fitness values have a huge difference
to avoid equal selection probabilities being calculated in sce-
narios when the validation MSE values are very close to each
other.

After the fitness values are computed, the selection proba-
bility per populationmember is calculated based on each pop-
ulation member’s fitness value. The selection probabilities

are computed based on the formula ρ [k] = τ [k]∑P
l=1 τ [l]

[31].

ρ [k] is the selection probability of the k th population mem-
ber. The selection probability is the likelihood of a population
member being randomly selected to mate and produce a
child for future generations. Only two parents are randomly
selected to produce one child.

When the two parents are selected randomly, a genetic
crossover is performed to produce a child. The crossover is
done by inheriting the pseudo-random seed value from the
first parent and then inheriting the batch size and the learn-
ing rate from the second parent. Random genetic mutation
may occur with a probability of 0.35 for local mutation and
0.15 for global mutation. Local mutation involves altering a
single inherited hyperparameter value of the child. Global
mutation involves the altering of all three inherited hyper-
parameter values of the child. The genetic mutation involves
randomly assigning values to the hyperparameters subject to
the constraints stated in Step 1 of Algorithm 1.

The child produced from the selected parents’ mating is
then added as a new population member for the next gen-
eration. Selecting mating parents and producing children is
repeated until the new population size is P. Only then do we
destroy the old population and move on to the next generation
of population members.

The process of searching for a global minimum validation
MSE is repeated until the number of iterations is equal to the
maximum number of generations G. Only then do we search
for the population member �k , together with its hyperpa-
rameters, that produces the lowest validation MSE evaluated
from generation 1 to generation G. The optimal population
member’s hyperparameters are then used to fully train the
neural network in Table 1 from 16dB to 0dB SNR.

B. TRAINING THE NN-ML CHANNEL ESTIMATOR
There are two sets of data used in the machine learning
algorithm training and testing in Table 1. The first dataset
Å, is the training dataset, which is made up of 80% of the
10 000 samples generated using the received pilot symbol
matrix data from Equation (3), and the second dataset M is
the test dataset, which is the remaining unseen 20% of the 10
000 samples. The datasets are collected for SNR values from
0dB to 16dB. The datasets are generated for both scenarios
when α = 0 and α = αopt . We trained the machine
learning algorithm over a wide range of SNR values 0dB to
16dB. The algorithm was trained from 16dB down to 0dB
as it was noticed that training it the other way from 0dB to
16dB yielded a poor validation mean squared error per SNR
training cycle.

For the training to happen, the received complex pilot
symbol matrix from Equation (3) is converted into a
2-dimensional data structure, with real numbers, with a single
channel. A matrix representation that converts a complex
matrix into a 2-dimensional real-valued data structure is used
as per [32]. The resulting 2-dimensional data structure is
stored in a single element array to create a single channel.
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Since the received pilot symbol matrix is CNr×N , the real-
valued matrix is R2Nr×2N as shown in Equation (9) [32]

Zr =
(
Re (Yr ) −Im (Yr )
Im (Yr ) Re (Yr )

)
∈ R2Nr×2N (9)

where in Equation (9):

Yr =

 y11 · · · y1N
...

. . .
...

yNr1 · · · yNrN

 ∈ CNr×N .

The set of 10 000 samples is made up of the 2-dimensional
data Zr with a single channel. To train the machine learning
algorithm, using supervised learning, we need the output
label data that corresponds to this input training set Å. The
output training data is the actual wireless channel matrix
H ∈ CNr×Nt as per the method used in [11]. We then convert
this wireless channel matrix into a real-valued vector h ∈
R1×2NrNt , which in our case we have Nr = 4 and Nt = 2,
which means h ∈ R1×16, which makes the output layer of
the neural network a 16 neuron layer as per Table 1. The real-
valued entries of the vector h are determined by taking the real
and imaginary values of the complex entries of the channel
matrix H.
During training, the set Å is fed into the machine learning

algorithm functionF
(
Å,K

)
with hyper-parameters (K ). This

function’s output is compared to the output labeled data in
vector h that corresponds to the actual wireless channel as per
[11]. The function F

(
Å,K

)
hyper-parameters (K ) are tuned

using the Adam optimizer with an objective to minimize
the validation MSE based on the test data from set M. The
optimization objective function or loss function is shown in
Equation (10)

MSE Loss =
1∥∥Å∥∥∑x∈Å

‖F (x,K )− h‖2F (10)

where
∥∥Å∥∥ is the batch size of the training set. This loss

function is used in back-propagation by the Adam opti-
mizer [33] to determine the neural network function F

(
Å,K

)
hyper-parameters (K ), or synaptic weights. During training,
the training process looks for the weights that produce the
lowest validation MSE, which is determined by evaluating
the MSE loss function in Equation (10) after each training
epoch using the unseen test data set M.

C. OPTIMAL TRANSMIT POWER SHARING
Based on Section II’s system model, we derive the optimal
power fraction function αopt = f (Xr ,N ,M ,Nt) . This sub-
section is dedicated to deriving the optimal power fraction
function and finding the optimal number of pilot symbols to
be transmitted for optimal MSE and BER performance.

Inspired by a generalized differential scheme for spatial
modulation systems [28], the following derivation is per-
formed to determine the optimal power fraction that min-
imizes the NN-ML wireless channel estimator’s MSE and
BER performance. Based on Equations (3) and (4), we can

see that the channel matrix H is the common link between
Equations (3) and (4). Manipulating Equation (3), we get the
following Equation (11):
(Yr − Nr ) = HXr , further manipulation yields
(Yr − Nr )XHr = HXrXHr , where XrX

H
r is an invertible

square matrix, thus

H = (Yr − Nr )XHr
(
XrXHr

)−1
(11)

Substitute Equation (11) into Equation (4) we get the follow-
ing:
Yi =

(
(Yr − Nr )XHr

(
XrXHr

)−1)
Xi+Ni, and simplifying

yields Equation (12)

Yi = YrXHr
(
XrXHr

)−1
Xi − NrXHr

(
XrXHr

)−1
Xi + Ni

(12)

We can see from Equation (12) that the first coefficient of
Xi is YrXHr

(
XrXHr

)−1
and is identical to Equation (7), which

is the least-squares wireless channel estimate. We can then
replace the first coefficient of Xi with the generic placeholder
for the wireless channel estimate, which we will call Ĥest .

This changes Equation (12) to be represented mathematically
as Yi = ĤestXi − NrXHr

(
XrXHr

)−1
Xi + Ni.

To find the optimal power fraction that minimizes the
channel estimate MSE and BER, we need to derive the
equivalent noise power based on a similar method used to
derive the equivalent noise power for a generalized differ-
ential scheme for spatial modulation systems [28]. From
Equation (12) it is clear that the equivalent noise power is
actually dependent on the noise term−NrXHr

(
XrXHr

)−1
Xi+

Ni, for the MIMO pilot assisted wireless channel estimation
methods. If Ĥest is the estimated wireless channel at an
instant, then the average signal mean squared error expres-
sion, argminĤest

E
(∥∥Yi − ĤestXi

∥∥2
F

)
, needs to beminimized

for a good channel estimation accuracy where the operator
E (·) is the statistical expectation given thatXi is known at the
receiver. In order to practically evaluate the accuracy or MSE
of the wireless channel estimate, we need to transmit a fixed,
known Xi information symbol matrix based on the USTLD
method and observe the received Yi symbol matrix and eval-
uate E

(∥∥Yi − ĤestXi
∥∥2
F

)
after having have estimated the

wireless channel and obtained Ĥest . Expanding the minimiza-
tion of the term E

(∥∥Yi − ĤestXi
∥∥2
F

)
, we get the following

mathematical expression: argminĤest
E
(∥∥Yi − ĤestXi

∥∥2
F

)
=

argminĤest
E
(∥∥(H− Ĥest

)
Xi + Ni

∥∥2
F

)
.

Using the Frobenius norm property in Equation (13.1)
and the Cauchy–Bunyakovsky–Schwarz inequality in Equa-
tion (13.2) [34]

‖AB‖F ≤ ‖A‖F ‖B‖F (13.1)∣∣∣tr (ABH)∣∣∣ ≤ ‖A‖F ‖B‖F ] (13.2)

And using the Frobenius norm triangle inequality in [34],
we get
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argminĤest
E
(∥∥(H− Ĥest

)
Xi + Ni

∥∥2
F

)
≤

argminĤest
E
(∥∥H−Ĥest

∥∥2
F ‖Xi‖

2
F+‖Ni‖

2
F+2

∥∥H−Ĥest
∥∥
F

‖Xi‖F ‖Ni‖F ). But E (‖Xi‖F ) = λ,E (‖Ni‖F ) =

µ,E
(
‖Xi‖2F

)
= 2N t and E

(
‖Ni‖2F

)
= 2Nrσ 2

i therefore we
can simplify the expression to form Equation (14)

argminĤest
E
(∥∥(H− Ĥest

)
Xi + Ni

∥∥2
F

)
≤ argminĤest

(
2E
(∥∥H− Ĥest

∥∥2
F

)
Nt + 2N rσ

2
i

+ 2E
(∥∥H− Ĥest

∥∥
F

)
λµ
)

(14)

where Nt is the number of transmit antennas and Nr is
the number of receive antennas in the wireless MIMO
configuration. We can see from Equation (14) that the
minimization of E

(∥∥Yi − ĤestXi
∥∥2
F

)
implies minimizing

the channel estimate MSE E
(∥∥H− Ĥest

∥∥2
F

)
term. Using

this fact, we can then link the channel estimation MSE
minimization to the minimization of the equivalent noise
power term. Based on Equation(12), E

(∥∥Yi − ĤestXi
∥∥2
F

)
=

E
(∥∥∥−NrXHr (XrXHr )−1 Xi + Ni∥∥∥2F

)
. Therefore, we can

minimize the average signal mean squared error
E
(∥∥Yi − ĤestXi

∥∥2
F

)
expression byminimizing its equivalent

expression E
(∥∥∥−NrXHr (XrXHr )−1 Xi + Ni∥∥∥2F

)
. But

E

(∥∥∥∥−NrXHr (XrXHr )−1 Xi + Ni∥∥∥∥2
F

)

≥ E

(
‖Ni‖2F +

∥∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥∥2
F

− 2 ‖Ni‖F

∥∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥∥
F

)
(15)

But we know that E
(∥∥∥−NrXHr (XrXHr )−1 Xi + Ni∥∥∥2F

)
≥

0 ⇒ E
(
‖Ni‖2F

)
+ E

(∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥2F
)
≥

E
(
2 ‖Ni‖F

∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥F)∀α.
It is easy to see that when the expression E

(
‖Ni‖2F

)
+

E
(∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥2F

)
increases in value, the expres-

sion E
(
2 ‖Ni‖F

∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥F) also increases in
value, and the converse is true, which implies that the
two expressions are in phase. This means that the math-
ematical expression, E

(
2 ‖Ni‖F

∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥F),
only shifts or translates the graph of E

(
‖Ni‖2F

)
+

E
(∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥2F

)
vertically downwards on the

Cartesian plane. It does not affect the α value where the
minimum or stationary point occurs. Thus, to minimize

the term E
(∥∥∥−NrXHr (XrXHr )−1 Xi + Ni∥∥∥2F

)
, we need to

only concentrate on minimizing the term E
(
‖Ni‖2F

)
+

E
(∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥2F

)
.

However, knowing that the total equivalent noise power,
henceforth the equivalent noise power, is the total noise
power contribution from the noise matrix expressions
NrXHr

(
XrXHr

)−1
Xi and Ni. We can define the equivalent

noise power as follows in Equation (16):

σ 2
equ , E

(
‖Ni‖2F

)
+ E

(∥∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥∥2
F

)
(16)

As can be seen, that Equation (15) contains the equivalent
noise power; thus, for us to minimize the channel estimation
MSE, we can find the minimum or lowest equivalent noise
power. So mathematically, this is noted as follows in Equa-
tion (17):

argminασ
2
equ ⇒ argminĤest

E
(∥∥Yi − ĤestXi

∥∥2
F

)
⇒ argminĤest

E
(∥∥H− Ĥest

∥∥2
F

)
(17)

Based on Equation (16), we expand the expression

E
(∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥2F

)
using the following inequality

E
(∥∥∥NrXHr (XrXHr )−1 Xi∥∥∥2F

)
≤

E
(
‖Nr‖2F

∥∥∥XHr (XrXHr )−1∥∥∥2F ‖Xi‖2F
)
.

Now let θ = XHr
(
XrXHr

)−1
where θ ∈ CN×Nt matrix. The

matrix θ has constant complex entries containing the fixed
transmitted pilot symbol matrix Xr . Therefore, the equivalent
noise power becomes Equation (18)

σ 2
equ ≤ 2Nrσ 2

i + E
(
‖Nr‖2F

)
E
(
‖θ‖2F

)
E
(
‖Xi‖2F

)
(18)

since matrices Nr , θ and Xi are independent. But
E
(
‖Nr‖2F

)
= NrNσ 2

r , E
(
‖θ‖2F

)
= ‖θ‖2F , and E

(
‖Xi‖2F

)
=

2Nt thus, the equivalent noise power upper bound is given in
Equation (19)

σ 2
equ ≤ 2Nrσ 2

i + 2N rNtNσ 2
r ‖θ‖

2
F (19)

Using Equations (6.1) and (6.2), we can get the complete
equivalent noise power upper bound as stated in Equation (20)

σ 2
equ ≤

4Nr
(1− α) γ

+
4N rNtN ‖θ‖2F(
1+ M

N α
)
γ

(20)

To get the optimal power fraction that minimizes the equiv-
alent noise power, we rely on the calculus of finding the sta-
tionary point of the equivalent noise power with respect to the

transmit power fraction.
dσ 2equ
dα = 0,solving this leads to the

following optimal power fraction as shown in Equation (21)

αopt =
N
√
MNt ‖θ‖F − N

M + N
√
MNt ‖θ‖F

(21)

where αopt is the optimal transmit power fraction, M is
the number of information symbols transmitted per transmit
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FIGURE 2. Shows the equivalent noise power at 0dB SNR versus number
of pilot symbols N .

antenna, N is the number of pilot symbols sent per transmit
antenna, Nt is the number of transmit antennas in the MIMO
configuration and ‖θ‖F is the Frobenius norm of the matrix
θ = XHr

(
XrXHr

)−1
.

The next objective is to find the optimal number of pilot
symbols that must be transmitted over the wireless channel
and used for channel estimation. Since it follows that getting
a minimal or lowest equivalent noise power translates to min-
imum channel estimation MSE, we need to select the number
of pilot symbols that produce the lowest possible equivalent
noise power. The optimal power fraction that minimizes the
equivalent noise power is a function of the number of pilot
symbols N . Thus, the critical parameter to select for optimal
channel estimation performance is the number of pilot sym-
bols N since the optimal power fraction can be obtained from
Fig. 3 after finding the optimal N . We can find the optimal
number of pilot symbols N from Fig. 2.
As can be seen in Fig. 2, the realistic values for the number

of pilot symbols can only be in the range 2 to 200 since
the quasi-static channel fading is constant for slightly more
than 200 symbols at a time, hence the limit of 200. However,
we cannot use N = 1 pilot symbol because the Zadoff-Chu
sequence always starts with an element with an amplitude
of 1 and a phase of 0

◦

. This means that for N = 1, we have
a singular square matrix created by XrXHr , which is not
invertible. We, therefore, can only work with values of N in
the range 2 to 200. This is our search space for our optimal
number of pilot symbols. The SNR is set to 0dB because it
plays an insignificant role in determining the optimal number
of pilot symbols since the SNR is just a scaling factor. Setting
the SNR to 0dB is equivalent to setting a scaling factor of 1
on the linear scale.

Fig. 2 exhibits the fact that the lowest equivalent noise
power value is observed at N = 2 pilot symbols. As shown in
Section III-C’s derivation, the lowest equivalent noise power

FIGURE 3. Shows the power fraction versus number of pilot symbols N .

value corresponds to the lowest MSE performance. This
translates to an optimal power fraction αopt ≈ 0.16 based on
extrapolation from Fig. 3 at N = 2. Fig. 3 is produced from
Equation (21) and Fig. 2 is produced from Equation (20) with
the transmit power fraction set as α = αopt .
From Fig. 3, we can see that the optimal power fraction

stayswithin the feasible range of [0,1) over a different number
of pilot symbol values. The other observation is that the power
fraction cannot increase and approach unity linearly because
the transmit power of the information symbols will become
negligible, negatively affecting the BER performance of the
transmitted information symbols. Thus whilst increasing the
transmit power of the pilot symbols may yield an excellent
channel estimation MSE performance, lowering the transmit
power of the information symbols close to 0will yield inferior
BER performances, which will defeat the aim of improving
the channel estimation accuracy. Thus, a perfect balance must
be struck to optimize the BER and MSE performance.

IV. SIMULATION RESULTS
The Monte-Carlo wireless simulation environment is setup
as a 2 × 4 multiple-input-multiple-output (MIMO) wireless
channel with Rayleigh quasi-static fading in which the chan-
nel gain remains constant for 200 + N symbol durations
and changes every 200 + N symbol durations. The wireless
transmit and receive antennas are sufficiently spaced enough
such that the wireless channels are de-correlated. The number
of information symbols transmitted per frame is M = 200
and the number of pilot symbols transmitted per frame is
N = 2 or N = 10. The information and pilot symbols share
a fraction of the transmit power based on the optimal power
fraction in Equation (21) for N = 2. The pilot symbols are
generated using the Zadoff-Chu sequence in Equation (1) and
based on the number of pilot symbols N = 2 or N = 10. The
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FIGURE 4. Shows the MSE performance of the 2 × 4 MIMO NN-ML
channel estimation vs traditional channel estimation methods.

information symbol modulation order used in the simulation
is 16-QAM and 16-PSK. The average power constraint for
the 16-QAM and 16-PSK symbols is set to 1.

The NN-ML-based algorithm model architecture seen
in Table 1 is loaded into the simulation environment, and the
saved optimal synaptic weights are loaded into the machine
learning model. The channel estimation algorithms used are
the LS,MMSE, NN-MLwithout power-sharing, and NN-ML
with power-sharing. The Monte-Carlo simulation determines
the channel estimation algorithms’ MSE and BER perfor-
mance over 0dB to 14dB SNR.

From Fig. 4 we can see that the NN-ML channel estimator
without transmit power-sharing underperforms the traditional
channel estimation methods LS and MMSE at high SNR.
The reason for this is that the hyperparameters in Table 1 are
searched for in a multivariable landscape with the objective
to find the global minimum validation MSE at 10dB SNR.
Because the landscape is multivariable, it lends itself to the
possibility of having multiple local stationary points and a
single global stationary point. The genetic algorithm (GA)
used in Algorithm 1 tries to search for the global stationary
point in the multivariable landscape with no guarantees of
finding the global stationary point. Our GA runs for only
100 evolutionary generations, with a population size of 10,
and this limits the number of permutations of hyperparameter
values tested on the neural network. Thus, it restricts the
search space for the global stationary point. The hyperpa-
rameters found in Table 1 for the case α = 0, are clearly
suboptimal based on the poorMSE performance at high SNR.
The higher SNR range is sensitive to the channel estimator’s
systematic errors as opposed to the low SNR range.

We also see fromFig. 4 that theNN-ML channel estimation
method has an improved MSE performance when transmit
power-sharing is used to improve its performance. From
Fig. 4, the added transmit power fraction for the pilot symbols

FIGURE 5. Shows the BER performance of the 2 × 4 MIMO NN-ML
channel estimation vs traditional channel estimation methods at the
same number of pilot symbols for 16-QAM modulation.

improves the MSE performance. It is also interesting to note
that for the defined SNR range, the NN-ML channel estimator
with transmit power-sharing outperforms the traditional LS
and MMSE methods. At MSE = 6 × 10−2, we have an
approximately 12dB gain over the traditional LS and MMSE
channel estimation when using the NN-ML with power-
sharing channel estimation algorithm. This implies that we
can save transmit power with the NN-ML with the power-
sharing method; we can also do blind channel estimation
without knowledge of the transmitted pilot symbols and/or
channel autocorrelation statistics or the received noise vari-
ance required by the traditional channel estimation methods.

As shown in Fig. 5, the NN-ML channel estimator’s BER
performance with transmit power-sharing is the best perform-
ing as expected from the MSE accuracy shown in Fig. 4.
This shows that minimizing the equivalent noise power does,
in fact, minimize the channel estimation MSE performance
as shown in Fig. 4 and the signal MSE performance as shown
in Fig. 5. The signal MSE performance is linked to the max-
imum likelihood detector performance. Hence, the NN-ML
channel estimator’s BER performance with transmit power-
sharing has the best BER performance since its equivalent
noise power is minimized relative to the other channel esti-
mation algorithms.

There is a loss in diversity at high SNR for the NN-
ML channel estimator without transmit power-sharing as the
hyperparameters selected for the case α = 0 are suboptimal.
Fig. 4 MSE performance shows that at high SNR the NN-
ML channel estimator without transmit power-sharing has
poor performance relative to the other channel estimators.
This poor MSE performance has an impact on the BER
performance, as shown in Fig. 5. For the NN-ML channel
estimator with transmit power-sharing, there is no loss in
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FIGURE 6. Shows the BER performance of the 2 × 4 MIMO NN-ML
channel estimation vs traditional channel estimation methods at different
number of pilot symbols for 16-QAM modulation.

diversity because the hyperparameters selected for the case
when α = αopt are near-optimal. The approach of selecting
hyperparameters using a GA does not guarantee that the
stationary points found are globally optimal.

We also observe a near 2dB BER performance gain
between the NN-ML channel estimator with transmit power-
sharing and the traditional LS andMMSE channel estimation
methods. This implies that the NN-ML channel estimator
with transmit power-sharing enables a good channel estima-
tion accuracy and link reliability relative to the traditional
channel estimation algorithmswhilst using aminimal number
of pilot symbols to estimate the wireless channel. As shown
in Fig. 6, the NN-ML channel estimator with transmit power-
sharing has the same BER performance, at N = 2, with
the traditional LS and MMSE channel estimation methods at
N = 10. This means that we need 8 extra pilot symbols for
the LS and MMSE channel estimation methods to deliver a
similar BER performance as the NN-ML channel estimator
with transmit power-sharing. That is a waste of expensive
wireless channel bandwidth, which should be used to transmit
information symbols.

The other observation is that the NN-ML channel esti-
mator without transmit power-sharing, at higher N values,
as observed in Fig. 6, has a BER performance that approaches
that of the traditional LS and MMSE methods. This is
advantageous because totally blind channel estimation can
be achieved by this NN-ML method as it only needs the
observed/received pilot symbols matrix to perform channel
estimation. This means that it does not need to know the
wireless channel second-order statistics, nor does it need
to know the noise variance. Neither does it need to know
the transmitted pilot symbol matrix, unlike the traditional
channel estimationmethods that require this prior knowledge.

FIGURE 7. Shows the BER performance of the 2 × 4 MIMO NN-ML
channel estimation vs traditional channel estimation methods at different
number of pilot symbols for 16-PSK modulation.

In Fig. 7, we see that the same performance gains achieved
in Fig. 6 for 16-QAM modulation apply to 16-PSK modu-
lation. This implies that 16-QAM or 16-PSK USTLD mod-
ulation in conjunction with NN-ML channel estimator with
transmit power-sharing can achieve a comparable BER per-
formance to the traditional channel estimation methods but
at 20% of the bandwidth required by the traditional channel
estimators LS and MMSE.

V. CONCLUSION
The power-sharing method improves the NN-ML channel
estimation MSE accuracy relative to the NN-ML method
without transmit power-sharing. TheMSE performance of the
NN-ML channel estimator algorithm with transmit power-
sharing is very good throughout the SNR range relative to
the traditional LS and MMSE channel estimation methods.
The NN-ML channel estimator with transmit power-sharing
MSE performance, at MSE = 6 × 10−2, has an approxi-
mately 12dB gain over the traditional LS andMMSE channel
estimation methods. The NN-ML algorithm does not require
knowledge of the channel autocorrelation statistics and the
noise variance to estimate the wireless channel. This implies
that the NN-ML algorithm with power-sharing can be used
for wireless channel estimation where the transmitted pilot
symbols, channel second-order statistics and receiver noise
variance are unknown. Another inference from the results is
that, since the optimal number of pilot symbols is only 2,
it means we can achieve high channel estimation MSE/BER
accuracy whilst saving expensive channel bandwidth since
the traditional channel estimation algorithms will need a
higher number of pilot symbols to achieve similar MSE/BER
performance. From the simulation results, the proposed NN-
ML channel estimator with transmit power-sharing requires
only 20% of the bandwidth utilized by LS and MMSE to
achieve the same BER performance for 16-QAM and 16-PSK
USTLD modulation.
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