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ABSTRACT As a new assistant navigation technology using geophysical field for navigation, geomagnetic
matching navigation can effectively alleviate the problems such as the unavailability of satellite and the
easy divergence of position data of inertial navigation system in the process of navigation. It can also
carry out real-time assistant navigation with high concealment, all-around area and all-weather. According
to the principle of geomagnetic matching and the geomagnetic affine model, considering that the basic
particle swarm optimization algorithm is easy to fall into local extremum, this paper introduces particle
swarm optimization geomagnetic matching algorithm based on simulated annealing(SAPSO) for limitations
of traditional matching algorithm. What’s more, the SAPSO is improved from three parts: constraints,
parameters and function of fitness. Finally, the simulation analysis is carried out from five aspects to verify
the effectiveness and accuracy of the improved SAPSO.

INDEX TERMS Geomagnetic matching, particle swarm optimization, simulated annealing.

I. INTRODUCTION
As a multi-disciplinary engineering technology, navigation
and positioning technology is essential in many fields, such
as aviation, navigation and land. From the early exploration
of the earth to the current exploration of the earth and space,
the demand for improving the accuracy of navigation is
growing day by day. Some disadvantages of the navigation
and positioning technology which was put into use in the
early stage are gradually revealed. In view of these disadvan-
tages, geomagnetic matching navigation has been paid more
attention.

The latest research shows that due to large-scale changes
and local disturbances, measurement of magnetic field
exhibits its uniqueness in location.These observable changes
in the earth’s magnetic field can provide unique information
for navigation. As a ubiquitous physical field, the geomag-
netic field has the following advantages: i) As a vector field,
the geomagnetic field has very rich features related to geo-
graphic location, such as horizontal and vertical magnetic
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field strength, magnetic inclination, magnetic declination,
total magnetic field strength and so on [1]. Various feature
information increases the flexibility, diversity and reliability
of the navigation scheme. ii) The geomagnetic field is the
basic physical field inherent to the earth. It has strong penetra-
bility and concealment. It is widely distributed in the ocean,
land, and near-Earth space, and will not be subject to external
interference and restrictions of the carrier’s environment.
iii) The error of geomagnetic matching navigation will not
accumulate over time, which makes up for the accumulation
of errors of inertial navigation system (INS) over time [2]. It is
very suitable for assisting INS for navigation and positioning.
The magnetic sensor for geomagnetic measurement can be
widely used for the characteristics of low power consumption,
small size and low cost. The geomagnetic matching naviga-
tion has the advantages of high concealment, all-area, all-
weather, real-time navigation and so on. To a certain extent,
using the geomagnetic matching navigation to assist INS
to confirm the information of position and posture of the
carrier can make up for the shortcomings of other auxiliary
navigation methods, which realizes the long-time navigation
and positioning in the modern complex battlefield.
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As a multi-disciplinary technology, geomagnetic match-
ing and positioning technology mainly include four aspects:
geomagnetic characteristics research, geomagnetic matching
modeling, geomagnetic matching strategy and geomagnetic
database retrieval [3]. The basic principle of geomagnetic
matching navigation: Taking the position information pro-
vided by INS as a reference, the real-time measured geomag-
netic sequence is registered with the existing geomagnetic
database through various strategies and algorithms, and then
the accumulated system error of INS over time is constantly
corrected to achieve the autonomous navigation. It is called
geomagnetic matching to search the geomagnetic sequence
matching the measured geomagnetic data in the geomagnetic
map formed by the geomagnetic database. The efficiency
and accuracy of geomagnetic matching are largely affected
by the search speed and matching accuracy of geomagnetic
matching strategy, so geomagnetic matching strategy is the
core of geomagnetic matching [4].

Like the terrain and gravity navigation algorithm based on
the reference map, the geomagnetic matching algorithm also
uses the geomagnetic map as a reference for auxiliary nav-
igation [5]. Considering the differences in data processing,
matching algorithms can be divided into batch processing
algorithm and sequential algorithm. Although the update fre-
quency of the batch algorithm is not as fast as the sequential
algorithm, in actual navigation, the matching error of the
batch processing algorithm is bounded, more robust, and less
affected by the constant error component. Magnetic con-
tour matching (MAGCOM), Iterative Closest Contour Point
(ICCP) [6], etc. are all common geomagnetic matching algo-
rithms in batch processing algorithms. However, MAGCOM
can only perform geomagnetic matching for pure translation
models, and is more sensitive to heading angle errors. ICCP
does not have global optimality and can only converge to a
local minimum. When the initial position error is large, its
matching accuracy will be greatly reduced [7]. As an auxil-
iary positioning technology that needs to be put into practical
application, geomagnetic matching positioning requires high
efficiency and real-time performance. Traditional geomag-
netic matching algorithms cannot meet the requirements of
real-time navigation update, and the resulting time delay will
produce an error larger than the matching error [8]. Based
on the principle of batch processing and considering the
high positioning accuracy of INS in a short time, this paper
proposes an improved particle swarm optimization search
strategy based on simulated annealing(SAPSO) combined
with the research of geomagnetic characteristics. As a newly
optimized algorithm in batch processing algorithm, it has
simple implementation principle and fast convergence speed,
which guarantees the accuracy and efficiency of geomagnetic
matching real-time auxiliary navigation. The main contribu-
tions of this research are as follows:

1) Aiming at the limitation of the traditional geomagnetic
matching algorithm to the initial position and heading
angle error, based on the geomagnetic affine model,
particle swarm optimization geomagnetic matching

algorithm improved by the simulated annealing algo-
rithm is introduced.

2) For the randomness of the algorithm, the parameter
initialization method is improved through the isoline
domain constraints.

3) According to the actual geomagnetic matching naviga-
tion requirements, the fitness function of the algorithm
is redefined, and the adaptive correction of the param-
eters is added.

4) The simulation analysis was carried out with the mea-
sured geomagnetic data in Nanjing, which verified the
effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows.
Section 2 provides details of the principle and model of
geomagnetic matching. In Section 3, the working principle
of PSO and SA is described in the beginning, and we present
the combination of PSO with SA. Then three improvements
were implemented on SAPSO. Section 4 demonstrates the
simulation results of the proposed algorithm, and the initial
PSO algorithm and traditional ICCP algorithm are contrastive
experiments to validate the performance of the proposed
algorithm. Section 5 concludes this paper.

II. PRINCIPLE AND MODEL OF GEOMAGNETIC
MATCHING
The establishment of the model of geomagnetic matching is
the basis of the algorithm of geomagnetic matching. Whether
the matching model fully considers all kinds of error factors
will greatly affect the whole matching process and the accu-
racy of matching results.

A. PRINCIPLE OF GEOMAGNETIC MATCHING
As a data association problem, geomagnetic matching is
actually a more complex data search. Suppose X is a data
sequence in the geomagnetic database, Y is the sequence
about geomagnetic value obtained by the real-time measure-
ment of the magnetic sensor. If there are nc tracks to be
matched in the matching area, there are sets

C =
{
Xj | j = 1, 2, . . . , nc

}
. (1)

The set of nc positions corresponding to each track to be
matched in C is expressed as

P =
{
pj | j = 1, 2, . . . , nc

}
. (2)

In an ideal case, there must be a point closest to the real
position in set P, that is, the best matching point pb. If the
association algorithm isDj(X ,Y ), then the matching position
pm can be detected, which meets the following requirement.

m = arg
j

{
max

(
D
(
Xj,Y

))
, j = 1, 2, . . . , nc

}
. (3)

where m represents the geomagnetic serial number corre-
sponding to the matching position with the highest correla-
tion with the real position. The main goal of the matching
algorithm is that pb and pm are consistent, which means that
the match is successful.
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B. MODEL OF GEOMAGNETIC MATCHING
The process of geomagnetic matching can be described by
the following two equations [9].

Track information

si = f (sr +1p0)+ w. (4)

Measurement information

zk = hk (sr )+ ηk . (5)

where si represents the output trajectory of INS, f (·) repre-
sents track transformation relationship, sr represents the real
track, 1p0 indicates the initial position error, w represents
the measurement noise in the matching process, zk repre-
sents real-time information of geomagnetic characteristics
measured by magnetic sensors, h(·) represents map reading
function, ηk represents the noise and error of geomagnetic
measurement. The so-called geomagnetic matching, that is,
according to the information contained in the indicating
track si of INS and the measured geomagnetic anomaly
sequence zk , calculate the track transformation relationship
f (·) and the initial positioning error 1p0. It is essentially a
spatial transformation.

Under the influence of heading error and speed error, there
is a large deformation between the real track and the mea-
sured track in the actual system, as shown in Fig.1. At this
time, the track transformation function in (4) belongs to the
category of elastic transformation, rather than simple rigid
transformation. Therefore, the elastic transformation needs
to be simplified, transformed into rigid transformation and
compensated. The dashed lines in Fig.1 represent a series
of to-be-matched tracks obtained by translation of the track
indicated by INS. The so-called geomagnetic matching is to
traverse all the tracks to be matched, search the geomagnetic
database to get a series of geomagnetic reference sequences,
and select the one with the smallest difference from the
measured geomagnetic sequence. The matching track corre-
sponding to the geomagnetic reference sequence is the best
matching track obtained by geomagnetic matching.

FIGURE 1. Geomagnetic matching (considering deformation).

The transformation relationship between the track of INS
and the real track can be obtained by simple curve affine [10].
The initial position error, velocity error, and track yaw corre-
spond to the three transformations of translation, zoom, and
rotation, respectively [9]. The expression is[

xINS
yINS

]
= α

[
cos θ sin θ
− sin θ cos θ

] [
xr
yr

]
+

[
1x
1y

]
. (6)

where α is the scaling factor, θ is the yaw caused by the
velocity error,1x and1y are the translation factors. Through
a variety of search strategies to find the four appropriate
transformation factors, and then estimate the location of the
carrier, that is, one-dimensional matching.

III. GEOMAGNETIC MATCHING ALGORITHM
A. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization(PSO) is a kind of parallel
stochastic optimization algorithm based on the idea of iter-
ation, which simulates the aggregation of fish and the for-
aging of birds [11]. Its main idea is: a particle represents
a possible solution of the optimization problem, and each
potential solution of the optimization problem corresponds to
a particle with the best state in the space [12]. Influenced by
the memory of particles themselves, they have thinking and
cognitive behaviors. Under the influence of particle swarm,
there is information sharing and cooperation among particles.
Therefore, the particle swarm algorithm has a uniquememory
ability, which can dynamically track the existing state of the
particles, and then change the search method according to the
current state.

The attributes of each particle include position, speed and
fitness function. Suppose a group X = (x1, x2, x3, . . . , xN )
composed of N particles moves at a certain speed in the
D-dimensional search space, where the position of the ith
particle at time t is x ti = (x ti1, x

t
i2, x

t
i3, . . . , x

t
iD)

T , the speed
is expressed as vti = (vti1, v

t
i2, v

t
i3, . . . , v

t
iD)

T , and the fitness
function is fxti . The smallest value of fitness function cor-
responds to the searched optimal solution. The individual
extreme value is denoted as Pi = (pi1, pi2, pi3, . . . , piD)T ,
and the global extreme value, that is, the global optimal
position is denoted as Pg = (pg1, pg2, pg3, . . . , pgD)T ,
where i = 1, 2, . . . ,N , and D is the dimension of the vector
represented by the particle. In each iteration of the search
process, the particle continuously adjusts its position and
speed according to the individual optimal position and global
optimal position at the previous moment [13].

vt+1id = ωv
t
id + c1r1(pid − x

t
id )+ c2r2(pgd − x

t
id ). (7)

x t+1id = x tid + v
t
id . (8)

In the formula, i = 1, 2, . . . ,N and d = 1, 2, . . . ,D. ω
represents the weight of inertia. The learning factors c1 and
c2 are non-negative constants. r1 and r2 are random numbers
and obey the uniform distribution on [0, 1]. The speed vid ∈
[−vmax, vmax]. The maximum speed vmax is a constant.

In formula (7), Pid and Pgd represent the individual and
global optimal positions of the particle swarm, respectively.
c1 and c2 represent the weight of the statistical acceleration
term that pushes each particle to the individual best position
and global best position. A lower value allows the particles
to hover outside the target area before being pulled back,
and a higher value will cause the particles to suddenly rush
toward or over the target area. When c1 = 0, the particle loses
the cognition of its ‘‘self-experience’’ and the model becomes
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a social-only model, which is called global PSO algorithm.
In this case, the particles only can expand the search space
and have a faster convergence rate. However, due to the lack
of local search, it is easier to fall into the local optimum
when dealing with complex problems. When c2 = 0, there
is no social information transmission between particles, and
the model becomes a cognition-only model, which is called
local PSO algorithm. In this case, there is no information
exchange between individual particles. The entire group is
equivalent to a blind random search of multiple particles. And
the convergence speed is slow, so the possibility of obtaining
the optimal solution is small. Suganthan’s experiment [14]
shows that a better solution can be obtained when c1 and c2
are constants, usually set c1 = c2 = 2, but not necessarily
equal to 2. The parameters can be adjusted according to
the experimental experience. Generally, c1 = c2 ∈ [0, 4].
We choose c1 = c2 = 1.4996 in the geomagnetic matching
simulation.

B. SIMULATED ANNEALING
The idea of simulated annealing(SA) algorithm comes from
the process of simulated solid annealing and cooling, which
belongs to the global optimization algorithm [15]. In practice,
the temperature T can be used to simulate the control param-
eters, and the value f of the objective function can be used
to simulate the internal energy. Firstly, an initial solution is
given, and a random solution is generated in the neighborhood
of the initial solution. When the objective function is within
a certain range, the acceptance criterion allows the objective
function to abandon the existing better solution and accept the
inferior solution that makes itself worse. The whole iterative
process is carried out by ‘‘generating new solutions, calcu-
lating the difference of objective function, judging whether
to accept new solutions, accepting or discarding new solu-
tions’’ [16], which is similar to the solid cooling process,
that is, the process of solid gradually becoming thermally
stable when the temperature is constant. When the control
parameters are given, the relative optimal solution can be
obtained by trying various solutions. Then reduce the control
parameters and repeat the above iterative steps. In the process
of reducing the control parameters to zero, the controlled
system also gradually transits to the steady state, and finally
enters the optimal state of the optimization problem to obtain
the global optimal solution [17].

Simulated annealing is actually a greedy algorithm, but its
search process introduces random factors. When the algo-
rithm iteratively updates the feasible solution, it accepts a
solution that is worse than the current solution with a certain
probability, so it may jump out of this local optimal solu-
tion and reach the global optimal solution. The optimization
process is controlled by annealing temperature to approach
to the optimal solution, and judges whether to receive the
poor solution by the probability exp (−1f /Tk). Therefore,
the annealing process which is slow enough can effectively
promote the convergence of the optimization process to the
global optimal solution. And as long as the initial temperature

is high enough, the algorithm will not fall into the local
extreme point [18], [19]. The simulated annealing algorithm
consists of three parts: the generation of initial solution,
the acquisition of equilibrium state and operation of anneal-
ing. The process of the whole algorithm is as follows,

1) Initialize the annealing temperature Tk and randomly
generate the initial solution x0 [20].

2) Repeat the following steps (i.e. Metropolis Sampling
Criteria) at temperature Tk until the equilibrium state
of temperature Tk is reached[11]: Randomly choose a
new feasible solution x ′ (within the neighborhood of
the solution x); calculate the difference 1f = f

(
x ′
)
−

f (x) between value f
(
x ′
)
of the target function corre-

sponding to x ′ and the value f (x) of the target function
corresponding to x; accept x ′ when the probability
satisfies min {1,P = exp (−1f /Tk)} > random[0, 1],
where random[0, 1] represents the randomly generated
number in the interval of [0, 1] [20].

3) Operation of annealing: Tk+1 = CTk , k ← k + 1,
where C ∈ (0, 1). If the convergence is met, end the
annealing; otherwise, go to step 2) [20].

The algorithm flexibly uses the characteristics of sudden
jumps in probability. Through the principle of random judg-
ment, the feasible solution can be updated randomly in the
iterative process. Although the criterion may lead to subopti-
mal solution in an iterative process, it can make the whole
process of optimization separate from local extremum and
improve the ability of global search.

C. PARTICLE SWARM OPTIMIZATION ALGORITHM BASED
ON SIMULATED Annealing (SAPSO)
Theoretically, many optimization problems can be solved by
either PSO or SA. However, these two algorithms have some
defects in searching the optimal solution independently: PSO
has the problem of ‘‘premature’’ particles, that is, it may con-
verge to the minimum value prematurely during the particle
search and fall into the local extreme value, which greatly
reduce the ability of global search; SA relies too much on the
process of cooling. If global convergence is to be achieved,
harsher temperature-limiting conditions are required, leading
to reduced optimization efficiency [21]. Therefore, PSO and
SA are combined and constrain the search of PSO at the same
time, which not only solves the problem of local optimization,
but also realizes the requirement of high efficiency of the
algorithm. The flow chart of SAPSO is shown in Fig.2.

How to find the track that matches the measured geomag-
netic data best in the search space is a key issue for SAPSO
to successfully achieve geomagnetic matching navigation.
According to the geomagnetic affine model of Section 2,
the four parameters of scaling factor, yaw angle, and position
translation factors are variables to be optimized. Then the
individual state of the particle can be expressed as

X = (α, θ,1x,1y). (9)

Considering points O and D as the origin and des-
tination of the track respectively, they can represent
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FIGURE 2. The flow chart of SAPSO.

a track combined with intermediate sampling points
{S1, · · · , Si, · · · , Sn−2}.The pathi = {O, S1, · · · , Si, · · · ,
Sn−2,D} ∈ R3n is shown in Fig.3.
A solution is made up of n subcomponents, each of

which corresponds to a sampling point of the track to be
matched [22]. According to (6), each bit of the subcom-
ponents represents the scaling factor, yaw angle and two
translation factors respectively. Fig.4 is a randomly generated
particle corresponding to its position.

D. IMPROVED SAPSO
The computational complexity and efficiency of SAPSO are
affected by the size of uncertainty domain, number of parti-
cles and number of iterations. A large uncertainty domain will
cause the search range to be too large, reducing the speed of
the global search and making the search time significantly
longer. The smaller uncertainty region may lead to the miss-
ing of the optimal solution and the inability to obtain the
accurate matching trajectory [23]. If the number of particles
and number of convergence iterations are too large, it will
directly affect the calculation time of the whole algorithm.
The smaller number of convergence iterations will cause the
optimization algorithm to fail to obtain the optimal solution
and terminate early, which will seriously affect the accuracy
of the algorithm [24]. If we want to reduce the calculation to
improve the real-time performance of the system, we need to
reduce the number of particles, choose an appropriate range
of uncertain domains, or speed up the convergence of the
particle swarm. To solve these problems, some constraints are

added to the particle swarm optimization search, and the static
parameters are optimized to dynamic variables to improve
the SAPSO.

1) CONSTRAINTS OF CONTOUR DOMAIN
The performance of PSO is greatly affected by the initializa-
tion process of the particles. With the increase of the number
of particles, the coverage of the solution space will expand
accordingly, so that the optimal solution can be obtained with
greater probability. However, this also increases the com-
putation of the entire algorithm, which violates the original
intention of the optimization search. In order to improve
the matching probability and searching efficiency of the
algorithm, isoline domain is used to constrain the position
parameters obtained by the initialization of particles, that is,
the horizontal position parameter (x, y) of the particles must
be located in the contour field corresponding to the control
point, which meets the constraint

readmap(x, y) ∈ [M − ξ,M + ξ ]. (10)

Among them, readmap(·) represents the function of read-
ingmap; ξ is the standard deviation of themeasurement noise.
With this constraint, particles can be distributed near the true
trajectory with greater probability during initialization. This
achieves the goal of obtaining an optimal solution with fewer
particles, which greatly improves the efficiency of search
process and performance of the algorithm.

2) SELECTION OF ADAPTIVE PARAMETERS
As an important parameter in PSO, inertia weight ω has a
great influence on the convergence of the algorithm [25].
It can balance the ability of local search and global search,
and fully reflect the influence of historical velocity on the
current velocity of particles. When the inertia weight is large,
particles can explore new areas and have strong ability of
global search. When the inertia weight is small, the particles
tend to search locally, that is, developmental search. And
learning factors c1 and c2 control the ability of particles
to search for the best in the group and the best in them-
selves. Proper selection of inertia weights and learning factors
can make the optimized search more efficient and accurate.
Therefore, it is necessary to adjust these three parameters
according to the fitness value of each particle, which obtains

c1i = c1 · (1.5− k(i)/N )
c2i = c2 · (1.5− k(i)/N )
ω = ωmax − (ωmax − ωmin) · (t/tmax)

ωi = ω · (0.5+ k(i)/N ).

(11)

Among them, ωi is the dynamic inertia weight of the ith
particle. ci1 and ci2 are the dynamic learning factors of the ith
particle. N is the number of particles. k(i) represents the
ordinal number corresponding to the ith particle after the
fitness value of the particles in the current search state is
arranged. ωmax and ωmin denote the maximum and minimum
values of ω. tmax denotes the maximum number of iterations,
and t denotes the current number of iterations.
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FIGURE 3. Encoding of path.

FIGURE 4. A randomly generated particle.

3) SELECTION OF FITNESS FUNCTION
As a one-dimensional matching, geomagnetic matching is
essentially a problem on data correlation, so the fitness func-
tion can be selected according to the correlation criterion [26].
From the perspective of accuracy, the mean square devi-
ation algorithm(MSD) and the mean absolute difference
algorithm(MAD) have similar performance. But compared
with MSD, MAD is simpler to realize. Therefore, MAD is
selected as the evaluation criterion of fitness function. The
real-time measured geomagnetism is particularly susceptible
to external interference, resulting in constant and random
errors in the calculation. Therefore, the traditional MAD
algorithm is improved as a function about fitness, obtaining

f =
1
N

N∑
k=1

∥∥∥H k
m − H̄m| − |H

k
c − H̄c

∥∥∥ (12)

Among them, H̄m represents the average of the geomag-
netic measurement sequence, and H̄c represents the average
of the geomagnetic sequence corresponding to the track to
be matched obtained by querying the geomagnetic database.
The fitness function is calculated by relative change, which
greatly reduces the influence of noise on matching.

Based on the above analysis, an improved SAPSOgeomag-
netic matching algorithm is obtained. The specific implemen-
tation steps are shown in Tab.1.

IV. SIMULATION OF GEOMAGNETIC MATCHING
ALGORITHM
In order to verify the effectiveness of the improved SAPSO,
a simulation analysis of geomagnetic matching was per-
formed according to steps of the proposed algorithm shown
in Tab.1. In order to obtain more accurate matching results,
the data used in all simulations are real geomagnetic anomaly
data in Nanjing.

A. SETTINGS OF SIMULATION PARAMETERS
The initial settings of the parameters of the improved SAPSO
are shown in Tab.2.

B. RESULTS OF SIMULATION
1) SIMULATION OF ICCP AND IMPROVED SAPSO
In two different cases, ICCP and improved SAPSO are sim-
ulated and compared.
Case 1: The inertial navigation trajectory has no head-

ing error. Suppose the initial position error of the carrier is
(1000, 7000)m, and the white noise of the magnetic field
measurement with a standard deviation of 20nT is added. The
matching results of ICCP and improved SAPSO are shown
in Fig.5(a).
Case 2: The heading error of the INS trajectory is 20◦.

Suppose the initial position error of the carrier is (3000,
8000)m, and the magnetic field measurement noise with a
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TABLE 1. The improved SAPSO geomagnetic matching algorithm.

TABLE 2. Parameter settings of improved SAPSO.

standard deviation of 20nT is added. The matching results of
ICCP and improved SAPSO are shown in Fig.5(b).

It can be seen from Fig.5 that when the initial position error
of the carrier is small and the trajectory of INS has no heading
error, the matching accuracy of ICCP and improved SAPSO
is high. However, when the initial position error of the carrier
is large and the trajectory indicated by INS has heading error,
thematching result of improved SAPSO is significantly better
than ICCP.

2) SIMULATION OF PSO AND SAPSO
According to the parameter settings in Tab.2, in the case
of using the same number of particles, results of geomag-
netic matching based on PSO are shown in Fig.6(a), and
results of geomagnetic matching based on SAPSO are shown
in Fig.6(b).

FIGURE 5. Comparison of matching results between ICCP and improved
SAPSO.

As mentioned above, theoretically, although PSO can get
the optimal solution through optimization search, it is easy to
fall into the local minimum value, converge to the minimum
value prematurely, and result in the problem of ‘‘premature’’
of particles. It will stop iteration, and the final optimization
result of the search is not the true optimal solution, but the
local optimal solution. Therefore, a larger matching error
occurs. At each iteration, the matching error is represented
by the average of mean square root of errors in the longitude
and latitude directions of the entire track sequence.

In Fig.6(a), it is obvious that the optimal matching track
obtained by the basic PSO converges in advance and falls
into a local optimal state. Therefore, the matching error of
the matched track is large. Compared with Fig.6(b), it can be
seen that PSO is improved by SA with the obtained optimal
track matching the real track better.

The speed of the iterative convergence becomes higher as
well. Therefore, using SA to improve PSO can effectively
solve the problem on local optimization of PSO, and achieve
the matching track with higher matching accuracy.

3) CONVERGENCE OF PARTICLES IN
CONTOUR-CONSTRAINED SAPSO
Constrain the initialization of particles through the contour
domain, and randomly generate 20 particles. Suppose that
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FIGURE 6. Matching error of PSO and SAPSO.

there are M points in the region to be matched that meet
the constraint requirements of isoline domain.If M is greater
than 20, randomly select 20 points fromM points to initialize
the position of particles. If M is less than 20, then randomly
generate (20 − M ) points in the region to be matched. The
initial error of the position of the system is assumed to be
(500, 100)m.Fig.7 shows the convergence state of particles
relative to the starting point of the real track after the first,
third, fifth and seventh iterations.

To meet the real-time requirements of the actual geomag-
netic matching navigation, the matching algorithm should
reduce the calculation and improve the efficiency of match-
ing. Therefore, it can be considered to improve the algo-
rithm by reducing the number of particles or increasing the
convergence speed of the particles. And a certain number
of particles can improve the ability of global search, so in
contrast, improving the convergence speed of particles is
chosen. It can be clearly seen that the constraints of the initial
contour domain limit the range of particles during initializa-
tion, so that particles can be distributed near the true track
with greater probability, effectively reducing the number of
iterations of the matching algorithm. It only takes a small
number of iterations to quickly converge to the true initial
position. Therefore, the results of the simulation show that
the constraints of the initial contour domain can effectively
improve the efficiency of the entire matching algorithm, that
is, improve the global convergence of thematching algorithm.

FIGURE 7. The convergence state of particles.

4) IMPACT OF ADAPTIVE MODIFICATION OF PARAMETERS
ON ALGORITHM PERFORMANCE
For the same group of particles, the same random parameters
are selected. Compare and analyze the effect of adaptive
modification of parameters on the search performance of
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FIGURE 8. Matching errors of SAPSO before and after adaptive correction
of parameters.

the SAPSO. The search results of geomagnetic matching
algorithm before and after the adaptive correction of param-
eters are shown in Fig.8.

It can be found that before the adaptive modification
of the parameters, the matching algorithm converges more
slowly and requires more iterations to obtain smaller match-
ing errors. Therefore, results simulation show that adaptive
real-time correction of parameters can not only improve the
accuracy of geomagnetic matching, but also accelerate the
convergence of the geomagnetic matching algorithm.

5) ANTI-NOISE PERFORMANCE OF THE ALGORITHM
Simulate the same track under different noise levels, and
analyze the effect of noise on the number of convergence
iterations and matching errors. The standard deviation of the
geomagnetic survey sequence is 121.4nT, and the simulation
results are shown in Fig.9. The abscissa is taken as the stan-
dard deviation of noise, and 50 experiments are performed at
each noise level, and the result is the statistical average. It can
be seen from the variation curve that the number of conver-
gence iterations is not greatly affected by noise, indicating
that the algorithm has great performance of global positioning
and convergence. From the curve of positioning error with
noise, we can see that when the standard deviation of the noise
is less than 100nT, the positioning accuracy can be basically

FIGURE 9. Anti-noise performance of the improved SAPSO.

kept within 500m. It can be seen that the algorithm has a
certain robustness to noise.

V. CONCLUSION
As a new type of assisted navigation technology that uses
the physical field of the earth for navigation, geomagnetic
matching navigation can perform highly concealed, all-area
and all-weather real-time assisted navigation [27]. Therefore,
an improved PSO geomagnetic matching algorithm based
on SA is proposed to assist the navigation and position-
ing of INS. The PSO based on SA can be well applied in
one-dimensional matching, and effectively solve the problem
on the local optimal solution of the basic PSO. The algo-
rithm combined with the constraints of the initial contour
domain greatly reduces the number of iterations of the entire
algorithm and accelerates the convergence rate of the par-
ticle swarm. The matching error between the geomagnetic
matching track and the real track is small, which effec-
tively improves the accuracy and efficiency of the geomag-
netic matching algorithm. What’s more, the results of the
simulation show that the improved SAPSO can modify the
parameters adaptively in real time according to the current
searching state of particles, so that the searching results of
the whole particle swarm can converge to the optimal solution
faster. This improves thematching speed, and better meets the
real-time requirements of the geomagnetic matching.
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