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ABSTRACT This paper addresses a novel approach for multi-agent control systems including Unmanned
Vehicles (UV). As UV technology advances, one or a group of UVs can be used in a wide range of industrial
or military applications. Centralized monitoring has limitations on various resources (e.g. communication
bandwidth, propagation delay, and computational power), but can lead to an optimal solution to the move-
ment of the swarm. The artificial potential field (APF) method is well-known for modeling decentralized
behavior, but most APF research only focuses on naive actions such as collision avoidance, flocking, or path
planning. In our proposed design Versatile Multi-Vehicle Control System (VMCS), we defined high-level
conditions as APF and let UVs perform swarm intelligence in various mission environments. Furthermore,
we devised a novel algorithm that controls the UVs’ APF topology which can significantly enhance the
mission efficiency. We simulated the VMCS in 3D space and showed our scheme can control the dynamic
mission scenarios for multi-UV systems.

INDEX TERMS Multi-UV control, network topology, swarm intelligence, artificial potential field.

I. INTRODUCTION
Significant advances in Unmanned Vehicle (UV) technology
have increased the possibility of replacing existing indus-
trial components. Research on managing a large number
of unmanned vehicles has become a high priority issue.
However, in the real world, aligned flocking or shaping an
image on the sky [1] (or ground [2]) have been demonstrated
only by proactive path-planning, which shows the limitation
of multi-UV’s empirical application. This lack of practical
implementation on a large-scale UV control originates from
the difficulty of planning complex paths for UVs that must
meet both scalability and optimality.

Commonly, there are two categories to design the
multi-UV control system: centralized and distributed. A cen-
tralized system places a monitor on the UV network to collect
all the data from the UVs and order them directly to carry
out their missions. Centralized decision making requires a
reduced requirement of the UVs’ intelligence and leads to
the possibility of finding the global optimum of the solution,
but it suffers from the exponentially increased delay of the
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networking and the decision overhead [3]. In addition, cen-
tralized decision making has complex implementation steps
because all data are required to make a decision. Collecting,
managing, and sending all actions require a fairly compli-
cated process. Sometimes these centralized processes are
additionally required to consider time synchronization.

On the other hand, a distributed system yields higher intel-
ligence to individual vehicles, letting each UV understand
the current situation and determine its action to complete
its mission. This approach does not cost decision delay
of UVs since each UVmakes a decision by itself. In addition,
a distributed system also has strength in computational cost.
By simply comparing with the centralized system, it has
a lower computational load for decision making. Besides,
a distributed system has simplicity in implementation since
it does not need to gather all the information on a central
station. However, this isolation can lead to the local optima of
the solution or increased cost of the system due to the UV’s
specific requirements (e.g. sensors, networking devices, and
computing board).

As one of the distributed multi-agent control
mechanism, Artificial Potential Field (APF) has been steadily
studied [4]–[7]. APF defines the potential applied to mobile
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UVs and derives location changes based on classical dynam-
ics. APF-based control provides efficient solutions for obsta-
cle avoidance and flock-wise movements such as grouping
and herding [8]. However, there are great walls to deploy the
APF-based system into the real-life environment.
• Stability was only discussed in the area of mathematical
safety. To prove the equilibrium position of the sys-
tem, large assumptions are made such as UV velocity,
available space, and swarm size. Relaxing these assump-
tions is mathematically challenging, so the APF-based
approaches are hard to be directly applied in real-world
scenarios.

• Some artificial potentials that require communica-
tion between the UVs constrain the network topology
because some motion causes them to be undesirably
disconnected with their neighbors or backbones.

• Previous APF-based solutions seem only suitable for
a few specific applications, such as networking or
surveillance.

The unmanned vehicle system can have large functionali-
ties by attaching auxiliary modules (mechanical arms, cam-
eras, lasers, etc.), so the system should return a wide range of
actions. For doing so, we propose a novel architecture named
Versatile Multi-Vehicle Control System (VMCS), an applica-
ble APF-basedmulti-UV control system. The core idea of this
system is to break away from classical mechanics. In other
words, we do not apply the APFs directly into the vehicles,
but only utilize the direction and magnitude information of
the APF calculation. Each vehicle individually calculates its
potentials to determine its next operation from the results.
In the case of the move action, the magnitude of the
UV motion is determined by the norm of the potential sum
along with the upper bound of the UV’s speed.

The former APF-based studies apply each APF directly
and derives correspondent actuator control following clas-
sical mechanics. This approach helps to shape the UVs’
movements smoothly, but there is limitation of action space.
The resulting actions of APF analysis are only movements,
so the APF can only reflect the reason of movements.
VMCS aims to improve the expandability of APF-based
multi-UV control system by additionally mapping proce-
dure letting UVs perform the specific mission. By doing so,
VMCS allows the users to design their own mechanism that
maps the APF to the actual operations for fulfilling their
requirements.

Furthermore, to show the generality of our modeling,
we defined a generic structure of the mission that can
be applied to various situations. To solve this problem,
we designed sample APF models including the potentials
each of which maintains the network connectivity, avoids
the collision, and performs the mission. To maximize the
efficiency of the swarm, we designed an algorithm that con-
trols the network topology. The network topology of the
APF-based system is usually predetermined, which make the
swarm change its shape fluidly by adjusting the potential
links. In final, we implemented a whole loop of VMCS,

and addressed the numerical studies while comparing with
a centralized method by simulation.

Our contribution can be summarized as follows.
• We proposed a scheme to decompose the APF derivation
and the operation mapping. Unlike the previous studies
utilizing APF as a mean of the devices’ movement, our
scheme allows the APF to determine any types of the
devices’ operation, such as positioning, power control
or networking. In this paper, we simulated our scheme
in the multi-UV scenario.

• We proposed a general model of the mission, and
designed a set of APFs that models a swarm of UVs
to perform a mission. We proved the stability of the
APFs in Section IV-D, and evaluated the performance
in Section V.

• Overall, we conducted the simulation of our proposed
APF-based control scheme in 3D space. From the sim-
ulation results, we derived the numerical trends with
respect to the system or environmental factors, and
showed the persistence of our APF modeling.

The rest of this paper is organized as follows. Section II
introduces some researches onmulti-UV control systems, and
Section III explains the general concept of VMCS. Section IV
shows VMCS design including the APF models, topology
control algorithm and stability analysis. Section V evaluates
the resulting system by numerical simulation with discus-
sions. Section VI concludes the paper.

II. RELATED WORK
As mentioned earlier, the study of using multiple vehicles to
perform a variety of missions while considering the issues of
optimality and complexity is challenging. Various approaches
have been used to study multi-UV control considering the
challenge, but studies in distributed control systems have
been actively conducted with visible results.

Distributedmulti-UV control system: Therewere several
attempts to design the trajectories of multiple mobile agents
within constrained environments. Morgan et al. [9] proposed
a model-predictive control-sequential convex programming
algorithm guiding a swarm of spacecrafts. This study assumes
communicationally and computationally constrained agents
that need to migrate to the other orbit while maintaining
the communication with nearby spacecraft and updating the
optimal trajectory. Bandyopadhyay et al. [10] presented an
approach using distributed optimal transport to probabilistic
guidance of a swarm of autonomous agents. The feature of
this work is an optimal transport algorithm which guarantees
faster convergence. Bandyopadhyay et al. [11] showed a
more general design of distributed control, targeting the for-
mation of large swarms. By adopting Eulerian density-control
scheme, each autonomous swarm is probabilistically con-
trolled to handle the loss or addition of the agents.
Yu and LaValle [12] solved the path planning problem of
multiple robots with minimizing several overheads (arrival
time, traveled distance, and so on). The authors exploited the
mapping between the problem and the multi-flow network.
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FIGURE 1. VMCS design.

Then, they made an integer linear programming to efficiently
solve the issue. The common point from these researches is
that the solution is only appropriate for a specific type of envi-
ronment. In detail, many of these researches only concern and
apply their system on their specific conditions, which mostly
does not justify the generality on normal multi-UV scenarios.
We aimed to operate our multi-UV system in unknown, time
variable environment with considerable stability.

APF-based path planning: APF-based mobility con-
trol has been studied in decades, from the theoretical
designs to empirical approaches. Chen et al. [13] and
Shah and Vachhani [14] defined attractive and repulsive
models between an Unmanned Air Vehicle (UAV) and the
target point and solved the optimal trajectory problem on the
3D obstacle map. Huang et al. [15] showed APF-Elaborated
Resistance Network (APFE-RN) approach to control the
2D vehicle in a road while dividing the planning process
into the virtual planning and actual control. Zhou et al. [16]
solved the local minima problem of APF-based path plan-
ning by particle swarm optimization with the tangent vector.
APF-based approaches have analyzed the path planning of
the robot control with various mathematical tools to reach
the optimality, but most of them were focused to achieve
collision avoidance in a given obstacle map. In our system,
we propose a way to increases the diversity and scalability of

the mission by equating the mission efficiency with the basic
requirements of the swarm.

III. GENERAL CONCEPT OF VMCS DESIGN
Designing mathematical APF, deploying one or more vehi-
cles and observing their trajectories have been actively con-
ducted in multi-UV control domain [13], [15], [17]. However,
drawing APF for the entire map is infeasible in real envi-
ronments due to the large number of the obstacles and their
unlimited shapes. Furthermore, it is often questionable that
the UV can fulfill such mobility in practical environments.
Our scheme bridges the gap between the APF modeling and
the empirical swarm control by abstracting the APFs’ roles
and then mapping their influences.

Fig. 1 shows the overview of our scheme at a glance. The
overall flow of our system follows the general objective of
swarm control concept: decentralization and simplification of
the decision, and the APF derivation [18]. Each UV senses its
surroundings, which may result in the imperfect derivation of
the potential vectors. However, we claim that this approach
is reasonable in the practical scenario with the possibility of
the unknown, mobile obstacles. The unprecedented compo-
nent proposed in our scheme is called vector-to-operation
mapping. UVs refer the sum vector of the APFs, and map
to the specific operation which may decrease the magnitude
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FIGURE 2. Generic mission model.

of the vector. For example, in the case of vector-to-direction
mapping can be expressed as

D(x, y, z) = G×
(

A
|A|

)
,

A =
∑
f∈F

f and G = min(|A|,Vmax) (1)

where Vmax refers to the maximum scale of D, A refers to
the total sum of APFs (f), F refers to the set of the APFs
defined in VMCS, and G refers to the gain value that applies
to the UV’s final movement. If we let τ refer to the decision
period of each UV, then Vmax should be set as Vphymax/τ ,
where Vphymax refers to the physical maximum velocity of
the UV. Consequently, the factor G implicitly represents the
UV’s velocity, and the factor A/|A| represents the UV’s
direction.

The motivation of our scheme can be summarized into
two factors: stability and extensibility. Note that the APFs
defined in the existing multi-UV system are artificial, so the
control modules equipped in the UVs must imitate the force
obtained by the fields to balance the whole system. In the
vector-to-operation mapping sequence described in Fig. 1,
only the commands containing the next destination are deter-
mined for the vehicles. This strategy lessens the burden of the
control module and contributes to the stability discussed in
Section IV-D. Furthermore, existing APF-based approaches
can be expanded to more complex swarm, including UAV
and Unmanned Ground Vehicle (UGV) with our scheme.
To show the generality of our scheme, we assume a simple
but largely-applicable scenario where UVs need to perform
a set of missions. We introduce the detail of the mission and
derived VMCS in Section IV-B, and show the performance
in Section V.

IV. DESIGNED SYSTEM
This section addresses the detailed design of VMCS.
We define the simple APFmodels utilized in the control deci-
sion for the mission performance. Also, we propose a topol-
ogy control algorithm that dynamically controls the topology
of the network to manage the constraints produced by the
potentials.

A. MISSION MODEL
To guarantee the applicability of the resulting APFs,
we designed a generic mission model for swarming UVs as
shown in Fig. 2. The mission model is composed of a set
of mission targets M , and a set of UVs U , and a station S
used for a return point. Each mission target is referred to
mk (1 < k ≤ |M |)) and holds a specific amount of the
mission load Rmk where Rmk ≥ 0. Each UV is referred to
ui (1 < i ≤ |U |) and carries a specific amount of the
mission load Cui where 0 ≤ Cui ≤ Cmax , and Cmax refers
to the maximum capacity to carry the result. We assume that
each UV knows Cmax in priori, and has ability to periodically
check its remaining capacity. AUV can approach to amission
target, and transport the amount of the mission load from the
target to itself at nearby of the target within a pre-defined
short distance (Fig. 2a). If the carrying amount of a UV
reaches to Cmax , the UV cannot transport the mission load
(Fig. 2c), but it can reset its load at the station (Fig. 2b). The
objective of the mission is to collect all load of the scattered
mission targets by using a given group of UVs. Furthermore,
we apply the connectivity constraint to the mission, so UVs
should be connected to a gateway, which is in a fixed position.

When the mission starts, a number of the mission targets
are scattered in a 3D space with randomized Rmk . Then,
a gateway is located at the center of map, and the UVs are
randomly located at nearby of the gateway. TheUVs know the
position of the gateway a priori. Through the mission opera-
tion, the UVs and the mission targets periodically broadcast
the position of each. Themission ismarked as completed after
all mission targets are carried by the UVs.

Our proposed scenario can be mapped to a wide range
of the swarm applications. For delivery scenario (gathering
courier boxes to a station), Rmk refers to the weight of the
boxes on the target, Ci refers to the current amount loaded to
the i-th UV, then Cmax can indicate the maximum payload
of each UV. In IoT scenario using UAV as a sink [19],
Rmk refers to the accumulated data size collected by the
sensors around the region, Ci refers to the allocated space of
the storage device equipped in i-th UV, thenCmax can indicate
the available maximum data size the UAV can store. For more
biological cases, if Rmk is the amount of honey contained in

223104 VOLUME 8, 2020



S. Park et al.: VMCS: Elaborating APF-Based Swarm Intelligence for Mission-Oriented Multi-UV Control

a flower and Ci are the storing amount of i-th bee, then we
can design the APF of the flying robots acting as a swarming
worker bees.

B. APF MODELS
We propose a mathematical model of APFs that regulates the
distributed behavior of multi-UV swarm. Each APF depicts
the influence needed to be applied to the UV and induce
its position to fulfill the given mission, avoiding unexpected
damage or uncontrollable state. We derive A as a sum of the
specific APFs, expressed to

A = GcFc + GmFm + GnFn (2)

where Fc refers to the collision avoidance potential, Fm to
the mission performance potential, Fn refers to the network
connectivity potential, and Gc, Gm and Gn refer to the gain
of each potential, respectively. Fc grants the repulsive force
from the nearby obstacles, and Fm applies the attractive force
from the mission targets or the station. Fn gives the attractive
force from the wireless links. Recall that the result of the
APF derivation is not directly applied to the UVs’ kinematics.
Rather, the mapped commands are conducted by its own con-
trol module. In addition to the potentials, we consider the case
that the UVs are desired to connect to the backbone network
since UVs may need to communicate with the operator while
performing their mission.

The following subsections describe the aforementioned
potential factors in detail. For simplicity, we letPi andCi refer
to the position and the current load of the ui, respectively.

1) COLLISION AVOIDANCE POTENTIAL
As most of the existing approaches claimed, UV needs to
be away from the obstacles whether they are stationary or
mobile. For any detected obstacle including the other UVs,
we modeled the collision avoidance potential fc(oj) with the
opposite direction to an obstacle (indexed to j), which can be
calculated by

fc(oj) = − log
(
|Poj − Pi|

Dc

) Pi − Poj

|Pi − Poj |
(3)

where Poj refers to the position of the obstacle oj, and Dc
is the maximum obstacle detection distance. Eq. (3) shows
the exponential drop when |Poj − Pi| < Dc, to let fc(oj) be
dominant when the UV approximates to an obstacle.

Note that we assume a case that the detailed map contain-
ing the obstacles’ position is not given previously. It means,
the surface of the obstacles can be detected by sensors such
as LIDAR, depth camera or any other sensing module. If we
let O refer to a set of the detected obstacles within Dc, then
we can derive the aggregated obstacle avoidance potential
applied to a UV by

Fc =
∑
oj∈O

fc(oj). (4)

In addition, O includes a set of UVs E , where E ⊂ U
and |Pe − Pi| < Dc for e ∈ E . The positions of the

UVs are broadcast as stated in Section IV-A, so the UVs apply
repulsive force to each other.

2) MISSION PERFORMANCE POTENTIAL
We modeled Fm as the aggregated potential of the partial
potentials fm attracting to the mission targets, and Fs attract-
ing to the station. The APF of fm is calculated to

fm(mk ) = (Dm − |Pi − Pmk |)
Pmk − Pi

|Pmk − Pi|
(5)

where Pmk refers to the position of the mission target and
Dm refers to the maximum range of the mission target to
be attracted, named to Mission Attraction Range. The UVs
obtain Pmk from mk itself, through the position broadcasting
mentioned in Section IV-A. Fs is calculated to

Fs = (eCi−Cthresh − 1)
PS − Pi

|PS − Pi|
(6)

where PS refers to the position of the station and Cthresh
refers to the load threshold of the UV. As shown in Eq. (5),
the scale of the potential increases when the mission target is
at closer distance. Inverse relationship between the distance
and the potential leads to the efficient formation change of
the UVs, where each UV approaches to the nearby target. The
potential from the station described in Eq. (6) applies when
the load of the UV reaches above a threshold Cthresh. On our
implementation in Section V, we experimentally set Cthresh
to 0.9Cmax .
With this design, UV will be strongly attracted to a station.

As regulated in the mission model, the UV filled with the
mission load (Ci ≈ Cmax) cannot continue the mission.
We designed FS to fulfill this restriction under any circum-
stances, which temporarily breaks the UV’s stability until Ci
resets to 0. Section IV-D addresses the stability of the system
in detail.

In summary, Fm can be calculated to

Fm =
∑
mk∈Mi

fm(mk )+ FS (7)

where Mi refers to the set of the remaining mission targets
detected by the UV ui, which means Mi = {mk | (|Pi −

Pmk |) < Dm,Rmk 6= 0,mk ∈ M}.

3) NETWORK CONNECTIVITY POTENTIAL
As mentioned earlier, the swarm often needs to maintain the
network between the nodes to perform its mission. The poten-
tial introduced in this subsection is optional, but we attempted
to design a generic one to be able to be utilized at various
types of the network topologies. We adopted a graph-based
approach to this potential [15] to guarantee the network con-
nectivity of UVs. Let a set N contains the swarm’s backbone
gateways and the UVs. These backbone gateways can make
the UV ad-hoc network to communicate with outer networks.
If we let H be the set of the available next hops to connect
to the backbone network, which satisfies H ⊂ N , then the
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Algorithm 1 Topology Control Algorithm
1: H ← {g}
2: c← 1
3: while True do
4: if |Fn| > |Fm| + |Fc| then
5: if there is a gateway g within the distance Dn then
6: c← 1
7: H ← {g}
8: return
9: end if
10: Get a set of the UVs E within distance Dn
11: if e ∈ E satisfies ce < c then
12: H ← E
13: c← min(ce)+ 1
14: end if
15: end if
16: end while

network connectivity potential Fn can be simply expressed to

Fn =
∑
h∈H

e|Ph−Pi|−Dn
Ph − Pi

|Ph − Pi|
(8)

wherePh refers to the position of the next hop device (or gate-
way), and Dn refers to the threshold communication range
between the wireless links. The UVs obtain Ph from h itself,
through the position broadcastingmentioned in Section IV-A.
The magnitude of Fn increases when the distances from the
next hops get larger. Note that Fn plays the same role with
the Reynold’s second rule [20], since the UVs follows the
nearby other UVs to maintain the network. H is firstly set to
the one that includes only the gateway and then modified by
the topology control algorithm, which detects the possibility
to the expansion of the network and attempts to loosen Fn.
Section IV-C describes this algorithm in detail.

C. TOPOLOGY CONTROL
Network connectivity guarded byFn (Eq. (8)) can result in the
undesirable form of swarms ifH is fixed. Pre-installingH for
each UV can shape the required formation of the swarm, but
it brings complex design of the topology and the restricted
structure of the swarm. Changing H should be elaborately
designed due to the risk of losing the connectivity to the gate-
way while swarming in the 3D space. The main reason of the
difficulty in determiningH originates from the independency
of the UV’s control decision. To guarantee the connectivity
to the backbone network, at least one UV needs to be linked
within one hop. Thus, changing H must be considered in
a group of the nodes. In this section, we propose a novel
topology control algorithm based on the APF calculation to
make the UVs’ movements flexible without connection loss.
The main breakthrough of our algorithm is the definition of
theH change condition with respect to the relationship of the
potentials’ magnitude.

Algorithm 1 describes our topology control sequence.
Fig. 3 graphically represents the situation where three UVs

FIGURE 3. Topology control example.

are connected to thewireless gateway. The red, blue and green
arrows on each subfigure represent the potentials Fn, Fc and
Fm, respectively. The yellow bordered arrow represents the
direction of the potential sum A. At first, the network starts
with the star topology where all UVs refer its next hop to
the gateway (Fig. 3a). A variable c refers to the expected hop
count of the routing path to the backbone network. In the case
of Fig. 3a, UV1 to UV3 have the same value of c = 1. Due to
the far distance from the gateway, UV2 suffers from the large
Fn and cannot move further to the mission target. If the poten-
tials in UV2 satisfy the condition described in line 4, the APFs
imply that the network connectivity potential interrupts the
proper deployment of the swarm. Thus, UV2 scans the nearby
neighbors which are within its wireless communication range
and confirms if one of them guarantees the routing path to the
backbone (line 11). If possible, UV2 sets c to the minimum c
of the neighbors plus one, and change the next hop to E . Then
Fn is changed and the UV2 can move forward to its desired
direction 3b. The resulting value of UV2’s c is changed to 2,
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and the rest of the UVs hold their H if all of nearby UVs are
c = 2.

There are some additional discussions for the topology
control algorithm.
• One may wonder why all nearest neighbors are in
H when changing the set of next hops. This strategy
originates from the philosophy of the network redun-
dancy [21]. As shown in Algorithm 1, any UV in the
network can change its c by its nearbyUVs. Including all
neighbors can increase the robustness by the opportunity
to reduce the expected hop count of the UV. However,
too intensive redundancy can rather highly restrict the
movement of the UVs due to the large Fn after changing
theH . On our implementation, we limited the maximum
|H | to 2 for flexible swarming.

• From line 5 to 8, we grant the chance to connect to
the gateway within a single hop by resetting H and c.
This recurrent logic helps to reduce the maximum hop
count of the network and routing overhead. However,
if all UVs try to reconnect to the gateway, it might be
difficult for the formation to escape the star topology.
On our implementation, we let UVs try to reconnect to
the gateway with 5% probability per loop.

D. STABILITY ANALYSIS
This section analyzes themovement of the VMCS designed at
Section IV-B.We adopted the Lyapunov direct method [22] to
show the existence of the equilibrium point. At first, we show
the stability of a UV in the multi-UV environment, as shown
in Fig. 4. In this analysis, we abstract all other UVs and
their total APFs into one virtual UV and its APF, and rep-
resent all the remaining missions with one virtual mission,
as shown in the figure. This abstraction is in the extended
line of modeling in Section IV-B andmakes the entire scheme
intuitively understood. As shown in the figure, a UV changes
the direction to the sum of the APFs Fc,Fm and Fn while
moving to the direction A′, induced by the previous control
loop. If a UV reaches an equilibrium point, the resulting
operation (Eq. (1)) derived by the APFs let the UV back to

FIGURE 4. APFs applied on UV.

the previous position, which can be expressed as

A′ = Fc + Fm + Fn. (9)

If we divide the above equation into vertical and horizontal
components with θn, θc and θm shown in Fig. 4, the result can
be expressed to

Fn cos θn + Fc cos θc + Fm cos θm = −wa

Fn sin θn + Fc sin θc + Fm sin θm = 0 (10)

where w, a refers to the mass and the acceleration of the UV,
respectively. We separately prove the stability of horizontal
and vertical components.

For the convenience on the following stability analysis,
we express the potentials as

Fn = α(t) un(t), Fc = β(t) uc(t), and

Fm = γ1(t)um1 (t)+ γ2(t)um2 (t) (11)

where α(t), β(t), γ1(t) and γ2(t) refer to the magnitude of the
Fn,Fc, Fm − FS, and FS, respectively. un(t),uc(t),um1 (t)
and um2 (t) refer to the unit vectors directing each potential.
To derive the decisive factor from each potential, we revisit
Eqs. (4)-(8).

let r0(t) : = |Pi − Puj | − Dn w.r.t. t, α(t) = er0(t) (12)

let r1(t) : =
|Pi − Puj |

Dc
w.r.t. t, β(t) = − log r1(t) (13)

let r2(t) : = Dm − |Pi − Pmk | w.r.t. t, γ1(t) = r2(t) (14)

let r3(t) : = Ci − Cthresh w.r.t. t, γ2(t) = er3(t) − 1 (15)

From the Eqs. (12)-(15), we rewrite horizontal component
of Eq. (10),

wẍ + er0(t) cos θnx − log r1(t) cos θcx

+r2(t) cos θm1x + r3(t) cos θm2 = 0 (16)

where x refers to the horizontal displacement of the UV
from the equilibrium point. We define the Lyapunov function
V (x, ẋ) as

V (x, ẋ) :=
1
2
wẋ2+

1
2

(
er0(t)−log r1(t)+r2(t)

)
x2 + r3(t)x.

(17)

Then, the derivative of V (x, ẋ) is

V ′(x, ẋ) = ẋ(wẍ + er0(t)x − log(r1(t))x + r2(t)x + r3(t))

+
1
2

(
er0(t)ṙ0(t)−

1
r1(t)

ṙ1(t)+ ṙ2(t)
)
x2 + ṙ3(t)x. (18)

As aforementioned in Section IV-B2, we investigate the
case with Ci < Cthresh. In Eq. (17), since r1(t) < Dm in
Eq. (7), V (x, ẋ) is positive definite, with equilibrium point
V (0, 0) = 0. Also, in Eq. (18), the first term is negative since

wẍ + er0(t)x − log r1(t)x + r2(t)+ r3(t)

≥ wẍ + er0(t) cos θnx − log r1(t) cos θcx

+r2(t) cos θm1 + r3(t) cos θm2 = 0 (19)
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FIGURE 5. Simulation of the proposed APF-based scheme (3D view).

from Eq. (16), and ẋ < 0 due to the equilibrium. Also,
ṙ0(t) < 0, ṙ1(t) > 0, ṙ2(t) < 0 from the design of the APFs
(Section IV-B), and ṙ3(T ) is negligible since Ci < Cthresh.
Thus, V ′(x, ẋ) is negative definite, and the control system
of a UV satisfies Lyapunov stability in horizontal. Similarly,
the system also satisfies Lyapunov stability in vertical since
there is only difference in the term wẍ, which results in the
same positive/negative definite of the Lyapunov function and
its derivative. In general, each UV settles to its equilibrium
point while operating, so we can conclude that the multi-UV
system controlled by our APF models satisfies Lyapunov
stability, which means that there are equilibrium formations
that the UVs can hold. The position might some cases fall
into local minima, however, its formation still satisfies all
the constraints and does not violate the overall constructing
algorithm in the system. Therefore, we are confident that
the VMCS will work stably without any form of failure or
divergence.

V. EVALUATION
We simulated the VMCS (Section III, IV) by implement-
ing the scheme and APFs in Python. To show our results,
we implemented a visualizer as an auxiliary using OpenCV.
We simulated our scheme with our APFs using the visualizer.
The details on the implementation are as follows.
• We defined a 3D space map with size 100m × 100m ×
50m (width × length × height), and the objects intro-
duced in Section IV-A, such as mission targets, UVs and
gateways.

• UVs have 3D mobility in the simulation space. At first,
UVs are randomly deployed nearby the gateway. For
every 10 ms, each UV calculates Fc,Fm, and Fn by
Eqs. (4)-(8), and determines its next destination from
Eq. (1) per loop, where F = {Fc,Fm,Fn}. Maximum
velocity of UVs Vmax is 20 m/s.

• Mission targets are randomly spread in 3D space, 2s
after the drones are created. Mission load Rmk follows
uniform random distribution within a range (100, 500)
in default. If a UV approaches nearby the mission target,
the mission load is transported by 100 units/s. Likewise,
if a UV approaches nearby the station, UV immediately
releases its load.

• We propose a main evaluation metric asmission comple-
tion time, which refers to the time the UVs transport all

loads of the mission target. In case of the mission failure
(due to the unreachable mission target), we set the time-
out to 60 s to finish the simulation. From Section V-B
to V-D, distribution of mission completion time is
measured for each simulation. Additionally, we intro-
duced other metrics each of which is covered in the
subsections.

Fig. 5a shows the stabilized formation of 10 UVs where
Wmax = 30, before mission targets spawned. As shown in
the figure, the swarm forms such a regular shape maintaining
similar distances between one another, where |Fn + Fc| ≈ 0.
We claim that this regular shape is advantageous when the
mission targets are randomly deployed since the UVs can
react quickly in any direction. Also, the UVs are not gathered
unnecessarily, so it can detect the targets in further distances.
Fig. 5b shows the formation after 5 mission targets deployed.
To enhance the visuality of the simulation, we separated the
UV icon colors from blue to red: when capacity is almost
full, the color changes to red. We captured the simulator
right after the mission is completed, where

∑
k∈M Rmk = 0.

As shown in the figure, UVsmove to themission targets while
maintaining the network connectivity. Also, we observed that
the movements of the UVs are stabilized after all mission
requirements reach to 0, as shown in Fig. 5c. Additionally,
the numbers denoted to each UVs in the simulation repre-
sents the ID number and its current load. The video of our
simulation is available at [23].

Note that the APF models shown in Eqs. (4)-(8)
are relatively simple and rough, but these potentials
cannot dramatically harm the formation due to the
mapping procedure described in Eq. (1). This mapping
procedure not only contributes to the stability of the sys-
tem, but extends the area of recognition modeled as APF.
From the simulation, we showed that our scheme described
in Section III can be utilized to implement practical
APF-based systems. Also, we proved that our APF models
addressed in Section IV-B stably shape the formation of
the UVs, while maintaining the connectivity to the gateway
by Algorithm 1.

Fig. 7 graphically represents the trajectories of 10 UVs,
with |M | = 5. In each figure, green circle indicates the mis-
sion target, and magenta circle indicates the gateway. Before
the mission targets are scattered, the formation of UVs extend
out from the center due to the Fc. After the targets are created,
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FIGURE 6. Simulation of the proposed APF-based scheme (2D view).

FIGURE 7. Trajectories of 10 UVs.

5 UVs successfully approach to the mission target, whose
position is nearby to one of targets. The other 5 UVs firstly
move towards the nearest target, but already arrived UVs
apply repulsive APF to them. From this figure, we showed
that VMCS forms the formation of UVs for mission in a
distributed way.

We also investigated the possibility of the collision
between UVs and this is represented in Fig. 8. We col-
lected the minimum distance from each UV to the other UVs
over time. As shown in the figure, UVs linearly spread for
first 1s, and shows variable distances after the mission target
spawned. However, until the mission completed, the mini-
mum distance for each UV does not drop into a certain value,
which is measured as about 8.5092 m. This investigation
shows that UVs movement derived by VMCS maintains the
distance between the UVs, by Fc.
The following subsections show numerical evaluations in

various cases.

A. COMPARISON WITH CENTRALIZED SCHEME
To justify the usability of the system, we compare VMCS
results with another scheme. However, it is notable that
VMCS system aims the swarming of multi-UVs in versa-
tile mission scenario, so we proposed a generic mission
model and designed APF models for mission performance.
Unfortunately, to the best of our knowledge, it was difficult
to find corresponding studies that enables the comparative
study with our scheme in the same line. We designed our
generic model to be specified to various kinds of mission
scenarios: surveillance [24], network provision [25], deliv-
ery [26]–[28], and so on. Since each scenario has its own
metrics for evaluation (e.g., network throughput for [25]) or
different constraints (e.g., [26] exploits transit network), it is
inappropriate to compare the systemwithVMCS. Last but not
least, our mission model contains network connectivity con-
straint, but most of path-planning studies do not consider and,
and this constraint is considered independently [29], [30].
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FIGURE 8. Minimum distance between UVs.

Thus, we additionally designed a centralized scheme that
a central station sends moving command to the UVs by
network.

We designed the centralized multi-UV control mechanism
for our mission model as follows.
• Central control station is located at the gateway and
firstly allocates the nearest mission target to each UV.

• After the UV finishes the mission at a target, central
station allocates another unfinished mission target to the
UV.

• If a UV reaches the maximum capacity, the UV returns
to the control station. After emptying the load, station
reallocates another unfinished mission target to the UV.

The main reason for this reactive assigning approach is
for preparing the continuous scenario as addressed in
Section V-E. Pre-scheduling mechanism is hard to be applied
to the scenario that the mission targets are continuously
spawned.

With the above major rules, we added the additional mech-
anisms to improve the validity of the system.
• Connectivity: If a UV moving to the target is deter-
mined as disconnected (could not find the route to the
central station), the UV temporally holds its position
and the central station assigns another UV a networking
task. After this newly assigned UV is placed between
the station and the UV, the disconnected UV restores its
connection and performs the task. Central station prefer-
entially chooses the networking UV that is not assigned
the mission target, which can exist after small number
of the mission targets left. If there is no unassigned UV,
central station randomly chooses a UV.

• Network delay: We added the networking delay from
the UVs to the central station. When the station com-
mands a UV (for mission targeting or networking),
the UV starts the task after the amount of the network
delay. However, the network delay is not applied when
the UV returns to the station due to the maximum

capacity, or the UV holds its position due to the network
disconnection.

We calculated the network delay of each communication
as

NetworkDelay = tdelay,onehop × Nhops, (20)

where tdelay,onehop refers to the one-hop transmission delay
of the network. We determined tdelay,onehop by exploiting the
analytical wireless transmission model in [31].

We simulated both VMCS and the centralized scheme
while varying the number of UVs from 10 to 50, and Fig. 9
graphically represents the mission completion time of each.
As shown in the figure, VMCS outperforms the centralized
scheme, primarily because there is no networking delay. From
this evaluation, we showed that VMCS accelerates the mis-
sion performance against centralized scheme.

FIGURE 9. Comparison with centralized scheme.

B. COMMUNICATION RANGE
Communication range of the UVs can affect the mission
performance since it limits the movement of the UVs more
occasionally. Fig. 10 shows the mission completion time
while changing the maximum communication range, where
|M | = 10 and |N | = 10. Just to clarify, |M | represents the
number of mission targets as described in Section IV-A and
|N | represents the number of swarming UVs in the mission.
Commonly, it is expected that the longer communication
range shows the better performance. However, as shown in
the figure, the case ofWmax = 30 outperforms the other cases
Wmax = 20 and Wmax = 40. The reason comes from the
appliance ofFc. At the case ofWmax = 40, theUVs are spread
more widely before the mission starts, which results in the
more travel time to the mission targets. From the observation,
we can conclude that increasing the communication range
does not always result in a better performance.

C. MISSION SIZE
While changing the mission size, Wmax is set to 30 and |N |
is set to 10. As shown in Fig. 10b, increasing mission size
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FIGURE 10. Mission performance while varying numerical factors.

results in the larger mission completion time. It is notable that
the differences of the cases |M | = 10 and |M | = 20, and
the cases |M | = 20 and |M | = 40 are almost similar. This
observation can lead to the conclusion that the mission size
and the mission completion time is not linearly proportional.
The reason for this is the parallelization of the UVs’ actions,
where each UV performs the mission with reasonable path.
Furthermore, the case of smaller |M | leads to the smaller
variance of the mission completion time, especially at the
|M | = 10. The reason for this is the instant deployment of 10
UVs to 10 targets, which means that VMCS can quickly dis-
patch the UVs to the targets one by one. When |M | increases,
each UV takes more variant time to approach to multiple
mission targets, in dynamic changes of formation. From this
simulation, we showed that our proposed APF models could
achieve the high performance of multi-UV system.

D. SWARM SIZE
We simulated our system while increasing the number of the
UVs, which results in Fig. 10c. In this simulation,Wmax is set
to 30 and |M | to 20. As expected, the case of larger |N | out-
performs the case of smaller |N |. The first reason is the less
travel time of UVs, since the UVs are densely swarming at the
3Dmap. Secondly, when a UV has full capacity (Ci ≈ Cmax),
there are the other UVs to be replaced and continue the mis-
sion. When a UV needs to return to the station, consecutive
topology changes can occur due to the large distance from the
station. From this simulation, we showed that our topology
control algorithm properly changesH while operating a large
number of UVs.

E. ROBUSTNESS
We investigated the persistence of our APF models, using
our system. We periodically spawned the mission targets
per 0.5 s, during 1 hour simulation. We deployed 20 UVs
in the map, with Wmax = 30. Then, we measured K =∑

mk∈M Rmk per 10 ms, which means the current remaining
mission load. If the swarm suffers unexpected deadlock or
fails to return the station, K will linearly increase due to

the accumulated mission targets. Fig. 11 shows the graphical
representation of K with respect to the simulation time.1

As shown in the figure, K oscillates around 600 to 800,
and we can estimate that there are about 3 mission targets
regularly remaining in the map. The persistence of the sys-
tem originates from the vector-to-operation mapping which
results in the bounded positioning of the UVs, and the sta-
ble APFs designed and proved in Section IV-B and IV-D.
From the evaluation, we showed that the VMCS can run the
general-purpose swarm control system designed with practi-
cal potential models.

FIGURE 11. K with respect to the simulation time.

F. FAIRNESS
Depending on the application, performing the mission can
consume the long-term resources such as battery or stock
of supply meterials. In this case, it is best to allocate tasks
equally to the UVs to maximize the job life. In other word,
the system should guarantee fairness of the system inmission.
Thus, we investigated the amount of work done by each UV.
From the scenario of Section V-E, we collected the accumu-
lated amount of work done by each UV in a whole time. Then,

1we smoothed the result by windowed average for visibility.
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we defined Throughput as the amount of the work done per a
second, whose unit is in units/s. Fig. 12 shows the throughput
measured over time. As shown in the figure, although not
exactly converges to the same, it can be seen that the UVs
converge to almost similar throughput. This result indicates
UVs do the mission fairly without idling in the middle of
mission performance. The major reason for this fairness is
the collaboration of Fc and Fm. When a target spawned, UVs
within Dm gathers by Fm, but with enough distance between
them by Fc. Such spaced formation yields opportunity to be
assigned to the other targets to the UVs. Even though Fm
applies larger potential to the UVs far from the target, cap
of velocity (Eq. (1)) prevents reversed assignment of target.
From this evaluation, we showed that our APF model shows
fairness in VMCS scheme as UVs are evenly dedicated to
the mission performance, even though each UV individually
determines its location.

FIGURE 12. Throughput of UVs.

G. DISCUSSION FOR USE CASES
The proposed system does not only contribute to the stability
of the control, also allows the system to be applied to var-
ious environments other than multi-vehicle control, such as
multi-agent air purifier (or conditioner) or multiple speakers
on music performance. We introduce some use cases of our
scheme.
• Swarming air purifiers: Note that existing concept for
automated building monitoring system is based on the
concept of IoT, where a centralized controller manages
the states of the connected devices [32], [33]. By adopt-
ing our scheme, air purifier can control its operation
by sensing the environment and nearby other purifiers,
without communication or network module. APF can be
modeled with respect to the dust concentration and the
operation status of the other devices at nearby of itself.

• Power control of wireless sensor network (WSN):
Life cycle of the wireless sensors is essential due to its
complexity in duty cycle scheduling [34]. By designing
APF model respect to the traffic ratio and nearby node’s

status, the node can control its own duty cycle to meet
the network’s needs. Additionally, our system can be
utilized for dynamic control of the transmission power,
which can reduce the signal interference in the wireless
medium [35].

The sequential action of the APF’s vector sum can be any of
the agent’s operation, such as powering submodules, spray-
ing light, networking or signaling as well as movement.
By extracting the magnitude of the vector sum, the agent
can determine the level of its operation according to the
environment.

VI. CONCLUSION
We aimed to present the practical design of the APF-based
multi-UV control system for versatile environments. To over-
come the limitation of previous APF-based systems’ func-
tionality, we decomposed the APF modeling phase and the
control decision phase. We designed a generic mission struc-
ture that can be applied to the various environments, and
formulated the APF for themission completion. Furthermore,
we proposed a topology control algorithm based on our
APF models, which increases the flexibility of the UV for-
mulation. We investigated our system in simulation, and the
numerical results showed the performance of our system in
various condition.

As future work, we can leverage our scheme to construct
various kinds of multi-agent control, such as the examples
introduced in Section III. Also, we can refine our APF mod-
els for better performance, pursuing the optimal formation
changes of the swarm. We believe that our studies have
the potential to enlarge the applicability of the APF-based
approaches. Furthermore, we expected the proposed scheme
and generalized approach to be a great inspiration to the area
of multi-agent control system research.

ACKNOWLEDGMENT
(Seongjoon Park and Hyeong Tae Kim contributed equally to
this work.)

REFERENCES
[1] N. Kshetri and D. Rojas-Torres, ‘‘The 2018 winter olympics: A show-

case of technological advancement,’’ IT Prof., vol. 20, no. 2, pp. 19–25,
Mar. 2018.

[2] M. Rubenstein, A. Cornejo, and R. Nagpal, ‘‘Programmable self-assembly
in a thousand-robot swarm,’’ Science, vol. 345, no. 6198, pp. 795–799,
Aug. 2014.

[3] M. Abolhasan, J. Lipman, W. Ni, and B. Hagelstein, ‘‘Software-defined
wireless networking: Centralized, distributed, or hybrid?’’ IEEE Netw.,
vol. 29, no. 4, pp. 32–38, Jul. 2015.

[4] Y. K. Hwang and N. Ahuja, ‘‘A potential field approach to path
planning,’’ IEEE Trans. Robot. Autom., vol. 8, no. 1, pp. 23–32,
Feb. 1992.

[5] C. W. Warren, ‘‘Multiple robot path coordination using artificial poten-
tial fields,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 1990,
pp. 500–505.

[6] C. W. Warren, ‘‘Global path planning using artificial potential fields,’’ in
Proc. Int. Conf. Robot. Autom., May 1989, pp. 316–321.

[7] N. E. Leonard and E. Fiorelli, ‘‘Virtual leaders, artificial potentials and
coordinated control of groups,’’ in Proc. 40th IEEE Conf. Decis. Control,
vol. 3, Dec. 2001, pp. 2968–2973.

223112 VOLUME 8, 2020



S. Park et al.: VMCS: Elaborating APF-Based Swarm Intelligence for Mission-Oriented Multi-UV Control

[8] E. G. Hernández-Martínez and E. Aranda-Bricaire, ‘‘Convergence and
collision avoidance in formation control: A survey of the artificial potential
functions approach,’’ in Multi-Agent Systems: Modeling, Control, Pro-
gramming, Simulations and Applications. Rijeka, Croatia: InTech, 2011.

[9] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, ‘‘Model predictive control
of swarms of spacecraft using sequential convex programming,’’ J. Guid.,
Control, Dyn., vol. 37, no. 6, pp. 1725–1740, Nov. 2014.

[10] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, ‘‘Probabilistic swarm
guidance using optimal transport,’’ in Proc. IEEE Conf. Control Appl.
(CCA), Oct. 2014, pp. 498–505.

[11] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, ‘‘Probabilistic and
distributed control of a large-scale swarm of autonomous agents,’’ IEEE
Trans. Robot., vol. 33, no. 5, pp. 1103–1123, Oct. 2017.

[12] J. Yu and S. M. LaValle, ‘‘Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,’’ IEEETrans. Robot., vol. 32,
no. 5, pp. 1163–1177, Oct. 2016.

[13] Y.-B. Chen, G.-C. Luo, Y.-S. Mei, J.-Q. Yu, and X.-L. Su, ‘‘UAV path
planning using artificial potential field method updated by optimal control
theory,’’ Int. J. Syst. Sci., vol. 47, no. 6, pp. 1407–1420, Apr. 2016.

[14] D. Shah and L. Vachhani, ‘‘Swarm aggregation without communica-
tion and global positioning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 886–893, Apr. 2019.

[15] Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, and C. Hu,
‘‘A motion planning and tracking framework for autonomous vehicles
based on artificial potential field elaborated resistance network approach,’’
IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1376–1386, Feb. 2020.

[16] Z. Zhou, J. Wang, Z. Zhu, D. Yang, and J. Wu, ‘‘Tangent navigated robot
path planning strategy using particle swarm optimized artificial potential
field,’’ Optik, vol. 158, pp. 639–651, Apr. 2018.

[17] J. Guldner and V. I. Utkin, ‘‘Sliding mode control for gradient tracking
and robot navigation using artificial potential fields,’’ IEEE Trans. Robot.
Autom., vol. 11, no. 2, pp. 247–254, Apr. 1995.

[18] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, ‘‘A survey
on aerial swarm robotics,’’ IEEE Trans. Robot., vol. 34, no. 4, pp. 837–855,
Aug. 2018.

[19] M. Bae, S. Yoo, J. Jung, S. Park, K. Kim, J. Lee, and H. Kim, ‘‘Devising
mobile sensing and actuation infrastructure with drones,’’ Sensors, vol. 18,
no. 3, p. 624, Feb. 2018.

[20] C. W. Reynolds, ‘‘Flocks, herds and schools: A distributed behavioral
model,’’ in Proc. 14th Annu. Conf. Comput. Graph. Interact. Techn., 1987,
pp. 25–34.

[21] Y. Jahir, M. Atiquzzaman, H. Refai, A. Paranjothi, and P. G. LoPresti,
‘‘Routing protocols and architecture for disaster area network: A survey,’’
Ad Hoc Netw., vol. 82, pp. 1–14, Jan. 2019.

[22] Y. Li, Y. Chen, and I. Podlubny, ‘‘Stability of fractional-order nonlinear
dynamic systems: Lyapunov direct method and generalizedMittag–Leffler
stability,’’ Comput. Math. Appl., vol. 59, no. 5, pp. 1810–1821, Mar. 2010.

[23] (Sep. 2020). VMCS: Elaborating APF-Based Swarm Intelligence for
Mission-Oriented Multi-UV Control (Video). [Online]. Available: https://
youtu.be/Ww__X2v9Wu4

[24] J. Jung, S. Yoo, W. La, D. Lee, M. Bae, and H. Kim, ‘‘AVSS: Airborne
video surveillance system,’’ Sensors, vol. 18, no. 6, p. 1939, Jun. 2018.

[25] S. Yoo, J. Jung, A. Y. Chung, K. Kim, J. Lee, S. Park, S. K. Lee, H. K. Lee,
and H. Kim, ‘‘Empowering drones’ teamwork with airborne network,’’
in Proc. IEEE 31st Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2017,
pp. 678–685.

[26] S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone, ‘‘Efficient
large-scale multi-drone delivery using transit networks,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 4543–4550.

[27] K. Peng, J. Du, F. Lu, Q. Sun, Y. Dong, P. Zhou, and M. Hu, ‘‘A hybrid
genetic algorithm on routing and scheduling for vehicle-assisted multi-
drone parcel delivery,’’ IEEE Access, vol. 7, pp. 49191–49200, 2019.

[28] M. Kim and E. T. Matson, ‘‘A cost-optimization model in multi-agent sys-
tem routing for drone delivery,’’ in Proc. Int. Conf. Practical Appl. Agents
Multi-Agent Syst. (PAAMS). Berlin, Germany: Springer, 2017, pp. 40–51.

[29] Z. Zhao and T. Braun, ‘‘Topology control and mobility strategy for UAV
ad-hoc networks: A survey,’’ in Proc. Joint ERCIM eMobility MobiSense
Workshop, 2012, pp. 27–32.

[30] S. Park, H. T. Kim, and H. Kim, ‘‘Energy-efficient topology control for
UAV networks,’’ Energies, vol. 12, no. 23, p. 4523, Nov. 2019.

[31] G. Bianchi, ‘‘Performance analysis of the IEEE 802.11 distributed coordi-
nation function,’’ IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547,
Mar. 2000.

[32] C. Wei and Y. Li, ‘‘Design of energy consumption monitoring and energy-
saving management system of intelligent building based on the Internet
of Things,’’ in Proc. Int. Conf. Electron., Commun. Control (ICECC),
Sep. 2011, pp. 3650–3652.

[33] K. Akkaya, I. Guvenc, R. Aygun, N. Pala, and A. Kadri, ‘‘IoT-based
occupancy monitoring techniques for energy-efficient smart buildings,’’
in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW),
Mar. 2015, pp. 58–63.

[34] T. Van Dam and K. Langendoen, ‘‘An adaptive energy-efficient mac proto-
col for wireless sensor networks,’’ in Proc. 1st Int. Conf. Embedded Netw.
Sensor Syst., 2003, pp. 171–180.

[35] R. Ramanathan and R. Rosales-Hain, ‘‘Topology control of multihop
wireless networks using transmit power adjustment,’’ in Proc. IEEE INFO-
COM. Conf. Comput. Communications. 19th Annu. Joint Conf. IEEE
Comput. Commun. Societies, vol. 2, Mar. 2000, pp. 404–413.

SEONGJOON PARK (Graduate Student Mem-
ber, IEEE) received the B.S.E. degree in electrical
engineering from Korea University, Seoul, South
Korea, in 2015, where he is currently pursuing the
Ph.D. degree with the School of Electrical Engi-
neering. His research interests include community
wireless networks, network modeling and simula-
tions, and multiple UAVs applications.

HYEONG TAE KIM received the B.S.E. degree
in electrical engineering from Korea University,
Seoul, South Korea, in 2019, where he is cur-
rently pursuing the M.S.E. degree with the School
of Electrical Engineering. His research interests
include swarm intelligence and deep neural net-
works, particularly in reinforcement learning and
multi-agent reinforcement learning.

HWANGNAM KIM (Member, IEEE) received the
B.S.E. degree in computer engineering from Pusan
National University, Busan, South Korea, in 1992,
the M.S.E. degree in computer engineering from
Seoul National University, Seoul, South Korea,
in 1994, and the Ph.D. degree in computer sci-
ence from the University of Illinois at Urbana–
Champaign, in 2004. He is currently a Professor
with the School of Electrical Engineering, Korea
University, Seoul. His research interests include

wireless networks, unmanned aerial systems (UASs), UAS traffic man-
agement (UTM), counter UAS systems, the Internet of Things, and cyber
physical systems.

VOLUME 8, 2020 223113


