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ABSTRACT In this paper, our proposal consists of incorporating frailty into a statistical methodology for
modeling time-to-event data, based on non-proportional hazards regression model. Specifically, we use the
generalized time-dependent logistic (GTDL) model with a frailty term introduced in the hazard function to
control for unobservable heterogeneity among the sampling units. We also add a regression in the parameter
that measures the effect of time, since it can directly reflect the influence of covariates on the effect of time-
to-failure. The practical relevance of the proposed model is illustrated in a real problem based on a data set
for downhole safety valves (DHSVs) used in offshore oil and gas production wells. The reliability estimation
of DHSVs can be used, among others, to predict the blowout occurrence, assess the workover demand and
aid decision-making actions.

INDEX TERMS Downhole safety valve, frailty model, generalized time-dependent logistic, hydrogen
sulfide concentration, non-proportional hazard.

I. INTRODUCTION
The idea of modeling time-to-event data is well established
in statistics and widely used in the medical sciences (in the
context of survival analysis) and engineering (in the context
of reliability analysis). In any of these situations, we are
interested in representing the distribution of a non-negative
random variable T , based on one of its representative func-
tions, such as density, cumulative distribution, or the hazard
function.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagarajan Raghavan .

Many authors have chosen to model survival data in the
presence of covariates using the hazard function, which is
related to its interpretation. The hazard function represents
an interesting alternative, since its interpretation is given in
terms of the instantaneous failure rate over time. Perhaps
the best known model dedicated to hazard modeling is the
Cox model [1], which has brought to light this modeling
possibility. The Cox’s proportional hazards model is quite
flexible and used extensively in survival analysis. It can be
easily extended to incorporate, for instance, the effect of
time-dependent covariates. A strong assumption, and prob-
ably the most problematic of this model is that the failure
rates of any two individuals are proportional, popularizing the
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name Cox proportional hazard (PH) model. The assumption
of proportionality of hazards is not always in accordance with
the observed reality in the field, which motivates the study
and development of models that relax such a hypothesis.

Several techniques have been proposed as alternatives
to PH modeling. Among others, we can cite the use of
covariate stratification [2], the adoption of time-dependent
covariates [3], the nonparametric accelerated failure time
model [4], [5], the hybrid hazard model [6], the extension
of hybrid hazard models [7], [8], and the generalized
survival models [9]. Another approach is the general-
ized time-dependent logistic (GTDL) model introduced by
MacKenzie in [10], whose proposal is to bring a fully
parametric competitor for the Cox model. More recently,
Louzada-Neto et al. [11] proposed a Bayesian approach to
the GTDLmodel, Louzada-Neto et al. [12] compared several
techniques for building confidence intervals using parametric
and non-parametric resampling methods, MacKenzie and
Peng [13] extended the GTDL model by incorporating a
random effect into the hazard function and using h-likelihood
procedures that obviate the need to marginalize the risk and
survival functions, and Milani et al. [14] extended the GTDL
model by including a gamma frailty term in the modeling.
These models have been successfully applied to situations
where all units are susceptible to the event of interest, i.e., the
presence of a cure fraction in the population is not feasible.
Calsavara et al. [15] proposed an extension of the GTDL
model with application in the medical field, where long-term
survivors are observed. From the fact that the GTDL and
GTDL frailty models have the properties of non-PH and
with/without long-term presence (see Figure 1), these models
can be used in time-to-failure data with these characteristics.

FIGURE 1. Exemplification of the flexibility of the GTDL and GTDL frailty
models.

A typical assumption in reliability data analysis is that
all of the study units or systems will eventually experi-
ence the event of interest if they are followed long enough.
Nevertheless, the event may not occur for some units, even
after a longer period of time. In manufacturing, for instance,
those items that did not fail nor malfunction during the
examination time comprise the cured fraction [16]. Nelson
[17] observed the life of insulation on electric motors, which
were operated at some levels of temperature; the result is
that at low temperature the motors lasted almost indefinitely,
while at high temperatures the breake down occurred quickly.
From a Bayesian perspective, Lin and Zhu [18] proposed a
new approach to the reliability analysis of complex systems,
where a part of the subsystems is considered ‘‘longevous’’
compared with the entire system. Thus, the system will not
fail due to these subsystems.

Hence, usual survival models, such as the Cox PH model
or the accelerated failure time model, are not suitable for such
cured individuals. As a result, cure models have been devel-
oped for manipulation and analysis of survival data with cure
fraction. Boag [19] introduced the standard cure rate model,
which is the most widely used cure rate model. His objective
was to study cases where there was a fraction of cured patients
among those who had received treatment for mouth cancer;
the modeling of the failure time of the susceptible group was
made by adopting the lognormal distribution and assuming
the cure probability to be constant. The mixture cure model
was further developed in [20] and later studied extensively by
various authors [21]–[24], [25]–[28], among others.

Usual models implicitly admit a homogeneous population
for susceptible systems, but explanatory variables can be
included to elucidate the observable heterogeneity. Nonethe-
less, genetic, environmental factors or even information that,
for some reason, was not considered in the planning, can
cause a portion of the unobserved heterogeneity. Hougaard
[29] discussed the benefits of adopting two sources of het-
erogeneity, the observable (given by explanatory variables)
and the unobservable, considering for the latter some distri-
bution families. Unobserved heterogeneity can be controlled
by introducing a random effect to the hazard function, known
as frailty (the term ‘‘frailty’’ was introduced in [30]). In
this situation, the frailty models are widely used; for more
details, we refer the reader to [31]. The exclusion of a
relevant explanatory variable in the modeling will increase
the amount of unobservable heterogeneity, thus, the frailty
makes it possible to evaluate the effects of the explanatory
variables that were not considered in themodeling. Therefore,
the frailty, besides explaining the heterogeneity between the
systems, also allows to alleviate the absence of important
covariates.

The challenges in the construction of oil wells are increas-
ing over time, either due to the increase in technical difficul-
ties due to the greater complexity of the areas to be explored
or by the improvements in the rules of regulatory bodies
aiming at increasing safety. The DHSV (downhole safety
valve) is a subsurface safety valve, which is positioned in the
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oil production pipeline column below the seabed; its function
is to enable the production column to be closed almost
instantly, preventing uncontrolled leakage of hydrocarbons
into the environment in the event of a catastrophic wellhead
accident. The failure (closing or opening unwantedly and
other unexpected actions) of the DHSV generates several
unforeseen events causing great financial losses. Demonstrat-
ing reliability performance of DHSVs is an important activity
related to risk assessment and management of offshore well
systems [32].

The study of reliability associated with DHSV contem-
plates many ramifications, even in statistics itself, including
(but not limited to): (i) investigating current failures; (ii)
evaluating their root causes, failure mechanisms and effects;
(iii) estimating and improving the reliability of its compo-
nents; (iv) developing degradation models as part of a testing
strategy, among others. Selvik and Abrahamsen [32] studied
and discussed the specific statistics for the period 2002 -
2013, focusing on reliability aspects of the collected data.
Their study also included a literature review and some testing
data collected directly from oil and gas companies, to provide
a more nuanced picture of the reliability issues. Rausand
and Vatn [33] discussed the impact of using a Weibull life
distribution instead of an exponential distribution, based on
a specific data set for surface-controlled subsurface safety
valves used in offshore oil and gas production wells. Oliveira
[34] compared the reliability of some control systems models
taking into account the equipment positions throughout the
system and their failure rates with a vision more focused
on loss of production than in security. Colombo et al. [35]
analyzed the behavior of several machine learning models
to assess the reliability of DHSVs for further comparison
against traditional statistical techniques, based on experimen-
tal evaluation over a data set collected from a Brazil’s oil and
gas company. In the context of this study, we would like to
identify the association of the failure rate behavior with some
environmental variables, such as the hydrogen sulfide (H2S)
concentration, temperature, pressure, gas/oil ratio and water
column. For this, we use the GTDL andGTDL frailty models,
since the assumption of PH was not validated, consequently
the Cox model cannot be used.

After fitting a model, it is necessary to check the valid-
ity of its assumptions, as well as to carry out robustness
studies to detect possible influential or extreme observations
that can provoke distortions in the results of the analysis.
There are several works in the survival analysis setting that
present such analysis [36]–[38]. In this study, we discuss
the global influence starting from case-deletion, in which the
influence of the i-th observation on the parameter estimates
is investigated by excluding it from the analysis. We propose
diagnostic measures based on case-deletion for the GTDL
and GTDL frailty regression models, in order to determine
which units might be influential in the analysis. To motivate
our research, we describe the following real data set related
to DHSVs.

FIGURE 2. Tubing-retrievable charged - downhole safety valves
(TRC-DHSV) illustration (taken from [39]).

II. MOTIVATING EXAMPLE IN OIL AND GAS INDUSTRY
Themotivation for our study came from a real-world reability
data set corresponding to the DHSVs used in the exploration
of Petrobras’ (abbreviation of Petróleo Brasileiro S.A.) oil
wells in Brazil. Illustrated in Figure 2, the DHSV is a subsur-
face safety valve whose function is to prevent uncontrolled
leakage of hydrocarbons into the environment in the event of
a catastrophic wellhead accident.

The records show the time (in years) of valve’s life,
whether or not there was a suspension of use and some other
explanatory variables, presented in Table 1, which are divided
into groups according to their characteristics. The type of
variable is also highlighted.

Our objective is to study the time until the failure of the
DHSV and to identify possible associations between the
characteristics of the valve, the environment, the functioning
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TABLE 1. Explanatory variables divided by group.

FIGURE 3. Plots of the logarithm of estimated cumulative hazard function
versus time, for the covariates: (a) CWT, (b) FR, (c) Family, and (d) GOR.

and the flow with the time-to-failure; for this, we adopt
risk modeling. The assumption of PH is verified by means
of the graph of the logarithm of cumulative hazard ver-
sus time, for each covariate; [40]–[42] present detailed
discussions of how to assess the PH assumption. The
log-cumulative hazard plots shown in Figure 3 indicate
non-proportionality for the covariates: CWT, FR, Family and
GOR. The remaining graphs are presented in Figure 19 of
Appendix.

In addition to the graphical verification, we also carried
out the investigation of the property of PH through Shoenfeld
residuals [43]. The null hypothesis is proportionality of haz-
ards. The obtained results are summarized in Table 2. Con-
sidering a significance level of 10%, the variables CWT, FR,
Family, Dim. and GOR present non-PH. The global analysis
was not performed due to the large amount of missing data in
the covariates.

TABLE 2. Result of the hypothesis test to check the PH assumption.

Since the results of the analysis of the property of PH are
not unanimous, we decided to use the GTDL and GTDL with
gamma frailty models. As explained in [10], the GTDLmodel
can approach the PH model. When it occurs, the estimates of
the regression parameters should be similar in both models.

The inclusion of a frailty term in the traditional models
can also be needed. As mentioned earlier, unobservable het-
erogeneity among units or systems may play an important
role in assessing reliability, while its omission can cause
biased results. Hence, this example serves as a motivation
for the joint modeling of heterogeneity among valves by their
frailties and the possible presence of a cured fraction of them
when predicting their reliabilty.

The remainder of the paper is organized as follows.
In Section III, we provide further details on the GTDL and
GTDL frailty models, such as survival and hazard func-
tions, their cure rate version and inference methods based on
the likelihood function. Section IV describes and discusses
the influence diagnostics based on case-deletion. Section V
presents the fitted models to the groups of variables and the
diagnostic analysis. Finally, Section VI gives some conclud-
ing remarks.

III. BACKGROUND
In this section, we present the GTDL and GTDL with gamma
frailty regression models, highlighting the hazard, reliability
and probability density functions. Thesemodels are useful for
data sets with covariates that do not satisfy the proportional
hazards assumption.

A. GTDL MODEL
Let T > 0 be a random variable representing the failure
time and h(t) the instantaneous failure rate or baseline hazard
function. According to [10], the hazard function of the GTDL
model is given by

h0 (t | x) = λ
exp

{
αt + x>β

}
1+ exp

{
αt + x>β

} , (1)

where λ > 0 is a scalar, α ∈ R is a measure of the time
effect, x> = (x1, . . . , xp) are the sets of covariates and β =

(β1, . . . , βp)> are the regression coefficients.
The corresponding reliability function, R(t|x), and proba-

bility density function, f (t|x), are given, respectively, by

R (t | x) =

(
1+ exp

{
αt + x>β

}
1+ exp

{
x>β

} )−λ/α
(2)
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and

f (t | x) =

(
λ

exp
{
αt + x>β

}
1+ exp

{
αt + x>β

})

×

(
1+ exp

{
αt + x>β

}
1+ exp

{
x>β

} )−λ/α
.

The hazard function (1) has monotonic behavior, being
defined by the value of parameter α. More specifically, when
α > 0, the hazard function is increasing; when α < 0, it is
decreasing; and finally, when α = 0, the hazard function is
constant over time, that is, the resulting model is a PH model
with exponential baseline hazard function, as highlighted
in [13].

The GTDL model is said to be a non-PH model because
the ratio of the hazard functions for two individuals is not
constant over time. Consider two systems i and j, i 6= j, with
covariate vectors xi and xj, xi 6= xj, for i, j = 1, . . . , n. Then,
the ratio of the hazard functions is given by

τ
(
t | xi, xj

)
=

h0 (t | xi)
h0
(
t | xj

)
=

1+ exp
{
αt + x>j β

}
1+ exp

{
αt + x>i β

}
× exp

{(
xi − xj

)>
β
}
. (3)

Note from (3) that the time effect does not disappear, and
hence the non-PH condition becomes evident. As mentioned
in [10], the GTDL model is neither a PH model nor an
accelerated life model.

The reliability function (2) is proper for α > 0,
i.e., R(0|x) = 1 and lim

t→∞
R(t|x) = 0. But when the value of

parameter α is negative, the GTDL model naturally acquires
an improper distribution, i.e., R(0|x) = 1 and lim

t→∞
R(t|x) =

p > 0; hence, the GTDL model is a cure rate model when
α < 0. An advantage of the GTDL model over the mixed
model [20], is that the former makes no assumption about
the existence of a cure rate, leaving the data to indicate the
presence or not of a cure fraction. In literature, models with
this property have recently been called ‘‘defective’’ [44], [45]
and [46].

In reliability, the event (failure or error) may not occur
with some units, even after a very long period of time. Thus,
the cure rate in the population is calculated as the limit of the
reliability function (2) when α < 0, given by

p(x) = lim
t→∞

R (t | x) =
(
1+ exp

{
x>β

})λ/α
∈ (0, 1).

Let Ti > 0 be a random variable denoting the failure time
for the i-th unit, and δi a censoring indicator variable, which is
δi = 0 if the observed time is censored and δi = 1 otherwise,
for i = 1, . . . , n. Also, consider η = (λ, α, β1, . . . , βp)
and assume that Ti’s are independent and identically dis-
tributed (IID) random variables with hazard and reliabil-
ity functions specified, respectively, by (1) and (2). Then,

the likelihood function considering right-censored reliability
data is given by

L(η) =
n∏
i=1

h0 (ti | xi)δi R (ti | xi)

=

n∏
i=1

(
λ

exp
{
αti + x>i β

}
1+ exp

{
αti + x>i β

})δi

×

(
1+ exp

{
αti + x>i β

}
1+ exp

{
x>i β

} )−λ/α
and the log-likelihood function, `(η) = log (L(η)), is given
by

`(η) = log(λ)
n∑
i=1

δi +

n∑
i=1

δiαti +
n∑
i=1

δix>i β

−

n∑
i=1

δi log
(
1+ exp

{
αti + x>i β

})
−
λ

α

n∑
i=1

log
(
1+ exp

{
αti + x>i β

})
+
λ

α

n∑
i=1

log
(
1+ exp

{
x>i β

})
.

B. GTDL FRAILTY MODEL
The frailty model is characterized by the use of an unobserv-
able random effect, which represents information that cannot
or has not been observed, such as environmental factors,
or information that has not been considered in planning.
In conventional frailty models, the frailty variable is intro-
duced in the modeling of the hazard function, with the aim of
controlling the unobservable heterogeneity of the units under
study, including the dependence of the units that share the
same factors.

Based on the GTDL model, the hazard function of the i-th
individual with the multiplicative frailty term vi is given by

h0 (t | xi, vi) = vi
λ exp

{
αt + x>i β

}
1+ exp

{
αt + x>i β

} ,
where vi represents a value of the random variable V , and
h0 (t|xi, vi) is called the conditional hazard function of the i-th
individual given vi. When vi > 1, we have that the individual
i is more fragile, and becomes stronger when vi < 1; hence,
the model’s name ‘‘frailty’’ (or ‘‘fragility’’). It is necessary
to adopt a known distribution for the random variable V ;
as it can only assume positive values, the natural candidates
are: gamma, inverse Gaussian, Weibull, positive stable and
power variance function (PVF) distributions, among others;
for more details, see [47] and [31]. In general, the restric-
tion adopted is E[V ] = 1 and Var[V ] = θ , where θ is
interpretable as a measure of unobserved heterogeneity; this
restriction was proposed in [30].

In order to make inferences on frailty models, we have
some options. For instance, obtaining the marginal hazard
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and reliability functions and using the traditional likelihood
function; or choosing other methods that obviate the need for
marginalization, such as the h-likelihood approach proposed
by Ha et al. [48] and used in [49]. This paper considers the
marginal hazard and reliability functions.

C. THE GTDL GAMMA FRAILTY MODEL
The GTDL gamma frailty model was proposed in [14],
wherein they added a frailty term to the hazard function
in a multiplicative way and assumed a gamma distribution
for it, i.e., V ∼ Gamma (1/θ, 1/θ). This parametrization is
considered to obtain E[V ] = 1 and Var[V ] = θ .
The marginal reliability function is given by

R (t | x) =

[
1+

λθ

α
log

(
1+ exp

{
αt + x>β

}
1+ exp

{
x>β

} )]− 1
θ

, (4)

the corresponding marginal hazard function is given by

h (t | x) =
h0 (t | x)[

1+ λθ
α
log

(
1+exp{αt+x>β}

1+exp{x>β}

)] (5)

and, finally, the density function is given by

f (t | x) =
h0 (t|x)[

1+ λθ
α
log

(
1+exp{αt+x>β}

1+exp{x>β}

)](1+1/θ) ,
where h0 (t|x) is the hazard function defined in (1).

The hazard function (5) takes unimodal and decreasing
forms, therefore, the inclusion of frailty makes the GTDL
hazard function more flexible; for more details, see [50].
It is evident that such a hazard function depends on the time,
consequently, the GTDL gamma frailty model also accounts
for non-PH. When the parameter θ → 0, the frailty model
approaches the traditional GTDL model. As advocated by
Aalen et al. [51], heterogeneity is ubiquitous and if ignored,
it can lead to misleading comparisons of hazard rates. There-
fore, it is prudent to always carry out checks to detect the
presence of unobserved heterogeneity. On the other hand,
the reliability function (4) behaves similarly to the GTDL
model, with cure fraction, p(x), given by

p(x) =
[
1−

λθ

α
log

(
1+ exp

{
x>β

})]− 1
θ

∈ (0, 1).

The explanatory variables can be incorporated in the model
through the hazard function (5) and the scale parameter α.
The use of regression in the α parameter is a more flexi-
ble approach, since it can directly reflect the influence of
covariates on the effect of time-to-failure. Due to fhe fact that
the parameter α can be estimated to be negative or positive,
the identity link function is used, i.e.,

α (x∗) = x∗>α,

where x∗> = (1, x∗1 , x∗2 , . . . , x∗q ) are the sets of covariates
and α = (α0, α1, . . . , αq)> and are the regression coeffi-
cients. In practice, the covariate vectors may be the same,
i.e., x = x∗. Note that we can include the intercept in

the vector x, and with that, we also include the parameter
β0. MacKenzie [52] presents a discussion of the parame-
ters β0 and λ; in short, only one parameter is allowed for
the model to be identifiable, that is, the parameters β0 and
λ are interchangeable. We chose to include the parameter
β0 because we are interested in the interpretation of the
explanatory variables. Hence, the model parameters are ν =

(α0, . . . , αq, β0, . . . , βp, θ).
Let Ti > 0 and δi be as previously defined, for i = 1, . . . , n.

Also, consider that Ti’s are IID random variables with relia-
bility and hazard functions given, respectively, by (4) and (5).
Then, the likelihood function considering right-censored reli-
ability data is given by

L(ν) =
n∏
i=1

h
(
ti | xi, x∗i

)δi R (ti | xi, x∗i)
=

n∏
i=1

h∗0(ti)
δi

[
1+

θ

x∗i>α
log

(
h∗0(ti)

)]−(1/θ+δi)
.

where h∗0(ti) =
exp

{
x∗i
>αti+x>i β)

}
1+exp

{
x∗i
>αti+x>i β

} . The log-likelihood func-

tion, `(ν) = log (L(ν)), is given by

`(ν) =
n∑
i=1

δix∗i
>αti +

n∑
i=1

δix>i β

−

n∑
i=1

δi log
(
1+ exp

{
x∗i
>αti + x>i β

})
−

n∑
i=1

(
δi +

1
θ

)
log

(
h∗0(ti)

)
.

The maximum likelihood estimates (MLEs) for the param-
eters of the GTDL and GTDL gamma frailty models are
obtained by numerical maximization of the corresponding
log-likelihood functions. In this work, we use the optimr
function of the ‘‘optimx’’ package [53], [54], which is imple-
mented in software R Core Team [55].

IV. DIAGNOSTIC ANALYSIS
In this section, we present two important tools to check the
quality of the model’s fit to the data. The residual analysis is
performed using the randomized quantile residuals. The other
tool is the global influence analysis.

A. RANDOMIZED QUANTILE RESIDUALS
The randomized quantile (RQ) residuals were proposed in
[56]. They are used to check the overall fit quality of the
model. As highlighted in [57], the RQ residuals can be used
in the presence of censored data. They are also widely used
in generalized additive models for location, scale and shape
(GAMLSS). The RQ residuals are defined by

ri = 8−1
(̂
R(ti | xi)

)
, i = 1, 2, . . . , n, (6)

where 8−1(.) is the inverse of the cumulative distribution
function (or quantile function) of the standard normal and
R̂(ti | xi) is the estimate of the reliability function obtained
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using the MLEs for the parameters. In this work, we analyze
the RQ residuals using the quantile-quantile plot (QQ-plot).

B. GLOBAL INFLUENCE
Global influence analysis consists of studying the effect
of case-deletion from the data. It was introduced by Cook
[58] and studied later by several authors [59], [60], [36],
[38], among others. We denote by the subscript ‘‘(i)’’ the
removal of the i-th observation from the original data set. The
log-likelihood function of the parameter vector ν is denoted
by `(ν), as previously given; when we delete the i-th obser-
vation, we represent it by `(i)(ν), with the respective MLE
given by ν̂(i) = (α̂(i), β̂(i), θ̂(i))

>. In this study, we analyze
two measures of global influence. The first is the generalized
Cook’s distance (GD), whose idea is to compare ν̂ and ν̂(i);
if the deleted observation seriously influences the estimates,
more attention should be paid to that observation. The GD is
given by

GDi (ν) =
(
ν̂(i) − ν̂

)> [
6
(
ν̂
)]−1 (

ν̂(i) − ν̂
)
,

where 6
(
ν̂
)
is the expected Fisher information matrix. For

the models under study, this matrix is extremely complex,
so in practice we use its observed version. An alternative
way is to assess GDi (α), GDi (β) and GDi (θ), whose values
reveal the impact of the case-deletion on the estimates of α,
β and θ , respectively.
The secondmeasure adopted here is the likelihood distance

(LD), whose idea is to compare `
(
ν̂
)
and `

(
ν̂(i)
)
, similarly to

the previous one; if the deleted observation seriously influ-
ences the value of the log-likelihood function, it deserves
further attention. The LD is given by

LDi (ν) = 2
[
`
(
ν̂
)
− `

(
ν̂(i)
)]
.

In order to investigate the impact of the detected influential
cases, we calculate the relative change (RC), which is com-
puted from parameter estimates with and without removing
the influential cases, as follows:

RCνj(i) =

∣∣∣∣ ν̂j − ν̂j(i)ν̂j

∣∣∣∣× 100%,

RCSE(νj(i)) =

∣∣∣∣SE(ν̂j)− SE(ν̂j(i))
SE(ν̂j)

∣∣∣∣× 100%,

where ν̂j(i) and SE(ν̂j(i)) are the MLEs and their respective
estimated standard errors (SEs) when the i-th case is deleted,
with j = 1, . . . , p + q + 3 and ν1 = α0, . . . , νq+1 = αq,
νq+2 = β0, . . . , νp+q+2 = βp and νp+q+3 = θ . Note that this
section was developed for the GTDL gamma frailty model,
but if the adopted model is the GTDL one, it is only necessary
to remove the parameter θ .

V. APPLICATION
In this section, we apply the proposed methodology to the
DHSVdata set. The data set is confidential due to the interests
of the Petrobras company. The analyses were performed with

TABLE 3. Descriptive summary of the continuous explanatory variables.

TABLE 4. Descriptive summary of the qualitative explanatory variables.

the R software [61]. A descriptive summary of the failure
times or censoring (in years) provides the following main
sample results: n = 366, mean = 5.0761, median = 3.6082,
minimum = 0.0164 and maximum = 28.8000, with only 83
(22.68%) failure times, while the rest are censored times.

For better understanding, we present a descriptive statisti-
cal summary of the explanatory variables in Tables 3 and 4.
Table 3 displays the minimum value (Min), median, mean,
standard deviation (SD), coefficient of variation (CV), skew-
ness (Sk) and kurtosis (K), maximum value (Max) and num-
ber of observations (n), for the continuous variables. The
summary of failure times that are analyzed together with
the covariates is also presented in this table. For the qual-
itative (categorical) variables, it is possible to observe the
categories and the number of observations per category in an
absolute and relative way, as shown in Table 4.
The database contains 366 observations, but there is a lot of

missing data in the explanatory variables. The removal of the
cases withmissing data reduces the database to only 54 obser-
vations, which makes multivariate analyses difficult. Hence,
we decided to fit a model for each group of explanatory
variables, thereby eliminating the observations with missing
data inside the groups. The summary measures previously
presented already consider this deletion.

In order to choose/select the explanatory variables, we ini-
tially adopted the GTDL model with gamma frailty term and
the following steps:

Step 1: For each group, select the significant covariates
in the x>β structure, using the stepwise method
and the generalized likelihood ratio test, and also
considering α as a scalar;

Step 2: For each group, select the significant covariates in
the x∗>α structure, using the stepwise method and
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TABLE 5. Estimation results of the GTDL model fitted to the flow
characteristics group.

FIGURE 4. QQ-plot with envelope of 95% for the RQ residuals of the
adjustment to the flow characteristics group.

the generalized likelihood ratio test, considering for
the x>β structure the covariates obtained in Step 1.

At the end of Step 2, we perform a hypothesis test to verify
whether there is observed heterogeneity (H0 : θ = 0). In this
case, the generalized likelihood ratio test was adopted with
the modification presented in [25], because the value of the
parameter under the null hypothesis is on the boundary of
the parametric space. If the null hypothesis is not rejected,
the adopted model will be the GTDL; otherwise, the GTDL
model with gamma frailty term will be the chosen one.

A. ADJUSTMENT TO THE FLOW CHARACTERISTICS GROUP
After applying the procedure previously described, we obtain
in Step 1 that the statistically significant explanatory vari-
ables are H2S and BSW, while in Step 2 we do not identify
any significant variables, and so only α0 is included in the
model. We performed the hypothesis test for the parameter
that measures the unobserved heterogeneity and obtained a
p-value greater than the significance level of 10%, so the
null hypothesis is not rejected and the GTDL model (without
frailty) is the adopted one.

The MLEs, SEs and 90% confidence intervals (90% CIs)
for the GTDL model parameters are presented in Table 5.
By analyzing the confidence intervals, we conclude that all
parameters are significant at the 10% level.

The QQ-plot of the RQ residuals is shown in Figure 4.
We observed a linear behavior of the residuals (with intercept
0 and slope 1), thus indicating an agreement between the
residuals and the standard normal distribution.

For the reliability functions and hazard ratios (HRs) that
will be illustrated hereinafter in the text, we adopt the median
value of continuous explanatory variables whenever neces-
sary. When the objective is to present reliability functions

FIGURE 5. (a) Reliability function with variation in the value of the H2S
variable. (b) Reliability function with variation in the value of the BSW
variable.

for different values of a continuous covariate, we always
choose the variation from the minimum to the maximum of
the observed value.

In order to illustrate what is the effect on the reliability
function for an increase in the amount of H2S or BSW,
we exhibit in Figure 5 (a) several reliability curves for differ-
ent values of the H2S variable. We note that, with the increase
in the value of the H2S variable, the reliability function shows
a faster decreasing behavior, that is, the higher the concentra-
tion of H2S, the lower the reliability of DHSVs. It is known
that the concentration of H2S is associated with failures of
metallic components in the oil and gas exploration industry.
This can be seen, for instance, in [62], which presents a
summary of common threats to corrosion, with some of them
involving H2S; and [63], which gives recommendations for
material selection when H2S is present.

In Figure 5 (b), we show the variation of the BSW
variable being reflected in the reliability function. Observe
that alterations in the BSW value changed the reliability
curve, the higher the concentration of BSW, the greater the
reliability.

In Figure 6 (a), we present the HR curve for the first
and third quartiles of the H2S variable. We note that before
10 years of age the HR is less than one, so the risk of valve
failure is greater when the H2S variable assumes the value of
the third quartile; but after 10 years the HR is approximately
one, and, therefore, we have approximately equal hazards.
In Figure 6 (b), we show theHR for the first and third quartiles
of the BSW variable. From this plot, we observe that the
HR is greater than one up to 14 years old, therefore, in this
period the valve has a higher risk of failure when the BSW
variable takes on the value of the first quartile; after the first
14 years the HR is approximately one, so the risk of failure
is approximately equal in both groups. We highlight here a
different result than the one obtained if we had considered
the Cox model, since the ratio of hazard functions in the Cox
model would be constant throughout the time.

In order to check for the presence of influential observa-
tions, we calculated the GD and LD measures. The obtained
results are presented in Figure 7, from which we can see the
existence of four influential observations according to the
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FIGURE 6. (a) Ratio of hazard functions between the first and third
quartiles of the H2S variable. (b) Ratio of hazard functions between the
first and third quartiles of the BSW variable.

FIGURE 7. (a) Generalized Cook’s distance. (b) Likelihood distance,
considering the GTDL model fitted to the flow group data.

Cook’s distance - cases 2, 3, 34 and 70; while from the LD,
we also observe four influential observations - cases 2, 3, 24
and 70. Hence, the detected influential observations are cases
2, 3, 24, 34 and 70.
We checked the impact of the detected influential cases

on the model inference. With removal of influential obser-
vations, the RC values (in percentage, %) and p-values
are displayed in Table 6. At the 10% level, note that the
parameters α0, β0 and β1 remained significant in all scenar-
ios, whereas the parameter β2 was only significant in two
scenarios (specifically, when excluding the observation 24,
and when excluding all influential observations). Therefore,
the effect of time and the H2S variable were significant to
explain the time-to-failure, while the BSW variable became
non-significant in some scenarios. The RC of the parameter
α is the largest when case 2 is excluded (RC of 20.4872%),
while for the parameters β0 and β1 the RCs are the largest
when case 3 is removed (RC of 11.1820% and 13.3283%,
respectively), and, finally, for the parameter β2 the RC is the
largest when case 24 is removed (RC of 48.0736%). When all
influential observations are excluded, we find that the RCs are
less than 6%, indicating little change in point estimates.

B. ADJUSTMENT TO THE VALVE CHARACTERISTICS
GROUP
In the structure x>β we identified only the variable Family
as statistically significant, whereas in the structure x∗>α

TABLE 6. The RC values (in %) for the MLEs and SEs, in addition to the
p-values, considering the deleted observations.

TABLE 7. Estimation results of the GTDL gamma frailty model fitted to
the valve characteristics group.

we found that the variables PC and Mfr. are meaningful.
Therefore, the effect of time is different for each level of these
two variables. The hypothesis test for the frailty distribution’s
parameter resulted in the rejection of the null hypothesis.
Hence, the GTDL gamma frailty model is the one that best
fits these data. The obtained MLEs are shown in Table 7.
From the fact that the frailty parameter is significant, there
is evidence that important variables were not included in
the modeling, so indicating that the variables PC, Mfr. and
Family are not the only ones that impact the failure time of
the valves.

It is worth mentioning that when the Manufacturer is the
‘‘Others’’ class, the GTDL with gamma frailty term assumes
a cure fraction, regardless of what the other explanatory
variables are, since in this case x∗>α < 0, with the cure
fraction value close to one. From a descriptive analysis,
we identified that only two out of 30 observations in the ‘‘Oth-
ers’’ class were failure times, occurring before one year of
operation.

In Figure 8, we present the QQ-plot of the RQ residuals.
Again, we observed a good agreement between the residuals
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FIGURE 8. QQ-plot with envelope of 95% for the RQ residuals of the
adjustment to the valve characteristics group.

and the standard normal distribution. Therefore, we can
conclude that there was a good adjustment of the GTDL
gamma frailty model to the data.

Figure 9 shows the reliability functions for the variables
Family, PC and Mfr.. Note that there is a little difference
between the reliability curves of the ‘‘family A’’ and ‘‘family
B’’ classes; the same occurs with the ‘‘Mfr. A’’ and ‘‘Mfr. B’’
classes’ curves. By analyzing the curves of the PC variable,
we see that the lowest reliability is for PC equal to ‘‘7,500’’,
while the highest one is for PC equal to ‘‘5,000’’.

The closeness between the reliability curves of the ‘‘family
B’’ and ‘‘family A’’ levels is justified by analyzing the con-
fidence interval of the ‘‘family B’’ Family, since this level is
not statistically different from the ‘‘family A’’ reference level.
From this, we can conclude that the failure times showed no
significant difference in relation to these two levels of the
Family variable. The same conclusion can be made for the
reliability curves considering the PC ‘‘7,500’’ and ‘‘10,000’’,
and also the Manufacturers ‘‘Mfr. A’’ and ‘‘Mfr. B’’. But for
that, it was necessary to change the reference classes and refit
the model.

Due to the architecture imposed for safety valves in deep
water wells used by Petrobras, most of its valves have
nitrogen chambers, which is a technology that mitigates the
pressure sensitivity of the well and ensures, through a sur-
face calibration for the individual condition of each well,
the opening and closing pressures of a particular specifi-
cation. In other words, the pressure class envisaged in the
analysis, consists of a control variable and easy handling for
new DHSVs. From the fact that the calibration is feasible
and a low-cost action, with a relative impact on reducing the
risks of that component, it is advisable to use the PC equal
to 5,000 psi.

Figure 10 presents an analysis of the behavior of the haz-
ard function using the GTDL gamma frailty model fitted
to the data. From the HR of the Family variable shown
in Figure 10 (a), we observe that the ratios between ‘‘family
B’’ and ‘‘Others’’, ‘‘family A’’ and ‘‘Others’’ start below
one, so indicating that the ‘‘Others’’ family has a higher
risk; however, after approximately 3 years this relationship is
reversed. For the ratio between ‘‘family B’’ and ‘‘family A’’,
we see that it is greater than one until approximately 5 years,

FIGURE 9. (a) Reliability function for the Family variable, considering PC
equal to ‘‘7,500’’ and ‘‘Mfr. B’’ for the Manufacturer. (b) Reliability function
for the PC variable, adopting ‘‘family B’’ for Family and ‘‘Mfr. B’’ for
Manufacturer. (c) Reliability function for the Mfr. variable, assuming
‘‘family B’’ for Family and ‘‘7,500’’ for PC.

i.e., at the beginning ‘‘family B’’ shows a higher risk of failure
compared to ‘‘family A’’; but after 5 years it is ‘‘family A’’
that exhibits a greater risk of failure.

From the HRs for the PC variable displayed in
Figure 10 (b), we observe that, initially, the PC of ‘‘10,000’’
showsmore risk of failure than the PC of ‘‘5,000’’, and the PC
of ‘‘7,500’’ is more at risk of failure than PC of ‘‘5,000’’ and
‘‘10,000’’; nevertheless, these relationships are reversed over
time. It is worth noting that the risk of failure of PC ‘‘7,500’’
reaches approximately 14 times the risk of failure of PC
‘‘5,000’’. When the comparison is made with PC ‘‘10,000’’,
the risk of PC ‘‘7,500’’ is even approximately 6 times.

Finally, Figure 10 (c) exhibits the HRs for theMfr. variable,
from which we note that the ratios between ‘‘Others’’ and
‘‘Mfr. A’’, ‘‘Others’’ and ‘‘Mfr. B’’ are always below one,
so indicating that the risk of failure is greater for the Manu-
facturers ‘‘Mfr. B’’ and ‘‘Mfr. A’’.When comparing ‘‘Mfr. B’’
and ‘‘Mfr. A’’, we observe that, initially, the ratio is less than
one until the age of approximately 3 years, thus indicating that
‘‘Mfr. A’’ has a higher risk of failure than ‘‘Mfr. B’’. However,
after 3 years the relationship is inverted and maintained over
time.

The GD measure identified 18 influential observa-
tions, while the LD indicated 9 influential observations;
these indications can be seen in Figure 11. The cases
76, 99, 148, 164, 196 and 290 were detected by both metrics.

In Table 8, we observe that the MLEs of the parameters α0,
α1, α2, α3, α4, β0, β2 and θ are always statistically significant
at the 10% level, while the MLE of β1 is only meaningful
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FIGURE 10. (a) Ratio of hazard functions of the Family variable, adopting
PC equal to ‘‘10,000’’ and Manufacturer ‘‘Mfr. B’’. (b) Ratio of hazard
functions of PC, adopting the ‘‘family B’’ class for Family and
Manufacturer ‘‘Mfr. B’’. (c) Ratio of hazard functions of Manufacturer,
adopting the ‘‘family B’’ class for Family and PC equal to ‘‘7,500’’.

FIGURE 11. (a) Generalized Cook’s distance. (b) Likelihood distance,
considering the GTDL gamma frailty model fitted to the valve group data.

when removing all influential observations. We also note a
big change in the parameter estimates when all the influ-
ential observations are deleted, e.g., the estimates of the
parameters α1, α2, α3, α4, β1 and θ , change from 1.9430,
0.8336, 5.6018, 5.8969, 0.8631 and 12.3951, to 12.2712,
10.4262,−27.2694,−19.7312, 34.6029 and 64.3544, respec-
tively. This makes us believe that the reason for this alteration
is that all removed observations are due to failure times.

C. ADJUSTMENT TO THE ENVIRONMENT
CHARACTERISTICS GROUP
In Step 1, the variables OU, CWT and WC are statistically
significant; while in Step 2, only the intercept is relevant.
The GTDL model (without frailty) is the one that best
fits these data, since we do not reject the null hypothesis

TABLE 8. The RC values (in %) for the MLEs and SEs, in addition to the
p-values, considering the deleted observations.

TABLE 9. Estimation results of the GTDL model fitted to the environment
characteristics group.

(H0 : θ = 0) at the 10% significance level. From the obtained
MLEs displayed in Table 9, we observe that all parameters
are significant at the 10% level, except for the parameter
β1, which measures the effect of the OU class ‘‘SB’’. Thus,
we can say that there is no significant difference between the
OU levels ‘‘CB’’ (reference) and ‘‘SB’’.

Figure 12 shows the QQ-plot of the RQ residuals. In gen-
eral, we observed a good agreement between the residuals
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FIGURE 12. QQ-plot with envelope of 95% for the RQ residuals of the
adjustment to the environment characteristics group.

FIGURE 13. (a) Reliability function for the operating units. (b) Reliability
function with variation in the value of the CWT variable. (c) Reliability
function with variation in the value of the WC variable.

and the standard normal distribution, but we noticed a slight
deviation in the lower tail.

From Figure 13, we note that ‘‘ES’’ is the class with
the lowest reliability among the three operating units, while
‘‘SB’’ is the one with the highest reliability. Moreover, it can
be observed that the higher the value of the CWT and WC
variables, the lower the reliability.

Figure 14 (a) shows that the HRs between ‘‘CB’’ and ‘‘SB’’
with ‘‘ES’’ are below one all the time, so indicating that the
risk of valve failure is lower in the ‘‘CB’’ and ‘‘SB’’ operating
units. When analyzing the HR between the ‘‘CB’’ and ‘‘SB’’,
we note that it is always greater than one, thus indicating that
‘‘SB’’ has a lower risk of failure. Finally, by analyzing the
HRs involving the first and third quartiles of the CWT and
WC variables (Figure 14 (b) and Figure 14 (c), respectively),
we observe that both are less than one, thus indicating that the
increase in the value of these variables causes the risk to also
increase.

FIGURE 14. (a) Ratio of hazard functions of the OU variable. (b) Ratio of
hazard functions between the first and third quartiles of the CWT
variable. (c) Ratio of hazard functions between the first and third
quartiles of the WC variable.

FIGURE 15. (a) Generalized Cook’s distance. (b) Likelihood distance,
considering the GTDL model fitted to the environmental group data.

Finally, Figure 15 exhibits the GD and LD measures,
considering the GTDL model fitted to the environmental
group data. In total, 17 influential observations are detected.
In Table 10, we present the RCs and p-values, from which
we note that the effect of time, the CWT variable and the OU
class ‘‘ES’’ are significant at the 10% level in all arrange-
ments. While the OU class ‘‘SB’’ is not significant in any
of the scenarios, and the WC variable is significant in most
of the scenarios. The RC is the largest when we remove all
the influential observations, and this result is valid for all
parameters. These changes range from 29.1455% (for the
parameter β0) to 65.9195% (for the parameter β2).

D. ADJUSTMENT TO THE OPERATION CHARACTERISTICS
GROUP
In this last fitting, only the WFP variable is significant in
Step 1, the effect of time is measured only by α0 and the
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TABLE 10. The RC values (in %) for the MLEs and SEs, in addition to the
p-values, considering the deleted observations.

TABLE 11. Estimation results of the GTDL model fitted to the operation
characteristics group.

GTDL model (without frailty) is the one that best fits these
data. Its estimation results are presented in Table 11, from
which we note that all parameters are significant at the 10%
level.

Figure 16 shows the QQ-plot of the RQ residuals. In gen-
eral, we observed a good agreement between the residuals and
the standard normal distribution.

FIGURE 16. QQ-plot with envelope of 95% for the RQ residuals of the
adjustment to the operation characteristics group.

FIGURE 17. (a) Reliability function with variation in the value of the WFP
variable. (b) Ratio of hazard functions between the first and third
quartiles of the WFP variable.

FIGURE 18. (a) Generalized Cook’s distance. (b) Likelihood distance,
considering the GTDL model fitted to the operation group data.

Figure 17 (a) exhibits the behavior of the reliability func-
tion when we vary the value of the WFP variable. Note that
with the increase in the value of theWFP variable, an increase
in the value of the valve reliability is observed. An example
of the HR is shown in Figure 17 (b), using the first and
third quartiles of the WFP variable, from which we see that
the ratio is greater than one, so the risk of failure is greater
when the WFP variable takes on the value equal to the first
quartile. We also observe that the ratio is initially close to
the value 2, indicating that the risk of valve failure, when
operated at the value of the first quartile, is approximately
twice when operated at the value of the third quartile. Such a
risk value decreases with time, but stays above 1.5 in the time
of 20 years.
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FIGURE 19. Logarithm of the estimated cumulative hazard function for the variables: (a) CWP, (b) OU, (c) WC, (d) WFP, (e) Mfr., (f) Dim., (g) PC, (h) H2S
and (i) BSW.

The total number of influential observations detected by
the GD and LD measures are 16 and 8, respectively, as can
be seen in Figure 18. Note, however, that only observations
14 and 47 were identified by both metrics. From the removal
of influential observations, we can see in Table 12 that the
WFP variable remains significant in all configurations, and
that the effect of time is almost always significant. The point

estimates underwent few changes when excluding only one
influential observation; this fact is quantified by RC less
than or equal to 20.0448%. But when we removed all the
influential observations, we noticed major changes in the
estimates of the parameters α0 and β1, with RC of 266%
and 165%, respectively. In this case, it is worth noting that
the estimate of the parameter α0 changed from 0.1403 to
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TABLE 12. The RC values (in %) for the MLEs and SEs, in addition to the
p-values, considering the deleted observations.

0.5145, thus the effect of time is greater when removing
the influential observations.

VI. CONCLUSION
In this paper, we analyzed a real reliability data set on DHSVs
used by the Brazil’s Petrobras oil firm. This kind of valve has
a high reliability, attested by the various technical standards
that regulate the oil and gas production sector, consequently
few failures are expected during its use. In the graphical
analysis, we verified the presence of non-PH. But for some
covariates, the Shoenfeld test did not confirm this result.
Then, our proposedmodeling was developed using the GTDL
and GTDL gamma frailty models with regression also in the
parameter that measures the effect of time. The decision to
use modeling with frailty is in the sense that the variance
of the distribution can indicate the absence of important
covariates in the modeling, thus indicating that covariates
that are in other groups or that for some reason were not
registered in the database can be important to explain the time
to failure. The modeling was divided into four groups due
to the large amount of missing data. We identified that the
variables H2S, BSW, PC, Mfr., Family, OU, CWT, WC and
WFP are relevant to describe the time until failure. We also
noted that only variables with valve characteristics are not
enough to describe the time until failure, because the model
with fragility needed to be adopted. The residual analysis
indicated a good fit of the model to the data, in all groups of
covariates. The global influence analysis highlighted possible
influential points in the adjustments made. We presented
summaries of the adjustments without the influential observa-

tions, because further information and investigations of these
observations are for the exclusive use of the company. In this
way, we demonstrated the importance of diagnostic analysis
in the model because we detected inferential changes after
eliminating potentially influential cases.

The variables were divided into 4 groups considering
their characteristics and the proposed modeling adopted this
division, since the amount of missing data is large. In this
work, our interest was to identify possible factors that may
influence the time until failure and not to indicate a single
model adjusted to a certain group of covariates as being the
one that best suits failure times. As a future work, a study
on how to circumvent problems for small sample sizes in
the used models using Bayesian methods or bias correction
approaches, the use of the premise that valves installed in
the same production regions share the same frailty, thus
characterizing the use of shared frailty models, and the use
of the well-known statistical method of Principal Component
Analysis (PCA) can be modeling alternatives.

APPENDIX
See Figure 19.
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