
Received October 23, 2020, accepted December 6, 2020, date of publication December 10, 2020,
date of current version December 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3043876

Testbed for 5G Connected Artificial Intelligence
on Virtualized Networks
CLEVERSON VELOSO NAHUM 1, LUCAS DE NÓVOA MARTINS PINTO1,
VIRGÍNIA BRIOSO TAVARES1, PEDRO BATISTA3, SILVIA LINS2, NEIVA LINDER3,
AND ALDEBARO KLAUTAU 1, (Senior Member, IEEE)
1LASSE - 5G & IoT Research Group, Federal University of Pará, Belém 66075-750, Brazil
2Ericsson Research, Rodovia Engenheiro Ermênio de Oliveira Penteado, Indaiatuba 13337-300, Brazil
3Ericsson Research, 164 80 Stockholm, Sweden

Corresponding author: Cleverson Veloso Nahum (cleversonahum@ufpa.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001, and in part by the Innovation Center, Ericsson Telecomunicações S.A., Brazil.

ABSTRACT The fifth-generation (5G) cellular networks incorporate a large variety of technologies in
order to address very distinct use cases. Assessing these technologies and investigating future alternatives
is complicated when one relies only on simulators. 5G testbeds are an important alternative to simulators
and many have been recently described, emphasizing aspects such as cloud functionalities, management and
orchestration. This work presents a 5G mobile network testbed with a virtualized and orchestrated structure
using containers, which focuses on integration to artificial intelligence (AI) applications. The presented
testbed uses open-source technologies to deploy and orchestrate the virtual network functions (VNFs) to
flexibly create various mobile network scenarios, with distinct fronthaul and backhaul topologies. Distinctive
features of the testbed are its relatively low cost and the support to using AI for optimizing the network
performance. The paper explains how to deploy the testbed structure and reproduce the presented results with
the provided code. AI-based radio access network (RAN) slicing and VNF placement are used as examples
of the testbed capabilities.

INDEX TERMS Artificial intelligence, machine learning, virtualized mobile network, testbed, 5G.

I. INTRODUCTION
The fifth-generation (5G) cellular network addresses a variety
of usage scenarios, including enhanced Mobile Broad-
band (eMBB), Ultra Reliable Low Latency Communica-
tions (URLLC) and massive Machine Type Communications
(mMTC). In order to meet very distinct requirements, 5G
networks rely on a flexible New Radio (NR) interface and
several virtualization technologies, such as Network Function
Virtualization (NFV), Software-defined networking (SDN)
and Software Defined RAN (SD-RAN). Using virtualiza-
tion, a better use of computational and network resources is
achieved, with the resources being allocated according to the
applications’ requirements, enabling efficient strategies such
as network slicing [1].

All the flexibility aimed by 5G to attend the large number
of different scenarios leads to an increase in the complexity
in the network management. Artificial Intelligence (AI) tools

The associate editor coordinating the review of this manuscript and

approving it for publication was Qichun Zhang .

compose an important part of the strategy to automatize
the deployment and configurations of parameters in a 5G
network, aiming at achieving, for instance, self-organizing
networks (SON) [2] and zero touch networks [3].

AI applied for mobile networks [4] is a key enabler to
manage not only 5G but also beyond 5G (B5G) networks.
The existing 5G mobile networks (3GPP Releases 15 and
16) have no sufficient flexibility and intelligence to fulfill all
requirements for the three main use cases (eMBB, URLCC
and MTC) yet [5]. Over the years, the networks were not
appropriately designed to accommodate AI-oriented tasks
such as data collection, processing, and output distribution.
Current systems are typically designed to deliver content,
without considering the characteristics from each application
requesting network resources [6]. When properly integrated,
AI can leverage the efficiency of modern and sophisticated
networks by using, e. g., big data techniques.

Not only the amount of data that is transmitted, but also
the one used to manage and operate mobile networks is huge.
This fact is motivating the flourish ofMachine Learning (ML)

223202 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9644-5394
https://orcid.org/0000-0001-7773-2080
https://orcid.org/0000-0003-2479-8195


C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

for communications. While AI encompasses planning, expert
systems and other topics, especially due to recent advances
in deep learning, ML has gained considerable momentum
in areas such as computational vision and also communica-
tions [7]. The main characteristic of ML when contrasted to
other AI techniques is that the designed models are based on
experience and learned automatically from data [8], which is
abundant inmobile communications. Both RadioAccess Net-
work (RAN) and core network have a large amount of infor-
mation about themobile network, user equipments (UEs), and
applications running, which can be extremely useful to learn
complex patterns and improve network operations.

Therefore, several standardization bodies are working to
incorporate AI / ML in 5G and B5G mobile networks, such
as the 3rd Generation Partnership Project (3GPP), Euro-
pean Telecommunications Standards Institute (ETSI) and
International Telecommunication Union Telecommunication
Standardization Sector (ITU-T). For instance, ITU-T has
the Focus Group on Machine Learning for Future Networks
including 5G (FG-ML5G), which created a ML architecture
to be integrated to the future mobile networks, providing
a common nomenclature for ML-related mechanisms and
keeping interoperability with other networking systems [9].
Different from the ITU-T studies, 3GPP and ETSI focus on
centralized data collection and data analytics solutions. 3GPP
is discussing, for instance, architectural requirements for
enabling AI within the scope of Release 17 under study [10].
ETSI actively studies the integration of AI into networks
through groups developing Experiential Networked Intelli-
gence (ENI) and Zero-touch network and Service Manage-
ment (ZSM) [11].

The mentioned studies in standardization bodies, comple-
mented by efforts within the industry and academia, dic-
tates the pace of development of APIs and codebases for
AI-enabled communications [12]. In order to assess and
integrate the newly developed AI algorithms, testbeds are a
sensible alternative to simulators, as widely discussed in the
scope of other communications paradigms such as mesh net-
works [13]. Testbeds are essential for developing and assess-
ing network technologies since they provide more realistic
scenarios regarding simulation and the solutions developed
on testbeds have a shorter path between the research stage
and products [13]. The importance of testbeds increase in
5G/B5G due to the sophisticated network features which are
hard to reproduce in their totality using simulations.

This paper describes the Connected AI (CAI) testbed
structure to build flexible and realistic scenarios with dif-
ferent network topologies for 5G and quickly deploy them.
A container-orchestrator makes the deployments of the appli-
cations to create a mobile network interconnected to virtu-
alized OpenFlow switches, an SDN controller, and a RAN
controller. The testbed is built with open-source software and
Virtual Network Functions (VNFs) to facilitate the deploy-
ment and research of different network scenarios without
the need to use specialized hardware. This paper presents
two use cases, one for RAN slicing and another for the

placement of VNFs according to application requirements.
The source code is made available to allow replicating these
two experiments. The experiments were designed to be easy
to follow, and decrease the learning curve to get started with
AI techniques applied to 5G using the CAI testbed.

The contributions of this paper are the following:

• It presents a low cost testbed that emphasizes AI integra-
tion using Kubeflow to the ML workloads associated to
the management of 5G networks. The proposed testbed
avoids the complexity of Management and Orchestra-
tion (MANO) agents to provide cloud services and
focuses in AI applied to RAN and transport network,
including fronthaul and backhaul.

• The paper describes two use cases that explain how AI
can be used in the testbed, leveraging collected informa-
tion and applying AI decisions to optimize the network.

• The experiments are reproducible, given that the code to
deploy the testbed and the two use cases applications are
made publicly available.

This paper is organized as follows. Section II describes the
5G testbed proposals in academy and industry, emphasizing
their goals and applications. This helps to contextualize the
CAI testbed. Section III describes the CAI testbed structure
and main features. Section IV describes two use cases to
apply AI techniques using the testbed and their respective
results. Section V explains the open issues, next steps and
concludes the paper.

II. RELATED WORK: TESTBEDS AND THEIR FEATURES
Several 5G testbed implementations have been developed
[14]–[17] to demonstrate functionalities and operation of a
5G system. Given the variety of technologies in 5G, to make
the following discussion more concrete, special emphasis is
placed on slicing and VNF placement, which are the two use
cases described in Section IV.

An important feature of 5G networks is the possibility of
an infrastructure (InP) to share its physical resources among
different Mobile Virtual Network Operators (MVNOs), pro-
viding isolation, security, and accomplishing the Service
Level Agreements (SLAs) requested by each operator. NFV
is essential to make better use of physical resources and
making the VNFs allocations along the infrastructure using
orchestrators. The network slicing facilitates the MVNO and
InP provisions of different services in the network with ded-
icated resources [1]. With the wide variety of applications
and scenarios, it becomes more important to choose the better
network parameters and VNF placement to improve the per-
formance of each network slicing without affecting others.
ML models fed with network information to choose these
parameters and the placement of VNFs in the infrastructure
can enhance the network slicing operations, as demonstrated
in many works [18]–[20]. Not necessarily involving slicing
and NFV placement, a brief review of related works in 5G
testbeds is presented next.

VOLUME 8, 2020 223203



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

A scalable orchestration architecture based on a cross-
domain optimization is presented in [14]. It works by provid-
ing an abstraction of physical resources for the orchestration
level, allowing to implement network slices according to net-
work applications. Only RAN and transportation resources
are allocated in the use cases presented in this work, where
RAN instances are deployed using VNFs and the transporta-
tion resources are implemented in optical switches, which
are integrated into a SDN controller managing the routes and
communication among RAN VNFs.

The authors in [15], [16] discuss a testbed implementa-
tion with an SDN/NFV packet/optical transport network and
edge/core cloud platform for end-to-end 5G and Internet of
Things (IoT) services deployed with open-source software
and Commercial Off The Shelf (COTS) hardware. The work
in [17] implements a similar testbed using an SDN con-
troller managing an optical/wireless fronthaul. These works
focus on the VNFs allocations and SDN architectures for
mobile networks mixing open-source and commercial soft-
ware. They demand relatively robust physical infrastructures
due to the requirements for their testbed implementation. The
authors do not provide code or more detailed descriptions
about how to deploy and adapt these testbeds to enable
their adoption by other groups, especially those with limited
infrastructure resources. Also, network slicing and machine
learning integrations are not explored.

Some other testbeds focus in MANO implementation to
offer a partial or full end-to-end network slicing over RAN,
transport network (TN) and core network [21]–[23]. In [21]
there is a focus on flexibility and scalability to service pro-
visioning, having been applied to certain use cases, such
as critical e-health, vehicle-to-everything communication for
intelligent transportation systems and multi-service man-
agement for smart cities. The works in [22], [23] provide
independent and customizable end-to-end slices, where [23]
focuses in an integration between OpenAirInterface (OAI)
and M-CORD, enabling the implementation of different pro-
cedures to deploy 4G network over M-CORD.

It is convenient to briefly describe the pros and cons of
integrating MANO into 5G testbeds, given that the proposed
CAI favors AI tools and does not adopt MANO for the
sake of reducing the infrastructure requirements and cost.
The main MANO project implementations are the OSM and
ONAP [24], where ONAP needs a higher computational
resource availability and OSM has less stringent require-
ments. Neither of them support Virtual Infrastructure Man-
ager (VIM) with containerized VNFs, so the VNFs are
deployed into virtual machines, which spend more compu-
tational resources than containerized applications [25].

The advantage of using MANO implementations are
related to performing efficient resource management and
orchestration, and the management of network slicing life-
cycles. The MANO implementation can be avoided in
researches that are not focused in the end-to-end network
slicing or in aspects as the management of their lifecycles.
For example, researches on RAN aspects such as slicing-

TABLE 1. 5G Testbed’s comparison.

aware radio resource management (RRM) or network slicing
in the TN can be made without considering MANO features,
enabling the evaluation of less complex but diverse scenarios
that are focused on specific applications.

Another important aspect of the mentioned testbeds [14]–
[17], [21]–[23] is that the AI integration to enable researches
is not emphasized. For instance, there are no descriptive
guidelines on how to use the controllers to get information
about the network and apply AI techniques. Also, there is no
structure to orchestrate the AI workloads over the physical
structure.

Table 1 shows a comparison of testbed features, including
the proposed CAI testbed. Despite the partial network slicing
and absence of MANO, the CAI testbed presents an orches-
tration to AI workloads to facilitate and turn more intuitive
the deployment of AI agents into the testbed. It also presents
an emulated TN that enables the deployment of any network
topology on fronthaul and backhaul, without the need to have
access to actual transport network topologies. This facilitates
the exploration of different scenarios with reduced resources
and cost. The next section provides more details about the
proposed CAI.

III. CAI: THE IMPLEMENTED CONNECTED AI TESTBED
The CAI testbed enables the building of flexible and realistic
AI-based scenarios with different network topologies for 5G
and quickly deploy and assess them. The SDN and RAN
controllers work as information sources about the network.
They also work as agents to dynamically change the mobile
and the computer network. An AI agent performs different
actions in the testbed according to the application, using
the information provided by SDN and RAN controllers to
train and execute in test stage its neural networks. The ML
workloads are orchestrated along the cluster to provide the
AI agent processes. All the code to set up the testbed and exe-
cute the use cases, which will be explained in the following
sections, are available on Github.1 The next paragraphs detail
each component of the testbed.

A. ORCHESTRATION
The container-orchestrator has the responsibility to create a
cluster with available machines, interconnect them through a
Container Network Interface (CNI), and make the application
deployment and orchestration of the cluster nodes. The clus-
ter has two types of nodes: the master and the worker nodes,
where the master executes the container-orchestrator com-

1https://github.com/lasseufpa/connected-ai-testbed

223204 VOLUME 8, 2020



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

FIGURE 1. Big picture of the proposed testbed. A Cloud RAN (C-RAN) scenario with a virtualized fronthaul using Mininet is
deployed. Both an SDN and a RAN controller are used to get information and apply changes in the network.

mands and makes the application deployments. Furthermore,
the worker nodes are responsible for executing the containers
from applications requested by themaster nodes. TheCNI has
the responsibility to create and manage the network to con-
nect the containers and nodes from the container-orchestrator
cluster, enabling the communications among the applications
deployed through a virtual network created by the CNI. CAI
uses Kubernetes [26] as the container-orchestrator, and Cal-
ico [27] as the CNI.

Fig. 1 shows the testbedmodules interconnection consider-
ing a C-RAN scenario, which is one of the scenarios available
in CAI. The figure depicts a virtualized fronthaul deploying
one specific topology, which can be redefined with flexibility
via scripts. Both SDN and OAI FlexRAN controllers work as
an information source to the AI agent.

Fig. 2 depicts the NFV architecture implemented in the
testbed. It is similar to an NFV achitecture implemented with
MANO, but simpler and with less functionalities. The NFV
Infrasructure (NFVI) is composed of the hardware resources
which are represented in the testbed by the computers of the
Kubernetes cluster. The virtual computer, storage and net-
work are allocated using Kubernetes and Docker through the
virtualization layer, which allocates the virtualized compo-
nents in the hardware resources. TheVNFs are represented by
the containerized elements that compose the mobile network
structure.

Instead of aMANO implementation, an orchestrator of net-
work scenarios is implemented using Kubernetes deployment
files, which are much less complex and have less functional-
ities than MANO. However, they provide a lightweight and
simple method to deploy different network mobile architec-
tures along the testbed, avoiding the complexity of MANO
implementations in scenarios which do not focus on it. The
implemented orchestrator defines the places where the VNFs
are allocated in the NFVI structure.

An example of a C-RAN architecture function distribution
is represented in Fig. 3, where mobile network functions
are distributed along three machines and one of them cre-

FIGURE 2. NFV arquitecture implemented in the testbed.

ates a virtualized fronthaul and backhaul emulated using
Mininet. A USRP B210 generates the radio frequency (RF)
signals to a Galaxy S4 smartphone representing the UE.
The cluster is composed of 4 machines with Intel Core i5-
7500 CPU@3.4 GHz, 8 GB of RAM DDR4 memory, using
an operational system Ubuntu 18.04 with low-latency kernel.
The testbed does not need all these machines since all VNF
functions can be allocated in the same computer using the
ochestrator. The number of machines required in the testbed
depends of the scenario to be deployed. Since a C-RAN
scenario may encompass three locations (antenna, edge and
cloud), it is assumed that the mobile functions need to be
distributed along three machines, to enable the traffic to be
forwarded to the Mininet machine that emulates the backhaul
and fronthaul.

The OAI platform [28] has 4/5G modules for both the core
network and RAN implementation but only RAN modules
for 4G were virtualized, considering a monolithic evolved
node B (eNB) and C-RAN [29] scenario through containers
implementation using Docker [30]. OAI 5G RAN implemen-
tation is not stable yet, so in this work we consider only
4G RAN implementation. The testbed can be easily adapted

VOLUME 8, 2020 223205



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

to work with OAI 5G RAN as soon as its implementation fin-
ishes due to the virtualization structure with containers. For
the core network, CAI adopts containers using the Free5GC
implementation [31] that supports the 5G core network
architecture.

Orchestrator deployment files define theOAI and Free5GC
modules deployment and the cluster nodes, following the
specifications to each module and assigning them to nodes
that fulfill the requirements for each implementation. OAI
and Free5GC modules have different machine and configu-
ration requirements, so there is a need to verify which node
can satisfy them to be able to deploy these modules. The
Kubernetes assign labels to the cluster machines to define
which machines can execute each module as defined in the
cluster setup.When the orchestrator deploys a container in the
cluster, it needs to choose a node that satisfies the minimum
requirements to deploy the container.

Each deployment of the testbed has its configuration and
machine requirements, so in the deployment files there are
definitions of the requirements for each one. For instance,
to deploy an remote radio unit (RRU), the machine needs
to have a USRP connected. Hence, the Kubernetes verifies
which machines have a label identifying that the node has
a USRP board connected, and then chooses one to allocate
the RRU container. With this approach, the testbed can add
more machines to its infrastructure and the orchestrator will
be able to assign the deployments to the nodes that can
execute the container. Another configuration possible is to
define labels as antenna, edge, and cloud to define the mobile
network locations to each of the cluster machines. Further-
more, Kubernetes will allocate the modules in their defined
locations chosen by the user. Both modes are enabled in the
testbed.

OAI can use software defined radio (SDR) boards such
as the USRP to generate and transmit LTE signals over the
air to UEs, but for scenarios that require a high number of
UEs connected to the network, this approach can increase the
costs. OAI offers an option to emulate UE and RF signals
using the computer instead of using SDRboards and real UEs.
This module runs both UEs and eNB/RRU.

With the emulation option, a great number of UEs can
be emulated per computer, giving more flexibility to deploy
different scenarios. A network interface into the Linux system
is created for each emulated UE, so any Linux command can
be executed to create traffic into the mobile network, e.g.,
iperf tools and ping command. The testbed has containers
to emulate UEs and baseband functions to enable the use
of emulated UEs in the testbed. The testbed supports both
execution using USRP to connect real UEs or using emulated
ones.

B. VIRTUALIZED FRONTHAUL/BACKHAUL AND SDN
CONTROLLER
In a C-RAN deployment using RRU and baseband unit
(BBU), the fronthaul is the link connecting these modules.
Similarly, the backhaul is the link connecting the BBU or the

FIGURE 3. Testbed working at LASSE - UFPA lab using a C-RAN
architecture.

eNB to the core network. OAI implements both fronthaul
and backhaul over an Ethernet connection. Each scenario
of mobile network deployment presents different topologies
to the fronthaul and backhaul represented by physical com-
ponents built to enable the transport network, e.g., routers
and switches. The testbed implements both the fronthaul
and backhaul using a virtual network deployment based on
Mininet [32].

The use of Mininet gives more flexibility to deploy the
fronthaul and backhaul since any network topology can
be defined using Mininet scripts, which set virtualized
routers and switches to compose the network. The virtualized
routers/switches created with Mininet cannot communicate
directly to networks outside the virtualization since it can
see only the links inside Mininet virtualization as defined
in the topology script. To create a link between the host
machines and Mininet hosts, we created virtual Ethernet
devices (VETHs) linking them, enabling the traffic forward-
ing between two machines through the Mininet topology.
Therefore, the traffic of the fronthaul/backhaul can be for-
ward through Mininet virtualized network.

Figure 4 illustrates how the RRU and BBU machines for-
ward their fronthaul traffic through the virtualized topology
instantiated using Mininet. This figure does not show the
SDN controller or other Mininet hosts (routers and switches)
because it focuses on how machine interfaces are con-
nected to the virtual network to facilitate understanding. Each
machine has an Ethernet interface (ETH) connected to the
same network. TheMininet hosts can communicate with each
other through virtual interfaces (VIs) and virtual switches
defined in Mininet script topology, but they are not able to
communicate with the ETHs from machines, so the fronthaul
traffic is not able to be forwarded through Mininet topology
using the default deployment. Creating the VETHs, machine
interfaces, and Mininet hosts can establish a communication
link, enabling the fronthaul traffic forwarding between the
RRU and BBU machines.

Using Mininet to deploy the fronthaul increases the flexi-
bility to build different scenarios since just a script configura-
tion is sufficient to change the topology, packets delay in the
VIs and connecting an SDN controller to the virtual switches
deployed. Also, it is possible to execute all SDN functions as
routersmanagement and linkmonitoring. The SDN controller
acts as an information source about the network states and
as an agent to deploy online changes in the structure of how

223206 VOLUME 8, 2020



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

FIGURE 4. Mininet integration to virtualize the backhaul or the fronthaul.

the Mininet hosts communicate with each other. The same
structure from virtualized fronthaul can be deployed for the
backhaul. In this work, we use the Ryu implementation to
work as the SDN controller [33] since it is simple to config-
ure and implement algorithms.

C. RAN PROGRAMMABILITY
RAN programmability, also called SD-RAN, works as an
abstraction of the RAN resources and by providing an API
which enables the Service Orchestrator entity to dinamically
manage the RAN resources to provide information about the
mobile network [1]. The FlexRAN protocol [34] has defined
and implemented an SD-RAN architecture integrated with
OAI platform which incorporates an API to separate control
and data planes for the mobile RAN.

This architecture has a master controller represented by the
FlexRAN controller in Fig. 1 and a FlexRAN agent which
corresponds to the OAI eNB instances. In a C-RAN scenario
the FlexRAN agent is located in the OAI BBU instances,
also represented in Fig. 1. The agents can act as local con-
trollers with a limited network view and handle the functions
delegated by the master or being coordinated by the master
controller. The FlexRAN Agent API makes the control and
data plane separation allowing the control data to be managed
by the FlexRAN controller and the eNB data plane on the
other side.

FlexRAN APIs enable the development of applica-
tions related to the control and management of the RAN
resources [34], e.g., schedulers, interference, and mobility
manager. Moreover, applications related to improvements in
the use of RAN resources to make more sophisticated deci-
sions [34], such as RAN slicing and adaptative video stream-
ing based on channel quality. FlexRAN does not control the
flows in the wired domain, so it does not support the manage-
ment of routes, packets filtering, and other functions related to
the computer network domain (routers and switches). These
functions can be executed using the Ryu controller.

D. AI INTEGRATION
The mentioned FG-ML5G group associated to the ITU-T,
has defined a logical interoperable architecture for future
networks, which incorporates a ML overlay that operates on
the top of any specified underlay network technology [9]. For
instance, based on this architecture, the authors in [6] dis-
cussedML in the context of IEEE 802.11Wireless Local Area
Networks (WLANs). This architecture facilitates deploying
ML applications in different network scenarios and is adopted
in the CAI testbed. More specifically, the FG-ML5G defined

high-level architectural components to integrate ML to the
network and a process pipeline. Fig. 5 depicts these compo-
nents, the pipeline and their respective mapping into the CAI
testbed components.

The source (SRC) component is the source of the data
that works as input to the ML pipeline. Both the Ryu and
FlexRAN controller and core network can provide informa-
tion through their APIs. The processes ‘‘1’’ in Fig. 5 represent
the source of information. The collector (C) component col-
lects data from all sources of the network, as the FlexRAN
and Ryu controller and the core network. The collector can
choose which source of information to use, following the
application deployed in the AI agent. So, if the application
requires only information from controllers and not from the
core network, it can collect only this information.

The preprocessor (PP) component is responsible for clean-
ing and aggregating data or performing other preprocessing
needed to make data suitable to the ML model. After the data
preprocessing, it can feed the model (M) component, which
is the ML model to train and execute the neural networks
using any available ML library, such as TensorFlow [35]
and PyTorch [36]. The policy (P) component enables the
application of policies to the output of the model, e.g., it can
be used to define when the output should be sent by the AI
agent in a live testbed since there are actions that have specific
events to be applied in the network.

The distributor (D) component sends the model outputs to
the corresponding SINK components which is responsible
for promoting actions in the controllers and core network
(represented with process ‘‘2’’ in Fig. 5). Using this testbed
architecture, information can be provided by controllers and
core network to an AI agent which returns actions to these
entities to improve the network functions.

The CAI testbed orchestrates the ML workloads of the
AI agent using the Kubeflow tool [37]. Kubeflow works
integrated to Kubernetes to orchestrate the ML functions
along the cluster machines. Kubeflow enables the use of
pipelines to define the steps of ML processing. The testbed
implements each of the AI agent components described in
Fig. 5 as pipeline components, distributed along the testbed
in according to the configuration defined. For simplicity,
CAI deploys the AI agent at the cloud location (with the
core network) due to high resources availability at cloud in
real scenarios. But functions could be distributed in other
machines in accordance with the defined scenario, as will be
discussed in the next section.

IV. CAI TESTBED USE CASES
The proposed testbed structure can be applied in different sce-
narios and be integrated into different AI agents to improve
the mobile network functions. The next subsections provide
two use cases of the AI agent. The first is a RAN slicing appli-
cation to monitor the percentage of resource blocks (RBs)
allocated for each requested slice. The second application is
an AI agent to define the placement of VNFs along with the
testbed’s cluster machines.

VOLUME 8, 2020 223207



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

FIGURE 5. Components from the ITU FG-ML5G architecture is applied to
the ML implementation of the CAI testbed.

A. RAN SLICING
In [38], an application for RAN slicing is proposed, utiliz-
ing an in-network deep learning to analyze packets in the
Packet Gateway (PGW) at the core network and identifying
mobile applications. Afterwards, the eNB can apply specific
slice configurations for each UE according to requirements
associated to the detected application. The work presented
in [39] designs and prototypes a network slice solution in a
C-RAN architecture that aims to share spectrum among slices
efficiently considering their requirements. The authors in [39]
use FlexRAN information to identify application require-
ments and verify whether a service request can be satisfied
according to the real-time network state, and communicates
the slicing decision. It uses an algorithm for dynamic slic-
ing that estimates the resource allocation satisfaction and
shares unused RBs among applications which requires more
resources.

Both [38] and [39] consider a monolithic implementation
of eNB or a C-RAN architecture implementation where sim-
plified topologies for fronthaul and backhaul are considered
and network delay is not accounted for. Link delays from
fronthaul and backhaul topology are essential factors for
applications that require low-latency and can affect avail-
ability and throughput. Using our proposed testbed, more
stringent results for slice applications to different fronthaul
and backhaul scenarios can be obtained, leveraging the
Mininet implementation. Information from Ryu, FlexRAN
controllers, and core network can provide useful information
to feed ML models and infer possible slice configurations to
the services provided by the mobile network.

FlexRAN supports RAN slicing through an API communi-
cation that enables to define dedicatedRRC/RLC/PDCP/MAC2

instances for each slice. Moreover, physical resources are
strictly dedicated to a specific slice [40], where a percentage
of RBs are assigned for each one. FlexRAN also allows
defining: if the resources allocated are shared or isolated from
other slices, priority, maximum code scheme and schedule
algorithm used for each slice. The default configuration
assigns all UEs to the same slice, and new slices need to

2RRC: Radio Resources Control, RLC: Radio Link Control, PDCP:
Packet Data Convergence Protocol, MAC: Medium Access Control.

FIGURE 6. RAN slicing scenario with 3 UEs connected to a C-RAN
structure with the backhaul virtualized using Mininet.

be created before assigning a UE. Slices can be manually
defined, or slices manager applications can be connected to
FlexRAN API for their creation and control.

We implemented a RAN slicing scenario using FlexRAN
and considering eNBs in a C-RAN architecture, where
Mininet virtualizes the backhaul to implement a network
topology with switches and routers. Fig. 6 shows the scenario
with 3 UEs (smartphones) connected to the RRU. A fronthaul
composed by a single path connects the RRU to the BBU
pool. The BBU pool is connected to the Free5GC core net-
work through a virtualized backhaul using Mininet, contain-
ing two routers and one switch connected to the Ryu con-
troller. The total latency added in the backhaul was 100 ms.

In this scenario, the main source of information is the Ryu
SDN and the OAI FlexRAN controllers. A customized script
makes the Ryu controller provide throughput, link delays
and jitter in backhaul link, besides the default information
provided by the default Ryu API, e.g., number of packets
transmitted and received in each switch port. The FlexRAN
provides information about the eNBs, RAN slices and UEs
connected, such as the percentage of RBs allocated for each
slice, resources isolation and the identification of all UEs
connected in a specific eNB.

For our use case, we consider three different RAN slice
types: constant bit rate (CBR), minimum bit rate (MBR) and
best effort (BE). These types are similar to the ones explored
in [41], [42]. Applications that need constant bit rates use
the CBR slice, e.g., video conference and voice-over-IP. The
MBR slice supports applications that have minimum bit rate
requirements but improved performance when offered an
increased bit rate, e.g., video streaming services and online
games. The BE slice attends applications with no stringent
requirements, e.g. Web navigation. Using the FlexRAN API,
the three mentioned slices in the eNBwere created, where the
CBR has the RBs isolated (they cannot be shared with other
slices), while MBR and BE can share their resources. The
RRU has 3 UEs connected, with the UE 1 using the MBR
slice with a minimum throughput of 5 Mbps, UE 2 using the
CBR slice with a constant throughput of 10 Mbps and one
UE 3 requesting a throughput of 5 Mbps using the BE slice.

Our main motivation is to show how the testbed structure
can support MLmodels by discussing a simpleML algorithm
applied to RRM. In this paper, we do not aim at describ-
ing or assessing a state-of-art RRM algorithm. The provided
source code gives details about all the inputs to the AI agent,
which include the number of UEs associated with each slice,
isolation of resources, and percentage of RBs for each slice.

223208 VOLUME 8, 2020



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

TABLE 2. Topology of DNN used for RAN slicing.

If the model should be optimized, some of these inputs could
be eventually discarded. But we tried to incorporate diverse
features, in order to illustrate the main point: with a relatively
low-cost testbed, one can explore many aspects regarding the
application of AI to 5G / B5G networks. In this use case,
the outputs of the MLmodel are the three percentages of RBs
to allocate for each proposed slice.

As mentioned, the information from Ryu and FlexRAN
controllers is concentrated in the collector C of the AI agent
and preprocessed in PP to save in the database only the
information to be used as entries of the specific RAN slic-
ing ML model implemented using the PyTorch framework.
Based on information from scenario described in Fig. 6, we
used a script to generate the database with information from
FlexRAN and the Ryu controllers. Each line is labeled with
the percentage for each slice using a simple formula provided
in the code to make a guarantee of the RBs to CBR slice, and
after providing resources to ensure the minimum bit rate to
MBR and the remaining RBs to BE slice. The database is
interpreted as a table. Each row corresponds to an example,
and has a label indicating the desired ML model output, such
that one can use supervised learning. Specifically, the label
here is the percentage of RBs allocated for each slice type
and the problem is posed as regression [43].

Due to their popularity, a deep neural network (DNN)
was adopted for this RAN slicing problem. Other learning
paradigms could be adopted, such as decisions trees. Table 2
informs the topology of the adopted three-layers DNN. The
input layer receives the 15 parameters from the preprocessing
in PP, representing the Ryu and FlexRAN information. The
output of the network uses a SoftMax activation and has
three neurons, which indicate the percentage of RBs for each
slice. The RAN slicing use case illustrates the ML model in a
closed loop within the network operation. The next paragraph
discusses how the DNN output is used to change the RB
allocation.

The ML output needs to be adapted to the FlexRAN API
format. The policy component P defines that the command
should be sent to this API in every 5 seconds. Afterward,
the distributor D is responsible for sending the information
to the FlexRAN controller API which updates the percentage
of RBs for each slice type. Fig. 7 shows the Kubeflow web
interface with the pipelines deployed for RAN slicing, imple-
mented in accordance with Fig. 5. This interface provide
information about the pipeline deployed as the output of each
component and its connections. First, Kubeflow trains the
agent, then it deploys pipeline components defined to the AI
agent in Fig. 5 and generates the ML output.

FIGURE 7. Pipeline visualized on Kubeflow webview of the RAN slicing
application.

Fig. 8 shows the graphs of UE download throughputs in
an eNB using 5 MHz with a maximum download throughput
around 18 Mbps. The iperf tool was used to implement a
server into the mobile network, and iperf clients were used
in the interfaces of emulated UEs. Each UE client requires
different amounts of throughputs, as described before. The
total duration of the experiment was 1 minute. In the first
20 seconds, the three UEs are active and requesting the
maximum throughput reachable. From 20 to 40 seconds,
UE 3 is disconnected. After 40 seconds, UE 2 is disconnected,
and UE 3 is connected again. The same download traffic
was generated to the three UEs and two strategies for RB
allocation are contrasted: without using slices versus using
the allocation dictated by the trained DNN.

Fig. 8 shows that the DNN provides a better allocation
of resources for the UEs. This is expected, given that we
are comparing the DNN result with the situation without
slicing (instead of using a state-of-art baseline). The goal
here is to illustrate the proof-of-concept, with the CAI testbed
showing it is capable of incorporating a DNN model that
provides differentiation of the traffic according to each slice’s
requirements. In the situation without slicing (x markers),
the scheduler tries to provide a fair division of the radio
resources among the connected UEs. For instance, in the
first 20 seconds, each UE achieves 6 Mbps. When UE 3 is
disconnected, the other 2 equally split the total rate and reach
9Mbps each. In contrast, considering the AI agent allocation,
the requirements specified to CBR and MBR slices are ful-
filled in the first 20 seconds. From 20 to 40 seconds, AI agent

VOLUME 8, 2020 223209



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

FIGURE 8. Throughput reached for each slice using a AI agent to control
the radio resources allocated among the slices.

keeps the bit rate to CBR slice since it just need the constant
bit rate and allocate the remaining RBs to the MBR slice.
In the last 20 seconds, the AI agent provides more resources
to MBR and also fulfill the 5 Mbps requested by the less
prioritary slice (BE).

For simplicity, we adopted supervised learning. But CAI
is also a convenient testbed to explore RAN slicing and
RRM problems tackled with reinforcement learning (RL)
methods [44].

B. VNF PLACEMENT
The next paragraphs discuss how the CAI testbed was used in
a VNFs placement application. CAI leverages the implemen-
tation of mobile networkmodules as containers, which enable
the deployment of different VNFs architectures over the phys-
ical structure. For instance, CAI supports the test of different
processes of network slicing. The requirements of a requested
slice, defined in the SLA, can be processed by a function
mapper, which uses the testbed to implement the VNFs in
the locations of the network to better fulfill the requirements.
Fig. 9 represents different function placements implemented
with the CAI testbed through orchestration using Kubernetes.

Fig. 9a represents the well-known C-RAN scenario, which
saves deployment costs by having core network functions
allocated in the cloud, while the BBU is allocated in an
edge facility and RRU near UEs. However, network slices
with more strict requirements, such as low latencies and
high throughputs may require to allocate VNFs nearer the
users. Fig. 9b represents a scenario where a monolithic eNB
is deployed near the user, requiring more computational
resources but reducing latencies. In contrast, Fig. 9c depicts
a scenario where the RRU is allocated near UEs, but some
elements from the 5G core network – the access and mobil-
ity management function (AMF) in this case – are allo-
cated together with the BBU, which provides lower latencies
than the scenario depicted in Fig. 9a. The scenario depicted
in Fig. 9d allocates both AMF and user plane function (UPF)
at the edge.

Fig. 10 shows the latency perceived by UEs in the dif-
ferent placement scenarios. The elements in set L =

FIGURE 9. VNF placement scenarios allocated along antenna, edge and
cloud locations.

FIGURE 10. Average end-to-end latency for the different placement
scenarios in Fig. 9.

{131.1, 115.4, 106.4, 15.8} ms correspond to the average
latency values for scenarios a) to d) in Fig. 9, respectively.
The scenarios with VNFs located near to users present a lower
latency. For instance, the scenario in Fig. 9d presents the
lowest latency, as expected, since placing the UPF function
in the edge enables the possibility for the UEs to access the
packet data network (Internet) via a direct link, avoiding the
latency of 100 ms imposed by the backhaul emulated with
Mininet.

In this use case, we assume the ML model is capable of
indicating which of the four NFV placements in Fig. 9 should
be adopted for a given network condition and established
SLAs. Again, we do not aim at optimizing the ML model,
but illustrating that CAI can actually allocate the NFVs on
demand, based on the output of a DNN. To create the train-
ing dataset, we collected a variety of input features from
the network and also from the key performance indicators
(KPIs) corresponding to the requested slice. We then man-
ually determined the ML model output (‘‘correct label’’) for
each input vector. In a real-life application, such strategy is
often unfeasible due to the large number of input features

223210 VOLUME 8, 2020



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

TABLE 3. ML model layers for VNF placement.

and eventual lack of an algorithm to define the best output.
To speed up this ‘‘manual’’ assignment of labels, a script
generated the training dataset with the input features and
respective labels. For this experiment, a single input feature
defines the best output (label): the required maximum latency
`max. The details are provided in the next paragraphs.

The y-th element of L is the latency ly, and y ∈ {1, . . . , 4}
represents the possible labels, that are mapped to scenarios
a) to d), respectively. We assumed a tolerance of 20 ms, and
adopted as the correct label y, the scenario for which

`y ≤ `max + 20

and

y = arg min
i=1,...,4

(`max + 20− `i).

For instance, given that the SLA of a new slice specifies a
maximum latency `max = 100 ms, we choose y = 2 as the
correct label, which corresponds to scenario b), given that
`2 = 115.4 meets the requirement within the tolerance.
In spite of the fact that the correct label depends only

on `max, we incorporated other eight parameters to create a
DNN input vector with nine elements to illustrate the testbed
flexibility. More details can be obtained via the provided
source code, but in summary the sources of information to
compose the DNN input vector are: the Ryu controller (that
provided throughput, delay, and jitters in the fronthaul and
backhaul), FlexRAN (e. g., number of deployed eNBs) and
the requested slice KPIs (maximum latency `max and mini-
mum throughput). Table 3 shows the number of neurons in
each layer of the adopted DNN model.

After the DNN is trainedwith the designed dataset, a proof-
of-concept is conducted as follows. We consider a single
slice serving three UEs and periodically change its associated
SLA. At each SLA change, the nine DNN input values are
collected and the DNN output is calculated. The VNFs are
then placed according to the DNN output. Fig. 11 illustrates
four examples of this process, with the SLA changing at
each 15 s, and assuming the values of `max over time are
[150, 120, 100, 20]. These target values are indicated by hor-
izontal dashed lines in Fig. 11.

Each time the DNN indicates a new output, the correspond-
ing scenario is automatically deployed in the infrastructure,
generating the mobile network with the defined topology and
the connected UEs. The time taken by this process depends
on several implementation details and is omitted in Fig. 11.
During the first 15 seconds in Fig. 11, the SLA specifies
`max = 150 ms and the DNN outputs y = 1, which cor-
responds to scenario a). The latency perceived by the three

FIGURE 11. Average latency for distinct NFVs scenarios chosen by a DNN,
adapting to a target latency (dashed lines) that changes every 15 seconds.

UEs are collected and their average stays below the target
`max = 150 ms. Fig. 11 also shows that when the target
latency is made more strict, the CAI testbed automatically
adapts the NFVs towards scenario d), to successfully meet
the SLA requirement. For instance, from 30 to 45 s, the SLA
specifies `max = 100 ms and the DNN outputs y = 3, which
corresponds to scenario c). In this interval, the impact of the
tolerance of 20 ms can be perceived because the average
latency is sometimes larger than `max.

Similar to the RAN slicing use case, we adopted DNN-
based supervised learning for VNF allocation, but CAI can
support other ML and AI paradigms such as RL, as well
as take in account aspects such as energy consumption and
network congestion.

V. OPEN ISSUES AND CONCLUSION
This paper presented a flexible 5G testbed with RAN and
SDN controllers, connected via virtualized backhaul and
fronthaul. The main focus of the proposed CAI testbed is
enabling ML-based applications. When compared to other
testbeds, CAI has the advantages of being reproducible
among distinct sites given the provided containers, and lower
cost than previously published alternatives.

For instance, strategically, CAI does not incorporate
MANO components because they currently demand a rel-
atively high-cost infrastructure. For instance, as indicated
in [45] the ONAP-CMANO implementation, required 88 vir-
tual CPUs and 176 GB of RAM memory. Some function-
ality of modern 5G / B5G networks are missing when not
incorporating MANO, but many AI-based applications can
still be implemented and assessed. To illustrate the flexibil-
ity of the proposed testbed, this paper presented two ML
applications using CAI. They indicate how the AI agents
can be integrated and assessed with respect to optimizing the
instantiated mobile network.

The authors are now investigating the Elasticsearch stack
to provide the storage of the controller’s information in a
time series format, improving real-time training of AI agents.
Elasticsearch also facilitates gathering information from the
computers used in the testbed, such as load, CPU and RAM

VOLUME 8, 2020 223211



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

memory usage. We are also collecting large amount of data
in order to conduct realistic experiments with unsupervised
learning for anomaly detection and reinforcement learning
for scheduling radio resources.

ACKNOWLEDGMENT
P. Batista, S. Lins and N. Linder contributions are theoretical
concepts and they are with Ericsson Research.

REFERENCES
[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, ‘‘Net-

work slicing and softwarization: A survey on principles, enabling tech-
nologies, and solutions,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[2] A. Imran and A. Zoha, ‘‘Challenges in 5G: How to empower SONwith big
data for enabling 5G,’’ IEEE Netw., vol. 28, no. 6, pp. 27–33, Nov. 2014.

[3] C. Benzaid and T. Taleb, ‘‘AI-driven zero touch network and service
management in 5G and beyond: Challenges and research directions,’’ IEEE
Netw., vol. 34, no. 2, pp. 186–194, Mar. 2020.

[4] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, ‘‘Machine learning for
5G/B5G mobile and wireless communications: Potential, limitations, and
future directions,’’ IEEE Access, vol. 7, pp. 137184–137206, 2019.

[5] K. B. Letaief,W. Chen, Y. Shi, J. Zhang, andY.-J.-A. Zhang, ‘‘The roadmap
to 6G: AI empowered wireless networks,’’ IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[6] F. Wilhelmi, S. Barrachina-Muñoz, B. Bellalta, C. Cano, A. Jonsson,
and V. Ram, ‘‘A flexible machine learning-aware architecture for future
WLANs,’’ 2019, arXiv:1910.03510. [Online]. Available: http://arxiv.org/
abs/1910.03510

[7] K. B. Letaief,W. Chen, Y. Shi, J. Zhang, andY.-J.-A. Zhang, ‘‘The roadmap
to 6G: AI empowered wireless networks,’’ IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[8] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. London, U.K.: Pearson, Jul. 2016.

[9] Architectural Framework for Machine Learning in Future Networks
Including IMT-2020, document ITU-T Rec. Y.3172, 2019.

[10] Study of Enablers for Network Automation for 5G, document TR 23.791,
3GPP, 2019.

[11] Draft Zero-Touch Network and Service Management (ZSM): Reference
Architecture, Standard ETSI GS ZSM 002 V0.13.5 (2019-07), 2019.

[12] L. Deng, H. Deng, and A. Mayer. Harmonizing Open Source and
Standards: A Case for 5G Slicing. Accessed: Sep. 30, 2020. [Online].
Available: https://www.onap.org/wp-content/uploads/sites/20/2020/03/
ONAP_HarmonizingOpenSourceStandards_031520.pdf

[13] K. Tan, D. Wu, A. Chan, and P. Mohapatra, ‘‘Comparing simulation tools
and experimental testbeds for wireless mesh networks,’’ Pervas. Mobile
Comput., vol. 7, no. 4, pp. 434–448, Aug. 2011.

[14] A. Rostami, P. Ohlen, K.Wang, Z. Ghebretensae, B. Skubic,M. Santos, and
A. Vidal, ‘‘Orchestration of RAN and transport networks for 5G: An SDN
approach,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 64–70, Apr. 2017.

[15] R. Munoz, L. Nadal, R. Casellas, M. S. Moreolo, R. Vilalta, J. M. Fabrega,
R. Martinez, A. Mayoral, and F. J. Vilchez, ‘‘The ADRENALINE testbed:
An SDN/NFV packet/optical transport network and edge/core cloud plat-
form for end-to-end 5G and IoT services,’’ in Proc. Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2017, pp. 1–5.

[16] S. Fichera, M. Gharbaoui, P. Castoldi, B. Martini, and A. Manzalini,
‘‘On experimenting 5G: Testbed set-up for SDN orchestration across net-
work cloud and IoT domains,’’ in Proc. IEEE Conf. Netw. Softwarization
(NetSoft), Jul. 2017, pp. 1–6.

[17] K. Ramantas, A. Antonopoulos, E. Kartsakli, P.-V. Mekikis, J. Vardakas,
and C. Verikoukis, ‘‘A C-RAN based 5G platform with a fully virtualized,
SDN controlled optical/wireless fronthaul,’’ in Proc. 20th Int. Conf. Trans-
parent Opt. Netw. (ICTON), Jul. 2018, pp. 1–4.

[18] A. Thantharate, R. Paropkari, V.Walunj, and C. Beard, ‘‘DeepSlice: A deep
learning approach towards an efficient and reliable network slicing in
5G networks,’’ in Proc. IEEE 10th Annu. Ubiquitous Comput., Electron.
Mobile Commun. Conf. (UEMCON), Oct. 2019, pp. 0762–0767.

[19] G. Zhu, J. Zan, Y. Yang, and X. Qi, ‘‘A supervised learning based
QoS assurance architecture for 5G networks,’’ IEEE Access, vol. 7,
pp. 43598–43606, 2019.

[20] P. Du and A. Nakao, ‘‘Deep learning-based application specific RAN
slicing for mobile networks,’’ in Proc. IEEE 7th Int. Conf. Cloud Netw.
(CloudNet), Oct. 2018, pp. 1–3.

[21] N. Nikaein, C.-Y. Chang, and K. Alexandris, ‘‘Mosaic5G: Agile and
flexible service platforms for 5G research,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 48, no. 3, pp. 29–34, Sep. 2018.

[22] G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs, ‘‘POSENS:
A practical open source solution for end-to-end network slicing,’’ IEEE
Wireless Commun., vol. 25, no. 5, pp. 30–37, Oct. 2018.

[23] C.-Y. Huang, C.-Y. Ho, N. Nikaein, and R.-G. Cheng, ‘‘Design and proto-
type of a virtualized 5G infrastructure supporting network slicing,’’ inProc.
IEEE 23rd Int. Conf. Digit. Signal Process. (DSP), Nov. 2018, pp. 1–5.

[24] G. M. Yilma, F. Zarrar Yousaf, V. Sciancalepore, and X. Costa-Perez,
‘‘On the challenges and KPIs for benchmarking open-source NFVMANO
systems: OSM vs ONAP,’’ 2019, arXiv:1904.10697. [Online]. Available:
http://arxiv.org/abs/1904.10697

[25] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, ‘‘Performance overhead com-
parison between hypervisor and container based virtualization,’’ in Proc.
IEEE 31st Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2017, pp. 955–962.

[26] E. A. Brewer, ‘‘Kubernetes and the path to cloud native,’’ in Proc. 6th ACM
Symp. Cloud Comput. (SoCC), 2015, p. 167.

[27] Secure Networking for the Cloud Native Era. Accessed: Sep. 13, 2020.
[Online]. Available: https://www.projectcalico.org/

[28] OpenAirInterface—5G Software Alliance for Democratising Wireless
Innovation. Accessed: Sep. 13, 2020. [Online]. Available: http://www.
openairinterface.org/

[29] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras,
M. S. Berger, and L. Dittmann, ‘‘Cloud RAN for mobile networks—
A technology overview,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 405–426, 1st Quart., 2014.

[30] B. B. Rad, H. J. Bhatti, and M. Ahmadi, ‘‘An introduction to Docker and
analysis of its performance,’’ Int. J. Comput. Sci. Netw. Secur., vol. 17,
no. 3, p. 228, 2017.

[31] Free5GC. (2019). Free5GC: Open-Source 5GC. [Online]. Available:
https://www.free5gc.org/

[32] Mininet. Mininet: An Instant Virtual Network on your Laptop (or other
PC). Accessed: Sep. 16, 2020. [Online]. Available: http://mininet.org/

[33] S. Asadollahi, B. Goswami, and M. Sameer, ‘‘Ryu controller’s scalability
experiment on software defined networks,’’ in Proc. IEEE Int. Conf. Cur-
rent Trends Adv. Comput. (ICCTAC), Feb. 2018, pp. 1–5.

[34] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis,
‘‘FlexRAN: A flexible and programmable platform for software-defined
radio access networks,’’ in Proc. 12th Int. Conf. Emerg. Netw. EXperiments
Technol., Dec. 2016, pp. 427–441.

[35] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI),
2016, pp. 265–283.

[36] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance
deep learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8024–8035.

[37] E. Bisong, ‘‘Kubeflow and kubeflow pipelines,’’ in Building Machine
Learning and Deep LearningModels on Google Cloud Platform. Berkeley,
CA, USA: Springer, 2019, pp. 671–685.

[38] P. Du and A. Nakao, ‘‘Deep learning-based application specific RAN
slicing for mobile networks,’’ in Proc. IEEE 7th Int. Conf. Cloud Netw.
(CloudNet), Oct. 2018, pp. 1–3.

[39] S. Costanzo, I. Fajjari, N. Aitsaadi, and R. Langar, ‘‘A network slicing
prototype for a flexible cloud radio access network,’’ in Proc. 15th IEEE
Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2018, pp. 1–4.

[40] A. Ksentini and N. Nikaein, ‘‘Toward enforcing network slicing on RAN:
Flexibility and resources abstraction,’’ IEEECommun. Mag., vol. 55, no. 6,
pp. 102–108, 2017.

[41] B. Khodapanah, A. Awada, I. Viering, A. N. Barreto, M. Simsek, and
G. Fettweis, ‘‘Slice management in radio access network via iterative
adaptation,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–7.

[42] R. Schmidt, C.-Y. Chang, and N. Nikaein, ‘‘Slice scheduling with QoS-
guarantee towards 5G,’’ in Proc. IEEE Global Commun. Conf. (GLOBE-
COM), Dec. 2019, pp. 1–7.

[43] F. Chollet,Deep LearningWith Python. Shelter Island, NY, USA:Manning
Publications, 2018.

[44] F. D. Calabrese, L. Wang, E. Ghadimi, G. Peters, L. Hanzo, and
P. Soldati, ‘‘Learning radio resource management in RANs: Framework,
opportunities, and challenges,’’ IEEE Commun. Mag., vol. 56, no. 9,
pp. 138–145, Sep. 2018.

223212 VOLUME 8, 2020



C. V. Nahum et al.: Testbed for 5G Connected Artificial Intelligence on Virtualized Networks

[45] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez,
‘‘Benchmarking open source NFV MANO systems: OSM and ONAP,’’
Comput. Commun., vol. 161, pp. 86–98, Sep. 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366420305946

CLEVERSON VELOSO NAHUM was born in
Brazil. He received the B.Sc. degree in computer
engineering from the Federal University of Pará
(UFPA), Belém, Pará, Brazil, in 2019. He is cur-
rently pursuing the master’s degree in electrical
engineeringwith emphasis on telecommunications
with the Electrical EngineeringGraduate Program,
UFPA. He is part of the Research and Develop-
ment Center for Telecommunications, Automation
and Electronics (LASSE), since 2016. His current

research interests include network slicing, network functions virtualization,
and artificial intelligence applied on mobile communication systems.

LUCAS DE NÓVOA MARTINS PINTO was born
in Brazil. He is currently pursuing the degree in
electrical engineering with the Federal University
of Pará (UFPA), Belém, Pará, Brazil. He is also
part of the Research and Development Center for
Telecommunications, Automation and Electron-
ics (LASSE). He has experience in the following
subjects: 2G/4G/5G mobile networks, community
networks, mobile networks, and transport layer.

VIRGÍNIA BRIOSO TAVARES was born in Brazil.
She is currently pursuing the degree in electrical
engineering with the Federal University of Pará.
She is part of the Research and Development Cen-
ter for Telecommunications, Automation and Elec-
tronics (LASSE), since 2018. She has experience
in the area of electrical engineering, with emphasis
on telecommunications, acting mainly in the fol-
lowing subjects: digital communications, commu-
nity networks, 2G/ 4G/ 5G mobile networks, and
network virtualization.

PEDRO BATISTA received the B.S., M.S., and
Ph.D. degrees from the Electrical Engineering
Graduate Program, Federal University of Pará,
Brazil. He is currently a Researcher with Eric-
sson. His research interests are in optimization
of future mobile networks, particularly, using
machine learning and machine reasoning, and
future internet architectures.

SILVIA LINS received the B.Sc. degree in com-
puter engineering and the M.Sc. degree in elec-
trical engineering from the Federal University of
Pará (UFPA), Brazil, where she is currently pursu-
ing the Ph.D. degree in telecommunications. She
is currently an Experienced Researcher in the net-
work architecture and protocols area with Erics-
son Brazil. Her current research involves machine
learning for 5G and beyond network scenarios
and applications. In the past, she also worked

with information-centric networks, transport networks, and 3G/4G mobile
networks.

NEIVA LINDER received the Ph.D. degree in elec-
trical engineering with major in telecommunica-
tion from the Federal University of Pará (UFPA),
Belém, Brazil. She is currently the Research Man-
ager with the Network Management and Automa-
tion team, Research Area Networks, Ericsson
Research, Sweden. She has research interests on
AI based operations applied to mobile networks
automation and service assurance. She joined Eric-
sson, in 2011, and has worked in several tech-

nology areas applied to fixed and mobile backhaul network architectures,
transport solutions for 4G/5G, including Cloud RAN, SDN, NFV, and net-
work slicing. She has over ten years of experience in telecommunication.
Previously to Ericsson, she was active in the area of signal processing for
communication and held a postdoctoral position at the EIT – LTH Faculty of
Engineering, Lund University, Sweden.

ALDEBARO KLAUTAU (Senior Member, IEEE)
received the Ph.D. degree in electrical and com-
puter engineering from the University of Califor-
nia at San Diego (UCSD), in 2003. He is currently
a Full Professor with the Federal University of Pará
(UFPA), where he is the ITU-T Focal Point and
the coordinator of LASSE. He is a Researcher with
CNPq, Brazil. His work focuses on machine learn-
ing and signal processing for telecommunications.

VOLUME 8, 2020 223213


