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ABSTRACT In this paper, we propose an efficient algorithm for reducing the computational complexity
of dynamic time warping (DTW) for obtaining similarity measures between time series. The DTW tech-
nique exhibits superior classification accuracy compared to other algorithms but has a limitation of high
computational complexity. To reduce the computational complexity of standard DTW, constrained DTW
and fast DTW techniques have been proposed. The constrained DTW technique reduces the computational
complexity of standard DTW by only considering limited alignments and prevent excessive alignments
between two time series, which can reduce the overall classification accuracy. However, since the searching
window for limited alignments is fixed, the computational complexity is still high when the length of
time series is long. In contrast, fast DTW has a lower classification accuracy than the constrained DTW
technique. However, fast DTW estimates the optimal alignment while considering only the alignments
within an adaptive window; as two time series increase in length, the fast DTW technique more strongly
reduces the computational complexity. Therefore, we propose a fast constrained DTW approach that applies
the optimal alignment estimation of fast DTW within the limited alignments of constrained DTW. As the
proposed fast constrained DTWoperates within a fixedwindow area of the constrained DTW,which prevents
excessive alignments, it has a classification accuracy similar to that of the constrained DTW. Also, in the
fast constrained DTW, when the length of the time series is long, a low computational complexity is
maintained by the influence of the adaptive window of the fast DTW. Experimental results on 19 UCR time
series datasets show that the proposed fast constrained DTW method achieves computational complexity
reductions of approximately 52.2% and 22.3% compared to the existing fast DTW and constrained DTW,
while maintaining almost the same classification accuracy as the constrained DTW.

INDEX TERMS Computational complexity, dynamic time warping, similarity measure, time series data.

I. INTRODUCTION
Time series data mining is utilized in numerous applica-
tions such as clustering, classification [1]–[3] fault detection
[4], [5], pattern recognition [6], and prediction [7]. In these
applications, measuring the similarity between two time
series is a frequent and important task [8]. Multilayer
perceptrons (MLPs) [9], convolutional neural networks
(CNNs) [10], hidden Markov model (HMM) [11], recurrent
neural networks (RNNs) [12], and dynamic time warping
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(DTW) [38] have been proposed for similarity measure of
time series. In time series mining, MLPs and CNNs show
high accuracy and have been used in some applications [13],
[14], but they require a large number of training data for good
performance and have a complex network including various
learning parameters [15]. Also, it cannot be applied to time
series datasets with non-uniform lengths [16]. HMM has few
parameters and is suitable for time series datasets with few
training data [17]. But, HMM is complex and has poor perfor-
mance [18], [19]. As RNNs and more specifically long short-
term memory RNNs (LSTM) [20] can store internal states
within cyclic recurrent nodes to use temporal information,
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it has been successful in traffic prediction [21], speech recog-
nition [22], [23], human trajectory prediction [24] and natural
language processing [25]. But, RNN has very different struc-
tural properties and is hard to train and time-consuming [26].
On the other hand, DTW can show high accuracy even with a
small train dataset, has a simple structure, is not dependent on
parameters, and has a relatively low computational complex-
ity compared to other algorithms [27]. Accordingly, DTW is
most frequently used in time series data mining.

To accurately measure the similarity between two time
series, the time series must be aligned on the time axis.
Dynamic time warping (DTW) measures the similarity by
warping two time series on the time axis to find the optimal
alignment among all possible alignments [28]. Accordingly,
DTW has been widely used in many fields such as gesture,
image, and speech recognition [29]–[32], intrusion detec-
tion [33], financial analysis [34], biometrics [35], andmedical
diagnosis [36]. However, standard DTW, which considers all
possible alignments, requires a quadratic time complexity
with the lengths of two time series [43].

To overcome the high complexity limitation of standard
DTW, two major approaches have been reported. The index-
ing [37] technique reduces the calling times of standard
DTW algorithm, while constrained DTW [38]–[40] and
data abstraction [41]–[43] techniques reduce the calcula-
tions of standard DTW. By using a lower bounding func-
tion, the indexing technique reduces the calling times of
standard DTW algorithm and performs DTW operation only
for the remaining time series. Therefore, it has a low time
complexity.

Two algorithms have been developed as constrained
DTW techniques that consider only limited alignments. The
Sakoe–Chiba DTW (SC-DTW) [38] performs equal limited
alignments on all data points, while incremental DTW (I-
DTW) [40] performs more alignments on recent data points
than that on previous data points. These constrained DTW
techniques can reduce the number of alignments to be con-
sidered and prevent the pathological alignment problem,
which can reduce the overall classification accuracy due to
excessive alignment between time series. Therefore, the con-
strained DTW technique has a higher classification accuracy
than the standard DTW, which suffers from the patholog-
ical alignment problem. However, with these constrained
DTW techniques, the searching window for limited align-
ments is fixed. In addition, the calculations in the constrained
DTW techniques increase quadratically with the length of
the time series. Accordingly, high computational complexity
is required for the constrained DTW techniques, when the
length of time series is long [43].

The data abstraction technique decreases the calculations
by using a data representation that has a reduced dimension-
ality of time series. Piecewise aggregate DTW [41] reduces
the dimensionality by taking the average of equally sized
segments of the time series, which also causes the loss of
some important features [44]. In contrast, blocked DTW [42]
reduces the dimensionality by finding points with consec-

utive values in the time series and then reducing them.
However, as the level of dimensionality decreases, the sim-
ilarity measure results become increasingly inaccurate [45].
In the fast DTW technique [43], the resolution of two time
series is hierarchically reduced to create multiple resolu-
tions; then, the optimal alignment is identified from the
lowest layer and used to estimate the approximate optimal
alignment of the next higher layer. In the resolutions of
fast DTW, only the alignments near the estimated optimal
alignment from the previous lower layer are considered. This
approach utilizes an adaptive window for the alignments
and reduces the number of alignments to be considered.
The fast DTW algorithm, which has a linear computational
complexity, more accurately finds the optimal alignment as
the value of the radius parameter increases, but this leads
to an increase in the calculations. Accordingly, the calcu-
lations of the fast DTW decrease only when the increase
in calculations due to the data length is greater than the
increase in calculations due to the radius parameter. More-
over, the fast DTW suffers from the pathological alignment
problem and thus has a lower classification accuracy than the
constrained DTW.

Motivated by these observations, we propose a fast con-
strained DTW that applies the optimal alignment estimation
technique of the fast DTW algorithmwithin the constraints of
the constrained DTW technique. In this manner, as the pro-
posed fast constrained DTW operates within a fixed window
area of the constrained DTW, which prevents pathological
alignment problem, it has a classification accuracy similar
to that of the constrained DTW. Also, when the increase in
calculations due to the radius parameter is greater than the
increase in calculations due to the data length, the compu-
tational complexity of the proposed fast constrained DTW,
which operates within a fixed window area of the con-
strained DTW, is lower than or similar to that of the con-
strained DTW. In the opposite situation, the computational
complexity of the proposed fast constrained DTW, which
applies the optimal alignment estimation technique of the fast
DTW, is lower than or similar to that of the fast DTW. The
remainder of this paper is organized as follows. Section II
describes related work on standard DTW, constrained DTW,
and fast DTW. In Section III, we propose the fast constrained
DTW approach. Section IV presents experimental results
comparing the proposed fast constrained DTW with con-
strained DTW and fast DTW. Lastly, conclusions are given
in Section V.

II. RELATED WORK
A. DYNAMIC TIME WARPING
As shown in Fig. 1, the DTW technique measures the similar-
ity between two time series by warping them in a nonlinear
fashion. The DTW method shows superior performance over
the Euclidean distance (ED) approach, which measures the
similarity at the exact same position on the time axis.
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FIGURE 1. Alignment of two time series (the arrows represent aligned
points). (a) Euclidean distance, (b) DTW distance.

FIGURE 2. Cost matrix.

DTW finds the optimal alignment to accurately measure
the similarity between two time series. To find the optimal
alignment, one must first calculate all distances between two
points in the two time series. In addition, the distances are
accumulated while satisfying the conditions for finding the
optimal alignment, and the similarity is then measured by
using the accumulated distances. The distances between two
points in the two time series and their accumulation are
expressed as a cost matrix and an accumulated cost matrix,
respectively. The cost matrix C(n,m) ∈ Rd1×d2 , 1 ≤ n ≤ d1, 1
≤ m ≤ d2 for the distances between two time series x and y
is given as follows:

x = (x1, x2, . . . , xd1−1, xd1 ),

y = (y1, y2, . . . , yd2−1, yd2 ) (1)

C(n,m) = (xn − ym)2 (2)

Here, d1 and d2 are the lengths of time series x and y,
respectively, and the cost matrix shown in Fig. 2 is used to
calculate the accumulated cost matrix.

In calculating the accumulated cost matrix, the optimal
warping path p, a set of index points that directly influence

the optimal alignment, is defined as follows:

p = (p1, p2, . . . , pl, . . . , pL−1, pL) (3)

pl = (nl,ml) ∈ C(n,m) for l ∈ [1,L] (4)

where L is the length of the optimal warping path. The opti-
mal warping path of the accumulated cost matrix is subject to
a boundary condition, monotonicity condition, and step size
condition.

1) Boundary condition
The starting and ending points of the optimal warping
path are as follows:

p1 = (1, 1) and pL = (d1, d2) (5)

2) Monotonicity condition
The subsequent index value of the optimal warping
path must be greater than or equal to the current index
value.

n1 ≤ n2 ≤ · · · ≤ nL−1 ≤ nL and

m1 ≤ m2 ≤ · · · ≤ mL−1 ≤ mL (6)

3) Step size condition
The difference between neighboring values in the opti-
mal warping path has a step size defined as follows:

pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}, for l ∈ [1 : L − 1]

(7)

Accumulated cost matrix A(n,m) ∈ Rd1×d2 , 1 ≤ n ≤ d1,
1 ≤ m ≤ d2 is calculated using the following formula:

A(n,m)

=



C(n,m) if n = 1 andm = 1
C(n,m)+ A(n− 1,m) if n ≥ 2 andm = 1
C(n,m)+ A(n,m− 1) if n = 1 andm ≥ 2

C(n,m)+


A(n− 1,m− 1)
A(n− 1,m)
A(n,m− 1)

if n ≥ 2 andm ≥ 2

(8)

After the accumulated cost matrix has been calculated,
the optimal warping path can be calculated by following the
smallest value of elements with the step size of the current
index from A(d1, d2) to A(1, 1), as shown in Fig. 3. In this
manner, DTW can measure the similarity between two time
series, and the DTWdistance, which represents the similarity,
is expressed as

DTW (x, y) = A(d1, d2) (9)

B. CONSTRAINED DTW
The red portions in Fig. 4 show the computational compo-
nents of the ED method and standard DTW. The computa-
tional complexity of the standard DTW is O(N 2) for two
time series of length N , which is much higher than the O(N )

VOLUME 8, 2020 222843



W. Choi et al.: Fast Constrained DTW for Similarity Measure of Time Series Data

FIGURE 3. Accumulated cost matrix with an optimal warping path.

FIGURE 4. A comparison of computational complexity. (a) ED method,
(b) DTW distance.

FIGURE 5. Accumulated cost matrix of constrained DTW. (a) SC-DTW,
(b) I-DTW.

obtained for ED. However, it is not necessary to consider all
alignments to perform DTW.

Fig. 5 shows the accumulated cost matrix for the most
representative SC-DTW and for a recently published I-DTW
based on the constrained DTW. The red portions indicate
index points that match on the time axis between the two time
series, and the blue portions indicate the window area; here,
only the alignments of a specific area are considered, rather
than all alignments. By considering only the alignments
included in this window area, the constrained DTW technique
can reduce the computational complexity and effectively
prevent the pathological alignment problem, in which the

classification accuracy is reduced due to excessive alignments
far from the red portions.

The window of the SC-DTW has the same length along the
horizontal and vertical axes. In this case, the window length
is determined by the window percentage value r ′, 0≤r ′≤1.
The window length l can be expressed as

l = [r ′ ×min(d1, d2)] (10)

Here, d1 and d2 refer to the lengths of each time series. The
window percentage value determines the number of search-
ing cells of the accumulated cost matrix, which affects the
computational complexity. Also, if the window percentage
value is too large, the accuracy may be reduced due to a
pathological alignment problem. Conversely, if the window
percentage value is too small, the accuracy may be reduced
because the optimal warping path cannot be accurately found.
Therefore, the window percentage value must be set appro-
priately. In Fig. 5(a), the most common window percentage
value, r ′ = 0.1 [46], is used, and calculations can be reduced
by approximately 80% compared to standard DTW.

For I-DTW, in which recent data points are more impor-
tant than earlier data points, the window length is gradually
increased as the index values of the two time series increase,
as shown in Fig. 5(b). The window length li of I-DTW is as
follows:

li = [r ′ ×min(ni,mi)] (11)

The lengths of each time series are ni and mi for the corre-
sponding index i.

When the length of the two time series is N , SC-DTW and
I-DTW require N (2N · r ′+ 1) and N (N · r ′+ 1) calculations,
respectively; thus, their computational complexity is lower
than that of the standard DTW, which has N 2 calculations.
However, the constrained DTW uses a fixed window and
exhibits a quadratic computational complexity; consequently,
for long time series, the computational complexity is still very
high.

C. FAST DTW
Fast DTW, which is a representative data abstraction algo-
rithm, improves the computational complexity by using mul-
tiple resolutions. As shown in Fig. 6, fast DTW generates
multiple resolutions and considers alignments within dark
and light gray window area, which changes adaptively to esti-
mate optimal alignments. This fast DTW can be implemented
through the following sequence.

1) Coarsening
Create hierarchical multiple resolutions by repeatedly
averaging two adjacent points in the time series.

2) Projection
Find the optimal warping path from the lower reso-
lution and use it to estimate the approximate optimal
warping path of the next higher resolution.

3) Refinement
Refine the optimal warping path of the current res-
olution by considering both the approximate optimal
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FIGURE 6. Accumulated cost matrix of four resolutions for the fast DTW algorithm: (a) the lowest resolution with a data length reduced by
1/8 compared to the original, (b) the resolution with a data length reduced by 1/4, (c) the resolution with a data length reduced by 1/2, (d) the
original resolution.

warping path estimated from the previous lower res-
olution and additional surrounding regions using the
radius parameter.

Here, the radius parameter determines additional regions
around the estimated optimal warping path. As the radius
parameter value increases, the optimal warping path can
be found more accurately, but this increases the number of
searching cells. Accordingly, fast DTW is more efficient for
applications with long time series [43]. Fig. 6 illustrates the
implementation process of the fast DTW algorithm. Three
additional resolutions are created from the original resolution,
which has a data length of 32 points on the horizontal and
vertical axes. In the lowest resolution, the optimal warping
path obtained by considering all alignments is shown as
the red line in Fig. 6(a). This path is used to estimate the
approximate optimal warping path in Fig. 6(b), which has a
resolution with a data length of 1/4 compared to the original
resolution. In the resolution with a data length of 1/4, the esti-
mated optimal warping path and the additional components
within the radius parameter are shown as dark gray and light
gray, respectively. The optimal warping path, which is shown
as the red line in Fig. 6(b), can be refined by performing
alignments within this window area. In Fig. 6, the radius (r)
parameter is set to 1. The projection and refinement processes
are repeated until the optimal warping path andDTWdistance
in Fig. 6(d), which has the original resolution, are calculated
through Fig. 6(c), which has a resolution with a data length
of 1/2 compared to the original.

The outputs of the DTW algorithm are the DTW distance
and optimal warping path. Assuming that only the DTW
distance is calculated without finding the optimal warping
path, the computational complexity of the fast DTW and
standard DTW is determined as follows. For the fast DTW,
calculations were performed for a total of 369 cells of 16,
44, 97, and 212 for the accumulated cost matrix from the
lowest resolution to the original resolution. A total of 2 ×
(16 + 8 + 4) = 56 calculations were performed to create
multiple resolutions with data lengths of 16, 8, and 4 points
from the original resolution. Lastly, the fast DTW performed
5, 11, 24, and 49 calculations, each corresponding to the

FIGURE 7. Accumulated cost matrix of two resolutions for the fast DTW
algorithm in the worst-case scenario.

length of the optimal warping paths from the lowest reso-
lution to the original resolution indicated by the red lines
in Fig. 6. Because we have assumed that only the DTW
distance is calculated, calculations to find the optimal warp-
ing path of the original resolution must be excluded; thus,
5 + 11 + 24 = 40 calculations were performed, with a total
of 369+ 56+ 40 = 465 calculations for the fast DTW. If the
standard DTW calculates only the DTW distance, it performs
32× 32 = 1, 024 calculations. Therefore, the fast DTW can
reduce the calculations by approximately 45.41% compared
to the standard DTW.

The fast DTW requires calculations for three components:
accumulated cost matrix, multi-resolution, and optimal warp-
ing path. The calculations of the fast DTW can be theoret-
ically calculated as follows. To simplify the calculations in
this analysis, the lengths of the two time series are assumed
to be N , and all analyses are performed for the worst-case
scenario. Fig. 7(a) presents the accumulated cost matrix for
the resolution whose data length is N/2, and the accumulated
cost matrix for the original resolution with a data length
of N is shown in Fig. 7(b). As indicated by the red line
in Fig. 7(a), when the optimal warping path lies in the regions
in which the index points of the two time series match in
the lower resolution,the alignments within the dark and light
window regions in Fig. 7(b) are performed for the next higher
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resolution. In this case, we have the worst-case scenario for
performing calculations for the largest number of cells. The
number of cells to be calculated in Fig. 7(b) is as follows.
The dark gray regions in Fig. 7(b) estimated by the optimal
warping path in Fig. 7(a) include 3 cells in a line, and a total
of 3N cells are formed by multiplying the data length N by
the 3 cells. In addition, the light gray regions within the radius
parameter, which is set to 1, include 4r cells in a line and a
total of 4Nr cells. Accordingly, the total number of cells to be
calculated for the original resolution whose data length is N
is as follows:

3N + 4Nr = N (4r + 3) (12)

The data length of each resolution is as follows:

N ,
N
2

,
N
4

,
N
8

, . . . (13)

The sum of the number of cells to be calculated in the accu-
mulated cost matrix of all resolutions is as follows:

N (4r + 3)+
N
2
(4r + 3)+

N
4
(4r + 3)+

N
8
(4r + 3)+ · · ·

(14)

Based on the infinite geometrical series, (14) is summarized
as follows:

N (4r + 3)(1+
1
2
+

1
22
+

1
23
+ · · · )

= N (4r + 3)(1/(1−
1
2
))

= 2N (4r + 3) (15)

To create two time series with length N
2 that form the previous

lower resolution from two time series of length N that form
the original resolution, N2 calculations are required for each
time series. Accordingly, the calculations required to form all
resolutions are as follows:

2(
N
2
+
N
4
+
N
8
+

N
16
+ · · · )

= 2N (
1
2
+

1
22
+

1
23
+

1
24
+ · · · )

= 2N (
1
2
/(1−

1
2
))

= 2N (16)

Lastly, the calculations required to find the optimal warping
path are 2N , which is the sum of the lengths of two time series
in the worst-case scenario. The calculations required to find
the optimal warping paths of all resolutions are as follows:

2N + N +
N
2
+
N
4
+ · · ·

= 2N (1+
1
2
+

1
22
+

1
23
+ · · · )

= 2N (1/(1−
1
2
))

= 4N (17)

The sum of (15), (16), and (17) represents the computational
complexity of fast DTW.

Fast DTW computational complexity = N (8r + 12) (18)

Based on this theoretical analysis of computational complex-
ity, in the worst-case situation, the fast DTW has a linear
computational complexity based on the data length N , which
can greatly reduce the calculations if the length of time series
is sufficiently long compared to 8r + 12. However, when the
data length is smaller than 8r + 12, the fast DTW is unlikely
to achieve a reduction in calculations. In addition, fast DTW
suffers from the pathological alignment problem and thus has
a lower classification accuracy than the constrained DTW.

III. PROPOSED FAST CONSTRAINED DTW
The constrained DTW reduces calculations by performing
alignments only within a limited window area with a spe-
cific shape and can increase the classification accuracy by
preventing the pathological alignment problem; however, this
approach utilizes a fixed window area and exhibits quadratic
computational complexity. In contrast, the fast DTW uses
multiple resolutions to estimate the approximate optimal
warping path. This fast DTW consider only the alignments
within an adaptive window and has a linear computational
complexity. However, a decrease in calculations can be
expected only if the increase in calculations due to the length
of the two time series is greater than the increase in cal-
culations due to the parameter r . Moreover, the fast DTW
has a pathological alignment problem and thus the classifi-
cation accuracy of the fast DTW is lower than that of the
constrained DTW. Accordingly, in this paper, we propose a
fast constrained DTW method in which the optimal warping
path estimation technique of fast DTW is applied within the
limited window area of the constrained DTW.

A. FAST CONSTRAINED DTW
The proposed fast constrained DTW is implemented through
coarsening, projection, and refinement of the fast DTW
within the window area of the applied constrained DTW. The
implementation process of fast SC-DTW, which is applied
to the most representative SC-DTW algorithm of the con-
strained DTW techniques, is as follows. In Fig. 8, the window
percentage value r ′ of SC-DTW is set as 0.2, and the parame-
ter r , indicating the radius of the additional region around the
estimated optimal warping path, is set to 1. In Fig. 8, multiple
resolutions with data lengths of 1/4 (a) and 1/2 (b) com-
pared to the original resolution (c) are created by coarsening
from the original resolution (c). For the lower resolution
shown in Fig. 8(a), the optimal warping path is found after
alignments are performed within the limited window area of
SC-DTW. This path is used to estimate the approximate
optimal warping path of the next higher resolution with a
data length of 1/2 compared to the original. For the resolution
with a data length of 1/2 shown in Fig. 8(b), the area used for
the alignments is shown in the dark and light gray regions
corresponding to the approximate optimal warping path and
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FIGURE 8. Accumulated cost matrix of three resolutions for the fast
SC-DTW algorithm: (a) the lowest resolution with a data length
of 1/4 compared to the original, (b) the resolution with a data length
of 1/2 compared to the original, (c) the original resolution.

the additional areas, respectively. After alignments are per-
formed in this area, the optimal warping path of Fig. 8(b) is
found. Finally, the optimal warping path and DTW distance
of the original resolution are calculated using the estimated
optimal warping path of the resolution with a data length
of 1/2 compared to the original.

For the proposed fast SC-DTW and the existing SC-DTW,
the calculations for only the DTW distance are as follows.
In the fast SC-DTW, calculations are performed for a total
of 44 + 122 + 264 = 430 cells in the accumulated cost
matrix from the lowest resolution shown in Fig. 8(a) to
the original resolution in Fig. 8(c). In addition, a total of
2 × (10 + 20) = 60 calculations are performed to create
multiple resolutions with data lengths of 10 and 20 points.
Lastly, the lengths of the optimal warping paths indicated by
the red lines in Fig. 8(a) and (b) are 13 and 26, respectively.
Therefore, a total of 39 calculations are computed for the
optimal warping paths, with a total calculation number of
430 + 60 + 39 = 529 for the proposed fast SC-DTW.
Meanwhile, the total number of calculations in the SC-DTW
window area which is shown in blue lines of Fig. 8(c) is 608.
As a result, the fast SC-DTW can reduce the calculations
by approximately 12.99% compared to the SC-DTW in the
situation for Fig. 8.

Unlike the existing fast DTW, which finds the optimal
warping path while considering all areas of the accumulated
cost matrix, the proposed fast SC-DTW finds the optimal
warping path only within the window area of the SC-DTW.
Despite this difference, when the optimal warping path is
located near index points that match on the time axis between
the two time series, the fast SC-DTW has a computational
complexity similar to that of the fast DTW. However, when
the optimal warping path is located far from index points that
match on the time axis between the two time series, the fast
SC-DTW forms the optimal warping path at the boundary
regions of the SC-DTW window. In this case, the fast SC-
DTW has a lower computational complexity because the
optimal warping path is shorter than that of the fast DTW.
In addition, fast DTW may cause pathological alignment
problems due to excessive alignment operations, which may
reduce the overall classification accuracy. In contrast, the fast
SC-DTW forms the optimal warping path within the window
area of SC-DTW, thus preventing the pathological alignment
problem and increasing the overall classification accuracy.

TABLE 1. Information for UCR time series datasets.

The pseudo-code for the fast SC-DTW is shown in
Algorithm 1. The coarsening process corresponds to
lines 3–15. Lines 4–13 dictate the process of determining
whether lower resolutions should be generated by considering
the additional calculations. Lines 14 and 15 generate an
additional resolution by averaging two adjacent points in
the two time series at the current lowest resolution. In lines
16–19, projection and refinement processes are repeated to
calculate from the lowest resolution to the original resolution.
The both lines 17 and 19 measure the similarity and find the
optimal warping path. The lowest resolution that considers
all of the accumulated cost matrix cells within the window
area of the SC-DTW is calculated by line 17. In line 19,
The remaining resolutions are calculated by considering the
accumulated cost matrix cells of the estimated approximate
optimal warping path and the additional surrounding areas.
The pseudo-code of another fast constrained DTW to which
other constrained DTW techniques are applied can be imple-
mented by modifying lines 4, 7, 8, 17 and 19, in Algorithm 1.

IV. PERFORMANCE EVALUATION RESULTS
In this section, we compare the classification accuracy and
time complexity of the proposed fast constrained DTW
algorithm with those of the existing constrained DTW and
fast DTW using various time series datasets provided by
UCR [47] and synthetic datasets comprising a single period
of a sine wave, as in [43].

A. CLASSIFICATION ACCURACY COMPARISON
For the experiment, the 19 time series datasets presented
in Table 1 were used. The datasets consist of 2–50 class num-
bers, 24–1,000 train sizes, 28–6,174 test sizes, and lengths
of 60–637 and include domains such as medicine, robotics,
and handwriting recognition. The 19 datasets are ordered
according to length for analysis of the experimental results.

Time series datasets were classified using the nearest
neighbor technique, which is primarily used in similarity
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Algorithm 1 [Distance,Optimal_Warping_Path] =

Fast_SC_DTW(x, y, r, r ′)
Input:
x, y - Time series data
r(radius) - Surrounding radius of estimated optimal warping
path
r ′(radius) - Window percentage value
Output:
Distance - the result of similarity measure between x and y
Optimal_Warping_Path - optimal warping path between x
and y
1: Length_x = |x|;Length_y = |y|;
2: Shrunk_x = x; Shrunk_y = y;
3: while TRUE

// For searched cells of accumulated cost matrix
4: CalCLR=(2 ∗ Length_x ∗ r ′ + 1) ∗ Length_y;

// The length of the additional lower resolution
5: Length_x = Length_x div 2;
6: Length_y = Length_y div 2;

// For searched cells of accumulated cost matrix
7: CalALR1=(2 ∗ Length_x ∗ r ′ + 1) ∗ Length_y;

// For shrinking resolutions
8: CalALR2=Length_x + Length_y;

// For finding optimal warping path at the worst-case
9: CalALR3=Length_x + Length_y;

// For searched cells of accumulated cost matrix
at the worst-case

10: CalALR4=(4 ∗ r + 3) ∗ Length_y;
11: CalALR=CalALR1+CalALR2+CalALR3+CalALR4;

// Decide whether to make additional lower resolution
or not.

12: if CalALR>CalCLR
13: break;

// Create an additional resolution
14: Shrunk_x = [Shrink_Half (); Shrunk_x];
15: Shrunk_y = [Shrink_Half (); Shrunk_y];
16: [n, none] = |Shrunk_x|;

// Measure the similarity and
find the optimal warping path

// For lowest resolution
17: [Optimal_Warping_Path,Distance] =

Fast_SC_DTWFull(Shrunk_x, Shrunk_y);
// For other resolutions except lowest resolution

18: for i = 2 to ndo
19: [Optimal_Warping_Path,Distance] =

Fast_SC_DTWPath(Shrunk_x, Shrunk_y);

measurements, including the DTW algorithm [48]. The test
and train datasets of the 19 time series datasets were used
as query sequences and sub-sequences, respectively. When
a query sequence is utilized as the input, the similarities
between the two time series of a query sequence and all
sub-sequences are measured using algorithms given in the
experiment, and the class information of the sub-sequence

TABLE 2. Classification accuracy of ED, standard DTW, SC-DTW and I-DTW.

with the smallest similarity measure value is output as the
classification result for each algorithm.

SC-DTW, I-DTW, and fast DTW, which all reduce the
computational complexity of the standard DTW, were imple-
mented for classification performance comparison, and the
standard DTWwas also implemented. The parameter r ′, indi-
cating the window percentage value of SC-DTW and I-DTW,
was set as 0.1, which is a commonly used value [46], and
the parameter b, indicating the starting length of the I-DTW
window, was set to 0 as in [40]. In addition, {0, 1, . . . , 9, 10}
was used as the parameter r of the fast DTW, indicating
the additional regions around the estimated optimal warping
path. The proposed fast constrained DTW was implemented
as fast SC-DTW and fast I-DTW by applying SC-DTW and
I-DTW as the constrained DTW techniques, with the param-
eters r ′ and b of the constrained DTW techniques and the
parameter r of the fast DTW set to the same values used
in the previous algorithms. Additionally, the ED method,
which is the traditional technique for obtaining similarity
measures, was also implemented. If the indexing technique
is applied to all the DTW algorithms used in this experiment,
computational complexity will be further reduced. However,
since the indexing technique reduces the calling times of the
DTW algorithm, the amount of reduction is the same for all
the DTW algorithms. Accordingly, the indexing technique is
not applied for a more clear comparison in our experiment.

In Tables 2 and 3, the results of the classification accuracy
produced by the seven algorithms are shown, where Avg
indicates the average of the classification accuracy results
for all datasets. As shown in Table 2, all implemented DTW
algorithms that measure the similarity using an alignment
process between the time series achieved a higher over-
all classification accuracy than the traditional ED method.
As two constrained DTW techniques that effectively prevent
the pathological alignment problem, the I-DTW and SC-
DTW methods have a higher overall classification accuracy
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than the standard DTW. As shown in Table 3, the average
classification accuracies of the fast DTW, fast SC-DTW, and
fast I-DTW approach those of the standard DTW, SC-DTW,
and I-DTW, respectively, as the parameter r increases.
To analyze the experimental results, the classification accu-

racy of the proposed fast SC-DTW is compared with those
of the existing fast DTW and SC-DTW in Figs. 9 and 10.
Similarly, the classification accuracy of the proposed fast I-
DTW is compared with those of the fast DTW and I-DTW
in Figs. 11 and 12. The red dots in Fig. 9 represent the
classification accuracies of the two algorithms for 19 datasets.
Two regions are formed based on the blue line, indicating
where the horizontal and vertical axes match. If there are
more dots in a particular region, the algorithm has a higher
overall classification accuracy for the 19 datasets. Comparing
the classification accuracy of the fast SC-DTWand fast DTW,
Fig. 9 shows that the red dots in the region of the proposed fast
SC-DTW are denser than in the region of the fast DTW for
all radius values. This trend indicates that the proposed fast
SC-DTW for these 19 datasets has a higher overall
classification accuracy than the fast DTW. Fig. 10 compares
the classification accuracy of the fast SC-DTW and SC-
DTW. For a radius of 0, 1, or 2, there are differences in
the overall classification accuracy between the two algo-
rithms; however, when the radius is 3 or more, the red
dots are primarily located above the blue line, implying
that the overall classification accuracy of the two algo-
rithms is similar for the 19 datasets. From these experi-
mental results, it is confirmed that the fast SC-DTW oper-
ating within the window area of the SC-DTW effectively
prevents the pathological alignment problem, similar to the
SC-DTW. In addition, as shown in Figs. 11 and 12, the fast
I-DTWhas higher overall classification accuracy than the fast
DTW for all radius values, and when the radius is 3 or more,
this method has an overall classification accuracy similar to
that of the I-DTW.

B. COMPUTATIONAL COMPLEXITY COMPARISON
In this Section, we analyze the computational complexity
of the proposed and existing DTW algorithms in the same
experimental environment as Section IV-A. Tables 4 and 6
shows the total number of calculations used to classify all
test datasets for each of the 19 datasets in Table 1. The num-
ber of calculations includes three components: accumulated
cost matrix, optimal warping path, and multi-resolutions.
Table 4 presents results for ED, standard DTW, SC-DTW, and
I-DTW, while Table 6 shows results for the fast DTW, fast
SC-DTW, and fast I-DTW algorithms. Tables 5 and 7 show
the comparison results for the rate (RNC ) of the number of
calculations between each algorithm and standard DTW as
described in (19), where Avg indicates the average of RNC for
each algorithm in the 19 datasets.

RNC =
NCanothrer algorithm
NCstandard DTW

× 100 (19)

In (19), NCstandard DTW represents the total number of calcu-
lations for the standard DTW, and NCanother algorithm denotes
the total number of calculations for another implemented
algorithms. As shown by the classification accuracy com-
parison, the proposed fast SC-DTW and fast I-DTW have
classification accuracies similar to those of SC-DTW and I-
DTWwhen the parameter r is 3 or more. Therefore, when the
parameter r is 3, the proposed fast SC-DTW, which has an
average RNC of 11.4%, reduces the calculations by approx-
imately 30.1% and 40.3% compared with the fast DTW
and SC-DTW, which have average RNC values of 16.3%
and 19.1%. In addition, compared to the fast DTW and
I-DTW, which have average RNC values of 16.3% and 10.1%,
the fast I-DTW,with an averageRNC of 7.8%, reduces the cal-
culations by approximately 52.2% and 22.9%, respectively.

In Fig. 13, the RNC of the proposed fast SC-DTW for
19 datasets is compared with those of the existing fast DTW
and SC-DTW according to the radius; in addition, the pro-
posed fast I-DTW is also compared with the existing fast
DTW and I-DTW. The SC-DTW and I-DTW, which are not
influenced by the parameter r , have a constant RNC for all
radius values. The longer the data length and the smaller the
radius, the lower the RNC of the fast DTW. Accordingly, for
the fast DTW shown in Fig. 13, the RNC of the 19th dataset is
lower than that of the first dataset, and (a) has a lower overall
RNC than that of (f). The first dataset in Fig. 13(f), which is
the shortest among the 19 datasets, has an RNC of 100%, indi-
cating that when the radius is 10, the calculations in the first
dataset are the same as those in the standard DTW. Therefore,
when the radius is 10 and the data length is less than 60, which
is the length of the first dataset, or when the data length is
60 and the radius is 10 or more, the fast DTW does not reduce
the computational complexity. In contrast, for all datasets and
radius values, the proposed fast SC-DTW has an RNC value
similar to or lower than that of the algorithm (fast DTW or
SC-DTW) with the lower RNC . Similarly, the RNC of the fast
I-DTW is similar to or lower than that of the algorithm (fast
DTW or I-DTW) with the lower RNC .

C. TIME COMPLEXITY COMPARISON
In this experiment, we compared the time complexity by
measuring the execution time of the implemented algorithms,
which is weakly affected by the data shape but is greatly
affected by the data length. Accordingly, synthetic datasets
comprising a single period of a sine wave with Gaussian
noise were used as the experimental datasets [43]. The data
lengths vary from 10 to 20,000. The standard deviation of the
Gaussian noise is 0.01, and the execution time is measured in
milliseconds.

In this experiment, the standard DTW and the existing
fast DTW, SC-DTW, and I-DTW were used. The proposed
fast constrained DTW algorithm uses the fast SC-DTW and
fast I-DTW applying the SC-DTW and I-DTW. In the imple-
mented algorithms, all parameters are the same as those for
the experiment in Section IV-A except for the parameter
r , which was set to {0, 5, 10, 100}. This experiment was
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TABLE 3. Classification accuracy of fast DTW, fast SC-DTW and fast I-DTW according to radius.

implemented using MATLAB R2019b using a 3.8-GHz Intel
Core i7-10700K CPU with RAM of 32 GB and 64-bit Win-
dows 10 Pro.

Fig. 14 shows the execution time of each algorithm for a
data length of 10–1,000. The execution time of the standard
DTW increases quadratically according to the data length.

The SC-DTW, I-DTW, and fast DTW with radius of 0, 5,
and 10 are faster than the standard DTW. However, for a data
length below 500, the fast DTW with a radius of 100 has
an execution time similar to that of the standard DTW.
In contrast, the proposed fast SC-DTW has a lower or similar
execution time compared with the fast DTW and SC-DTW,
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FIGURE 9. Comparison of classification accuracy according to radius between fast SC-DTW and fast DTW. (radius∈{0,1,2,3,5,10} = {(a),(b), . . .,(f)}).

FIGURE 10. Comparison of classification accuracy according to radius between fast SC-DTW and SC-DTW. (radius∈{0,1,2,3,5,10} = {(a),(b), . . .,(f)}).
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FIGURE 11. Comparison of classification accuracy according to radius between fast I-DTW and fast DTW. (radius∈{0,1,2,3,5,10} = {(a),(b), . . .,(f)}).

FIGURE 12. Comparison of classification accuracy according to radius between fast I-DTW and I-DTW. (radius∈{0,1,2,3,5,10} = {(a),(b), . . .,(f)}).

and the proposed fast I-DTW is faster than or similar to the
fast DTW and I-DTW.

For dataset with short data lengths, as the radius increases,
the execution time of the existing fast DTW approaches that
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FIGURE 13. Comparison of RNC of fast DTW, SC-DTW, fast SC-DTW, I-DTW and fast I-DTW according to radius. (radius∈{0,1,2,3,5,10} = {(a),(b),
. . .,(f)}).

FIGURE 14. Execution time for standard DTW, fast DTW, SC-DTW, fast SC-DTW, I-DTW and fast I-DTW
for short time series. (radius∈{0,5,10,100} = {(a),(b),(c),(d)}).
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FIGURE 15. Execution time for standard DTW, fast DTW, SC-DTW, fast SC-DTW, I-DTW and fast I-DTW
for long time series. (radius∈{0,5,10,100} = {(a),(b),(c),(d)}).

TABLE 4. Number of calculations of ED, standard DTW, SC-DTW and
I-DTW.

of the standardDTWwhile the execution time of the proposed
fast SC-DTW and fast I-DTW approaches those of the SC-
DTW and I-DTW, respectively. In other words, when the
increase in execution time due to the data length is less than
the increase in execution time due to the radius, such as when
the radius is 100 and the data length is 500 or less, the existing
fast DTW does not improve the execution time over the
standard DTW as shown in Fig. 14(d). However, the proposed
fast SC-DTW and fast I-DTW improve the execution time,
similar to the SC-DTW and I-DTW, respectively.

TABLE 5. Rate of the number of calculations of ED, standard DTW,
SC-DTW and I-DTW compared to standard DTW.

For data lengths of 10–20,000, the execution time of each
algorithm is shown in Fig. 15. The standard DTW shows an
exponential response to the data length, and SC-DTW and I-
DTW show flatter exponential curves compared to that of the
standard DTW. In contrast, the fast DTW, fast SC-DTW, and
fast I-DTW show straight lines for all radius values.

In this experiment on dataset with long data lengths,
the existing fast DTW shows a linear trend in execution time,
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TABLE 6. Number of calculations of fast DTW, fast SC-DTW and fast I-DTW according to radius.

with the slope of the term including the radius of (18), and
the execution time of the proposed fast SC-DTW and fast
I-DTW is lower than or similar to that of the fast DTW.
In contrast, the execution time of the existing SC-DTW and
I-DTW increases quadratically according to the data length.
For cases in which the increase in execution time due to
the data length is significantly greater than the increase in
execution time due to the radius parameter, the proposed fast
SC-DTWand fast I-DTW improve the execution time, similar

to the fast DTW; however, the SC-DTW and I-DTW require
higher execution times.

For dataset with short data lengths, when the increase
in execution time due to the dataset length is smaller than
the increase in execution time due to the radius parameter,
the execution time of the fast DTW is not superior to that
of the standard DTW. For a dataset with long data lengths,
the SC-DTW and I-DTW show a quadratic execution time.
For the both datasets with short and long data lengths, the exe-
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TABLE 7. Rate of the number of calculations of fast DTW, fast SC-DTW and fast I-DTW compared to standard DTW according to radius.

cution time of the proposed fast SC-DTW is always lower
than or similar to that of the algorithm (fast DTW or SC-
DTW)with the lower execution time. Similarly, the execution
time of the fast I-DTW is lower than or similar to that of the
algorithm (fast DTW or I-DTW) with the lower execution
time.

V. CONCLUSION
For obtaining a similarity measure between two time series,
one of the most efficient approaches is DTW, which mea-
sures the similarity by finding the optimal warping path
of all alignments for the two time series. However, DTW
exhibits a quadratic computational complexity depending on
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the length of the two time series. Aiming to reduce the
computational complexity of DTW, the constrained DTW
technique introduces global constraints using a window with
a specific shape, while the data abstraction technique uses a
data representation with a reduced dimensionality for the two
time series.

Constrained DTW techniques include SC-DTW, which
always forms a window of the same length based on index
points that match on the time axis between the two time
series, and I-DTW, which gradually increases the window
length as the index value increases for the two time series.
These constrained DTW techniques reduce the number of
searched cells and achieve a higher classification accuracy
than the standard DTW by preventing the pathological align-
ment problem. However, the constrained DTW uses a fixed
window and presents a quadratic computational complexity.

The fast DTW technique utilizes multiple resolutions to
estimate the approximate optimal warping path and then
reduces the computational complexity by calculating only the
area near the estimated optimal warping path. This fast DTW
technique considers only the alignments within an adaptive
window and has a linear computational complexity. However,
if the increase in calculations due to the radius parameter
is greater than the increase in calculations due to the data
length, the fast DTW technique is not expected to reduce the
calculations and will also have a lower overall classification
accuracy than the constrained DTW techniques.

Accordingly, in this paper, we proposed a fast constrained
DTW that applies an optimal warping path estimationmethod
using the multi-resolution of the fast DTW within a window
with a specific shape based on the constrained DTW tech-
nique. The time complexity of the proposed fast constrained
DTW is linear and lower than or similar to those of the fast
DTW and constrained DTW techniques, while achieving a
classification accuracy similar to that of the constrainedDTW
technique.

We conducted experiments using 19 UCR time series
datasets and synthetic datasets comprising a single period
of a sine wave with various data lengths. These experiments
demonstrated that the proposed fast I-DTW, in which the I-
DTW window of constrained DTW techniques is applied,
reduces the calculations by approximately 52.2% and 22.3%
comparedwith the I-DTWand fast DTW in theUCRdatasets.
In addition, the classification accuracy of the proposed fast I-
DTW is similar to that of the I-DTW, and its execution time
exhibits linear behavior and is lower than or similar to those
of the I-DTW and fast DTW for all sine wave datasets.
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