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ABSTRACT Anomalous events detection in real-world video scenes is a challenging problem owing to the
complexity of anomaly and the untidy backgrounds and objects in the scenes. Although there are already
many studies on dealing with this problem using deep neural networks, very little literature aims for real-time
detection of the anomalous behavior of fish. This paper presents an underwater fish anomalous behavior
detection method by combining deep learning object detection, DCG (Directed Cycle Graph), fish tracking,
and DTW (Dynamic Time Warping). The method is useful for detecting the biological anomalous behavior
of underwater fish in advance so that early countermeasures can be planned and executed. Also, through
post-analysis it is possible to access the cause of diseases or death, so as to reduce unnecessary loss, facilitate
precision breeding selection, and achieve ecological conservation education as well. A smart aquaculture
system incorporating the proposed method and IoT sensors allows extensive data collection during the
system operation in various farming fields, thus enabling to develop optimal culturing conditions, both are
particularly useful for researchers and the aquaculture industry.

INDEX TERMS Anomalous behavior analysis, deep learning, object detection, tracking, dynamic time
warping, directed cycle graph.

I. INTRODUCTION
Due to the global population growth, the average consump-
tion of aquaculture products has been increasing rapidly for
the last two decades. In response to the rising demand for
aquaculture products, fishery foods supply in many coun-
tries has been dominated by farming products. However,
the aquaculture industry worldwide is becoming more and
more prone to huge losses owing to extreme climate change.
To ensure a good harvest, it is essential to regularly monitor
the health of farmed aquatic creatures such as fish or shrimps.
For aquaculture operators, having the ability to detect or
classify anomalous behaviors of farmed creatures is highly
desirable. An anomalous behavior usually indicates a symp-
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tom of disease or sign of creatures being under stress, and
deserves attention and analysis to find out possible causes.
However, traditional methods often rely on manual inspec-
tions or personal subjective experiences to judge whether
the farmed aquatic creatures are in a healthy state. Without
automatic monitoring systems, one can only manually collect
samples from sea cages or farms and check for abnormal
symptoms based on their appearance, or passively wait for
dead creatures to float on the water to determine the cause
of death. Manual operations are often time-consuming and
expensive, aside from the fact that aquatic creatures are prone
to severe stress or sudden death. Also, toxins or pathogens
from death fish could quickly contaminate the entire farm
or sea cage. Unless otherwise stated, hereinafter we will use
the term fish to represent underwater creatures, although our
method is not just applicable to fish.
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With the advent of IoT and 5G technologies, the use of
various sensors such as underwater cameras, dissolved oxy-
gen meters, and temperature sensors allows a large amount of
environmental data to be continuously and quickly collected.
The combination of AI and IoT (AIoT) further accelerates
the trend of smart aquaculture. Vast benefits of monitoring
the health status of cultivated fish can be obtained from using
AIoT, as aquaculture industry inevitably involves breeding
and selection of brood fish. Their purpose is to effectively
breed high-quality fish, so that the offspring can resist dras-
tic changes in the environment. Fish with high-stress resis-
tance are selected through a series of experiments such as
salt tolerance, cold tolerance, heat tolerance, and disease
resistance, etc. To avoid sudden or unexplainable death of
precious or brood fish and to speed up the reproduction
speed during reproduction, it is vital to automatically detect
anomalous behaviors. Unfortunately, current breeding meth-
ods are expensive to conduct, because they still heavily rely
on naked-eye observation of fish behaviors. Many control
factors require careful attention and any failure would likely
cause fish death without salient signs. From time to time,
the breeder may be forced to terminate the experiment or
adjust the experiment urgently. Therefore, there exists a great
need for a real-time system that can automatically detect and
classify anomalous fish behaviors.

Deep learning techniques can do end-to-end detection of
instances of semantic objects such as fish without specifi-
cally defining features, and are typically built on convolu-
tional neural networks (CNN) [1], [2]. Based on our previous
work [3] employing deep learning Faster- rcnn [4] as an
object detector to implement the tracking task for measuring
the moving speed of fish, this paper presents a real-time
solution for the problem of detecting anomalous behaviors for
underwater fish. Real-time detection of anomalous behaviors
can be applied to aquaculture farms and sea cages to help
prevent diseases and sudden death, so as to reduce financial
loss.

Our idea is rooted in the observation that no matter how
the fish swims, some relative position relations between fish’s
body parts remain unchanged, e.g. the tail part is always
located opposite to the head part, and the dorsal fin must be
opposite to the fin. This property is referred to as antithesis
invariance hereinafter. To classify fish behaviors, we employ
deep learning object detector to detect the body parts of
fish. Information (i.e. bounding boxes, coordinates, and class
name thereof) provided by the object detector is exploited
and fully utilized in all subsequent stages of the method. The
proposed method mainly comprises the following technical
elements: object detection, directed cycle graph (DCG) [5],
fish tracking, and dynamic time warping (DTW) [6]. The rest
of the paper is organized as follows. Section II highlights
work done by others that are related to this paper. In particu-
lar, we review literature on fish detection, classification, and
behavior analysis in various applications. Section III through
Section VI elaborate our method stage by stage. Extensive

empirical results are shown in Section VII, and finally con-
cluding remarks and future work are given in Section VIII.

II. RELATED WORK
Although in the past two decades, methods concerning fish
detection, classification, and recognition have been proposed,
we have seen rather few training datasets related to fish
healthy status, not to mention AI-based classification of
anomalous behavior for aquatic creatures. As far as we
know, studies on detection or recognition of fish anomalous
behavior are very rare. [7]–[10] used image processing tech-
niques to obtain fish movement trajectories for identifying
anomalous behaviors. Semani [11] studied automatic fish
recognition by focusing on the segmentation process, steps
of feature extraction and classification. They also addressed
the issue of characterizing moving fish using a robust mix-
ture decomposition-based clustering algorithm [12]. Analo-
gous to [11] and [12], the task of fish recognition in [13]
is also based on background subtraction method. By iden-
tifying some critical situations met in video, [13] showed
improvement over the classification made by [14]. In his
doctoral thesis, Pinkiewicz [15] applied image segmentation
and Kalman filtering to track fish in sea cages for short
periods in order to calculate an average swimming speed
and direction. Individuals were tracked on a prolonged basis
for identifying agonistic behaviors and observing behaviors
of small groups of fish in tanks. Spampinato [16] incor-
porated the Gaussian Mixture Model and Moving Aver-
age to detect fish, followed by tracking the fish using the
Adaptive Mean Shift Algorithm. The fish trajectory was
obtained using an unsupervised machine learning algorithm
of clustering. They also analyzed fish behavior in typhoons
using combinations of previous methods and event detection
in [17].

Recently, deep neural networks have been used to achieve
state-of-the-art results in various fish-related tasks. Since the
main interest of this paper is directed to the detection of
the anomalous behavior of fish using AI techniques, it is
worth taking some time to review literature related to this
aspect. Jalal [18] proposed a hybrid solution that combines
optical flow and Gaussian mixture models with YOLO [19],
aiming to act as a unified approach to classify fish in uncon-
strained underwater videos. In the context of multi-target
fish tracking to provide a real-time response to long-lasting
experiments using HQ video, [20] used the U-net architec-
ture [21] to obtain the segmentation of fish in extreme con-
ditions such as illumination changes combined with sudden
background differences or other noise. To our best knowl-
edge, the present work is the first attempt to provide real-
time detection and classification of anomalous behaviors for
multiple fish under high stress (e.g. high salinity, coldness).
The proposed approach is characterized in that information
provided by the deep learning-based object detectors is uti-
lized throughout the subsequent steps of DCG, tracking,
and DTW.
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FIGURE 1. Flowchart of the propose method.

III. PROPOSED METHOD
As shown in Fig. 1, the proposed method consists of
three main stages: State Definition, Tracking/Encoding, and
Decoding by DTW. Their realizations involve the use of
deep learning-based object detection, graph theory, tracking,
DTW, and aquaculture domain knowledge. The stage of State
Definition may use any deep learning inference models to
perform object detection for multiple body parts of moving
fish. Take tilapia as an example, eight key parts (main body,
dorsal fin, pectoral fin, pelvic fin, head, eye, mouth, tail) are
to be detected for the task of graph-based posture classifi-
cation. Though not necessarily a mandate strategy, the stage
of Tracking/Encoding can be conducted in such a way that
whenever the posture of a target fish is successfully classified
as anomalous, the first anomalous posture is used as a cue to
start the tracking process. Finally, at the stage of Decoding,
a state sequence consisted of a series of postures is to compare
with 46 behavior templates suggested by aquaculture experts
to make the final decision.With the streamlined framework in
Fig.1, behavior detection results of different fishery species
and environmental conditions (i.e., sensor data in Fig.1) can
be integrally collected and subjected to bigdata analysis to
provide optimal aquaculture conditioning, monitoring, and
risk management to the aquaculture and breeding industry.

IV. STATE (POSTURE) DEFINITION
We use the positional relationship between key body parts of
fish to define the fish posture. Owing to its fast identifica-
tion of body parts and robustness to the untidy background,
deep learning object detection is adopted in this work, rather
than image processing approaches. After objection detection,
a directed cycle graph (DCG) [6] is constructed. As will
be seen, aside from its capability of exploiting the posi-
tional relationship between the body parts, DCG offers extra
benefits.

A. FISH BODY PARTS DETECTION
Despite our method allows the use of any object detectors,
hereinafter we will use Faster-rcnn [4] as an illustrative object

detector. The Faster-rcnn was trained with 2986 images each
containing multiple fish having their eight key body parts
pre-labeled. Note that certain moving patterns may cause
changes in the body shape, yet the positional relationship
between the body parts remains unchanged. Thus, unless
completely occluded, at least a certain number of body parts
will be identified by a well-trained object detector. In light
of this observation, one can therefore tackle spatio-temporal
recognition problems such as the identification of anomalous
behavior by classifying a state sequence containing a series
of graph-based postures. Information needed to construct the
graph and quantize the posture is all provided, directly or
indirectly, by the object detector. Such a unified approach
needs only a fairly small amount of labeled data for training
the detection of fish body parts. In contrast, training Recur-
rent Neural Networks (RNN), Long-Short Term Memory
(LSTM), and all their variants [22] inevitably require a large
(if not infinite) amount of anomalous and normal behavior
patterns. No question LSTM and RNN and derivatives are
able to learn and remember a lot of longer-term information,
e.g. sequences of 100 secs or more. However, one issue of
them is that they are not hardware friendly, and it takes a lot
of resources to train these networks fast. Also, it takes many
resources to run these models in cloud that is not scalable,
not to mention some field applications often require edge
computing.

B. GRAPH-BASED POSTURE CLASSIFICATION
In this work, a DCG will be built for each fish if it is
sufficiently detected. By ‘‘sufficiently’’ we mean at least
two neighboring body parts, e.g. head and fin, are correctly
detected by Faster-rcnn. The proof of which as well as the
usefulness of DCG are elaborated as follows. A DCG is
constructed as

G = (V ,E) (1)

E ⊆ {{x, y} : (x, y) ∈ V 2, x 6= y} (2)

where V and E denote nodes and edges of a graph G, respec-
tively. Whenever a fish is detected Faster-rcnn will draw a
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bounding box to cover the entire fish body, meanwhile a
separate node corresponding to the center of the bounding
box drawn by Faster-rcnn will also be assigned to each of
the correctly detected body parts. Among the eight key body
parts (i.e. main body, dorsal fin, pectoral fin, pelvic fin, head,
eye, mouth, tail), actually only four of them are needed for
defining a posture (see Fig.2). In particular, pectoral fin,
pelvic fin, eye, and mouth play an auxiliary role in building a
DCG. If Faster-rcnn fails the detection of, say, head part, then
eye or mouth can replace the head as a node if either one of
them is detected. Likewise, as long as one of pelvic fin and
pectoral fin is correctly detected, it is readily used as fin part.
This strategy essentially increases the reliability of object
detection, hence increasing the overall system performance.

FIGURE 2. (a) Clockwise drawing a directed graph for a right-sided fish.
(b) Clockwise drawing a directed graph for a left-sided fish. (c) Fish
having the same graph as in (a). (d) Fish having the same graph as in (b).
(e) DCG for right-sided posture. (f) DCG for left-sided posture.

Now consider head, dorsal fin, tail, and fin were all
correctly detected. In that case there will be only two
different DCGs if drawn clockwise. The first one is
drawn for the fish in Fig.2a, which has a cyclic path of
{head→fin→tail→dorsal fin→head} as shown in Fig.2e.
The second one is drawn for the fish in Fig.2b, which has
a cyclic path of {head→dorsal fin→tail→fin} as shown
in Fig.2f. The difference in the sequence of the two paths
comes from the fact that the fish in Fig.2a swims with its right
body side facing the reader (called right-sided hereafter),
whereas the fish in Fig.2b swims with its left side facing the
reader (called left-sided hereafter). Namely, two fish having
different DCGsmust be flipping (vertically or horizontally) to
each other. Conversely, if two fish share the same DCG such
as the case in Fig.2a and Fig.2c, then if the fish in Fig.2a is
right-sided, the fish in Fig.2c must be right-sided too. In fact,
the posture of Fig.2c is just a result of rotating that of Fig.2a
by 180◦. Clearly, DCG is invariant to rotation.
The beauty of DCG is twofold. Firstly, from time to time

Faster-rcnn could fail the detection of certain body parts, e.g.
the symbols ‘‘?’’ in Fig.2c and Fig.2d. Yet, the only detected

parts of the head and fin in Fig.2c are already sufficient to
define a complete and valid DCG. To see this, we start with
the antithesis invariance property, which requires the tail part
must be located opposite to the head part, etc. Thus, knowing
the position of the head (fin) is equivalent to knowing the
position of the tail (dorsal fin). If the two detected parts are
opposite to each other, the information provided by them is
the same as if only one of them was detected. This depen-
dency relation allows us to fill in the falsely detected parts and
make the originally deficient cyclic path a valid DCG, namely
having the complete path of {head→fin→tail→dorsal fin}.
Secondly, by reading the path of a valid DCG, one can imme-
diately judge which side the fish is facing toward the reader.
As will be seen shortly, this property can help cut down the
computation cost in the classification of postures by half!

We have seen that two fish having the same DCG may
swim in opposite directions, e.g. Fig.2b vs. Fig.2d. To com-
pletely define the posture of fish, we present two ways to
determine the swimming direction of fish. The first one utiliz-
ing the DCG scheme and capable of speeding up the posture
classification is discussed below. After obtaining a DCG for
the detected fish, A 3× 3 grid is shown in Fig. 3a. The target
fish is bounded by a yellow bounding box given by Faster-
rcnn. The box is divided into 9 blocks having different sizes,
with the center blocks being purposely set smaller than the
rest. We then scan the nine blocks from top to bottom and
left to right. In Fig.3a, where the head is found in the rightest
block, then the corresponding element in a 3 × 3 matrix
in Fig.3b will be filled with literal H. According to the path
specified by DCG, the fin part will be found in the lower
center block, and the corresponding element in a 3 × 3 pose
matrix in Fig.3b is filled with literal F, and so on. We finally
end up with a matrix in Fig.3b. For the fish swims toward
the down right corner in Fig.3c, assume dorsal fin and head
were undetected by Faster-rcnn. Now, with DCG and the
successful detection of Tail and Fin, we can figure out that

FIGURE 3. (a) code-31 posture. (b) corresponding 3× 3 grid for (c).
code-41 posture. (d) corresponding 3× 3 grid for (c).
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the missing 3rd and 9th parts in the pose matrix must be
D and H, respectively. In this way, a full-filled pose matrix
different from that in Fig.3b can still be established for the
fish in Fig.3c, even though some parts were falsely undetected
by Faster-rcnn.

We now ready to use the matrices obtained in Fig.3b and
Fig.3d to determine the corresponding postures for the two
fish in Fig.3a and Fig.3c, respectively. For the explanatory
purpose, herein we only define sixteen different postures.
Later we will see how to define more than 16 postures
systematically. Among the sixteen template postures, eight
of them being left-sided and the rest right-sided. Starting
from the two upright postures in the first row of Fig.4, these
sixteen template postures are obtained by rotating clock-
wise and counterclockwise at an interval of 45-degree. Also,
the template postures were labeled by aquaculture experts
into two major categories: normal (green) and anomalous
(red) coded with two decimal digits, respectively. The right-
most digit is set to 1 representing the right-sided, and 0 the
left-sided. Namely, the fish in Fig. 2(a) has its right side
facing the reader. The leftmost digit encodes the swimming
direction. Hence, {10, 20, 30, 40 . . . , 80} represent eight dif-
ferent swimming directions of a left-sided fish. Likewise,
{11, 21, 31, 41 . . . ., 81} represent eight different swimming
directions of a right-sided fish. Fig. 4 also lists sixteen sep-
arate matching matrices, acting as templates for classifying
an input pose matrix. After obtaining the pose matrix, we can
simply use Hamming distance or other similarity measures to
identify which of 16 template postures the target fish belongs
to.

FIGURE 4. Sixteen matching matrices for posture classification.

To summarize, the posture of fish is identified by the
following steps: (1) generating a valid DCG (examples as
shown in Fig.2e and Fig.2f, (2) according to the valid DCG,
the fish is determined either as right-sided or left-sided (3) if

the fish is right-sided (left-sided), then the eight matrices
listed in the right (left) column of Fig.4 is matched, one by
one, with the pose matrix of Fig.3b. Use the fish of Fig.3a
as an example, among all the 16 matching matrices in Fig.4,
the matrix of code-31 in the 3rd row best matches with the
input pose matrix of Fig.3b, hence the fish in Fig.3a will be
assigned with the code of 31. In particular, because of DCG
providing the information of which side the fish is facing,
we need only perform 8 times of matching, instead of 16,
so the computation time is cut half! We note that if a valid
DCG is not possible for a target fish in the current image
frame due to detection failure, then one can either use a
trajectory prediction strategy before abandoning the tracking,
or the posture code of the same fish in the last frame is used
(i.e. patching).

V. TRACKING AND ENCODING
Our method allows us to track multiple fish simultaneously.
Whenever Faster-rcnn detects a new fish in an input image
frame, a tracking thread is set up for that fish. Each tracking
thread keeps records of a fish under tracking, including the
fish ID and 2-digit codes of previous postures classified. Each
fish detected in an image frame will be tracked continuously
until it is considered lost or a preset time-out has reached.
Upon completion of a tracking thread, a state sequence con-
taining several posture codes will be sent to DTW for deter-
mining if it is an anomalous behavior.

A. TRACKING
Fish tracking is difficult because the swimming direction
of fish is not like a car, as fish may change its swimming
direction abruptly. Even worse is that all Tilapia look alike.
To solve these problems, we again rely on the coordinates of
the bounding box. We calculate the overlapping area of box
coordinates of the current frame and those of the next frame to
determine whether two boxes contain the same fish. Denote
F t as the set of fish under tracking and f ti as an ith fish at
t th frame. In (3), if f t1 = f t+15 , it means the fish with ID:5 is
the same as the one with ID:1 at the previous frame. Hence
coordinates and posture code of f t+15 will be recorded in the
thread of f t1 . If no object matching the fish f t1 was found at
the next frame, then coordinates and posture code previously
recorded will be used to predict [1, 2] the most likely path of
the target fish for (t + 1)th through (t + v)th frames, where v
is heuristically set to 5. For example, in Fig. 5 we see the 2nd

fishwas lost in 7th frame, and no object in the next five frames
matches the 2nd fish, thus the tracking thread terminated at
12nd frame (black dot in Fig.5). In contrast, assume the 3rd

fish was also lost in 8th frame, but an object at 12th frames
(green dot) that corresponds to the 3rd fish was found, then
the tracking thread will be resumed at 12nd frame. Thus,
Fig.5 verifies this scheme can predict the trajectory of fish and
accordingly modifies the predicted trajectory over time, thus
it can track a fast-moving target and can alleviate the problem
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FIGURE 5. Tracking with prediction strategy for recovey of lost fish.

of sudden change in the swimming direction or sudden stop.

F t =
{
f t0 , f

t
1 , · · · , f

t
n
}
, . . . ,F t+v =

{
f t+v0 , f t+v1 , · · · , f t+vm

}
(3)

B. ENCODING (BUILDING STATE SEQUENCES)
Input frames at different time points may contain a different
number of fish, as shown in Eq.(3). A separate state sequence
(thread) needs to be updated for each fish under tracking so
that whenever a fish posture is classified, it will be assigned
with a 2-digit code and put into the tracking record of that
fish. Such an encoding procedure is applied to any fish under
tracking, and it continues as input image frames are streamed
into the system. In an arbitrary image frame, wemay expect to
see some new tracking threads are established, some updated,
and some terminated. One key attribute of this work is that
we consider the task of behavior classification as decoding
a series of postures or states. Whenever a tracking thread is
terminated, a state sequence can be converted to a time series
and subjected to a DTW-based decoding process.

VI. DECODING BY DTW
In time series analysis, DTW has been applied to, in fact, any
data that can be turned into a linear sequence, it is based on
dynamic programming to calculate an optimalmatch between
two temporal sequences, which may vary in speed or length.
Due to the swimming speed and other motion factors, two
state sequences with different lengths may belong to the same
behavior. For example, a slower-moving fish and a faster
swimming fish may act quite alike, yet they could be encoded
into two different state sequences. Thus, in this work when
a tracking thread is terminated, the optimal match between
the resulting state sequence and the 46 behavior templates
is conducted using the DTW technique. All the 46 behavior
templates were consulted with aquaculture experts, 30 of
them are of anomalous behaviors (see Table 1) and the rest
16 represent normal behaviors (not shown).

A. DYNAMIC TIME WARPING
Let t and r be two time series (in our case, state sequences)
of lengths m and n, respectively. The goal of DTW is to
find a mapping path {[p1, q1], [p2, q2] . . . [pk , qk ]} such that

the distance
∑k

i=1 |t (pi)− r (qi)| on this path is minimized.
To make DTW useful, three laws must be obeyed: Mono-
tonicity, Continuity, and Boundary conditions, as prescribed
in (4) and (5). The distance measures are calculated using
(6) and the recursion formula in (7) with the initial condition
D (1, 1) = |t (1)− r (1)| . The resultant sequence after the
termination of tracking may not have a length equal to those
templates in Table 1. Also, the lengths of templates may be
different from each other. Thus, if one can treat the state
sequence as a time series, then DTW is an ideal choice for
serving as a decoder for finding the best matching template.

wk = (i, j) , wk+1 =
(
i′, j′

)
(4)

i ≤ i′ ≤ i+ 1, j ≤ j′ ≤ j+ 1 (5)

D (i, j) = |t (i)− r (j)| or simply |i-j| (6)

D (i, j)+min [D (i−1, j) ,D (i, j−1) ,D (i−1, j−1)] (7)

For the problem at hand, each posture is assigned with a
2-digit code. To facilitate meaningful DTW computation,
herein we present a plausible and effective scheme for con-
verting each coded posture into quantitative values for sim-
ulating physical signals at a specific time point. As a result,
a sequence of postures turns into a linear sequence.

TABLE 1. Anomalous behavior templates.

B. POSTURE DESCRIPTOR FOR DTW COMPUTATION
To linearly quantize the posture of a target fish, we adopt the
polar coordinate system. As before, the information provided
by the object detector is utilized. First, the center of the
main bounding box of fish is used as the origin, and the
center of bounding boxes of head, dorsal fin, tail, and fin is
used as the position of each part. Then, as shown in Fig.6.
Cartesian coordinates are transformed to polar coordinates as
follows: (xH = rHcosθH , yH = rH sinθH ), (xF = rFcosθF ,
yF = rF sinθF ), (xT = rT cosθT , yT = rT sinθT ), (xD =
rDcosθD, yD = rDsinθD), respectively. With the coordinates
of x and y, the radii rH , rF , rT , and rD can be calculated
according to the Pythagorean theorem. Also, the least positive
coterminal angles of head, dorsal fin, tail, and fin are θH =
cos−1(xH/rH ), θF = cos−1(xF/rF ), θT = cos−1(xT /rT ), and
θD = cos−1(xD/rD), respectively. For convenience, we will
use a parameter γ to indicate which side the fish is facing the
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FIGURE 6. Positioning the four fish body parts using polar coordinate
system. (a) θH for head. (b) θD for dorsal fin. (c) θT for tail. (d) θF for fin.

reader, if it is the right side, then γ is set to 1. Otherwise, γ is
set to−1. Through geometry analysis, the relation between γ
and the set of parameters of {θH , θF , θT , θD} is prescribed by
Lemma-1, which always holds regardless of the fish size and
the total number of postures defined in Fig.4. As mentioned
in Section IV, certain restrictions must be met to generate a
valid DCG. Lemma-1 explicitly states these restrictions: (1)
to generate a valid DCG, at least two neighboring body parts,
e.g. head and fin, are correctly detected (2) the only criterion
to determine the value of γ is the relative magnitude of angles
defined by any two neighboring body parts that were correctly
detected.
Lemma-1: γ = −1, iff (θH < θF ) ∨ (θT < θD) ∨ (θH >

θD) ∨ (θT > θF ); γ = 1, iff (θH > θF ) ∨ (θT > θD) ∨ (θH <
θD) ∨ (θT < θF ).

To proof Lemma-1, firstly, we first note that all the logical
ORs are associated with two neighboring body parts. Sec-
ondly, there are at most 7 cases of detection failure, they are:
{head}, {tail}, {head and tail}, {dorsal fin}, {fin}, {dorsal
fin, fin}, and {main body}. Because if either one of these
7 cases occurs, then according to the antithesis invariance
property, success detection of a single body part of the head
(i.e. the first case) simply equals the second case, and vice
versa. As such, the first three cases are equivalent to each
other. Likewise, the last three cases are equivalent. Thus, there
is noway to generate a valid DCG and hence the value of γ for
these 7 cases. Interestingly, all these 7 cases have one thing
in common: no two neighboring parts can be found.

FIGURE 7. (a) Polar representation of left-sided fish. (b) Polar
representation of left-sided fish.

After using Lemma-1 to determine the value of γ , we can
further derive a scalar measurement for each posture in order
to mimic a time signal for DTW computation. Fig. 7 shows a
polar representation of a posture, using a vector going from

tail to head. As the goal of DTW is to find out the best
matching template for the input series of postures, we only
concern with the key features that best represent a posture.
Thus, the posture of a fish can be simply represented with the
following polar descriptor given in (8).

EP =

XY
γ

 =
 cosθsinθ

γ

 , 0 5 θ 5 2π (8)

The nice thing about (8) is it is independent of the fish size.
To generalize, a posture EPi at ith time point after a rotation
and a horizontal reflection operation can be obtained by

−−→
Pi+1 =

Xi+1Yi+1
γi+1

 = RM EPi

where R =

 cosθi −sinθi 0
sinθi cosθi 0
0 0 1

 ,
M =

−|α| + 1 0 0
0 1 0
0 0 −|α| + 1

 ,
θi =

(
−2π
k

)
γi+1, α = (γi+1 − γi) ,

k = control factor (9)

Because both R andM are linear operators, the descriptor for
a fish swimming in an arbitrary pose can be precisely defined
by generalizing (9) to

−→
Ph =

 XnYn
γm

 = RnMm EP0,

h = max (a, b) , a, b = 1, 2, .. (10)

By varying the value of k , any specific posture can be
obtained by applying a times of rotations and b times of
reflections to an initial posture EP0. Compared to the 3×3 grid
scheme, the polar descriptor conveys the posture information
more neatly in terms of mathematical manipulations and
physical interpretation. The greater the k value is, the finer
difference between two separate postures can be defined.
More importantly, all three physical values contained in the
descriptor solely concerns the posture itself. Fig. 8 shows
the corresponding descriptor for each of the sixteen postures.
Upon the termination of a tracking tread, DTW is employed
to match the final state sequence with each of the 46 behavior
templates using (6) and (7). The template having the least
distance is picked, and its class is output as the final decision.

Optionally, sensory data collected by various sensors can
be incorporated into the final stage of Fig.1 to join the out-
come of DTW for making the final decision and for any
meaningful post-analysis. To name a few, when the tempera-
ture is too low, frostbite often comes with the fish’s activity
decreases and sinking to the bottom; hypoxia may easily
lead to fish death in a salt-resistance experiment. If minor
anomalous behaviors can be found soon enough and the fish

224378 VOLUME 8, 2020



J.-H. Wang et al.: Anomalous Behaviors Detection for Underwater Fish Using AI Techniques

FIGURE 8. Sixteen posture codes and the corresponding polar
descriptors, with green code representing a normal posture, red code
representing an abnormal posture.

can be immediately treated, then fish might have a 70%
chance of full recovery. On the other hand, if a dying anoma-
lous behavior is spotted, it often means the fish might die
within 24 hours. Experimental results given next are to show
that anomalous behaviors can be detected at an earlier stage
so that measures of drug administration and isolation facility
can be deployed to improve the survival rate of underwater
organisms.

VII. EXPERIMENTAL RESULTS
All the experiments (including training and test) of this work
were based on the following configuration. Hardware: Intel
i9-9900K CPU, Nvidia GeForce RTX 2080Ti x2 (SLI) GPU,
32G DDR4-3000 RAM. Software: Windows-10 OS, Python
3.7.9, Cuda 10.0, and Cudnn 7.6.5. Both Faster-rcnn [4]
and Yolo-v4 [19], [23] use Tensorflow 1.15.0, EfficientDet-
D1 [23] uses Pytorch 1.6.0. Excluding the configuration time,
the computational complexity of our method can be shown as
O(n2). To verify the effectiveness of our method, experiments
of cold-resistance and salt-resistance were conducted, and
anomalous behaviors were observed thorough out the drastic
environmental changes. We recorded tilapia for 648 hours.
Among all the images, anomalous behaviors account for
10% only, indicating they are relatively rare and hence
costly in preparation of training data. Despite this, we pre-
pared 33 video clips, 60 mins in total length, the massive
amount of which should serve our purpose of performance
test.

Fig.9(a) shows the object detection results formultiple fish.
As can be seen, Faster-rcnn drew four main boxes covering
the four fish respectively, amidst several other smaller boxes
for body parts detected. In Fig.9(b), both fish-1 and fish-
2 were detected with two body parts only. But because dorsal
fin and head were correctly detected for fish-2, Lemma-1 is
satisfied, so the falsely undetected parts of fin and tail can
be filled in generating a valid DCG. For fish-1 in Fig.9(c),
correct detection of head and tail does not meet any of the

TABLE 2. Result of using Faster-rcnn as object detector.

TABLE 3. Result of using YOLO-v4 as object detector.

TABLE 4. Result of using EfficientDet-D1 as object detector.

four conditions set forth in Lemma-1, thus a null descriptor
[0, 0, 0] was assigned to fish-1 to indicate failure classifica-
tion. The rest of the three fish were correctly coded and their
corresponding polar descriptors are shown. Fig. 10 shows a
resulting state sequence, where postures sequentially sampled
at eight different frames were successfully coded as {31, 41,
51, 20, 20, 30, 30, 30}. The sequence was converted to a
series of polar descriptor for DTW computation, and it best
matches the template {31,41, 51, 10,20,30} with the least
distance = 0.765.
We also compared the performances of our method when

using three different state-of-the-art deep neural networks as
object detectors: Faster-rcnn, EfficientDet-D1, and Yolo-v4.
Using a test set of 192 state sequences (39 anomalous,
153 normal), the results are given in Table 2, 3, and 4,
respectively. Faster-rcnn has the best performance with Accu-
racy ≈92.8%, F1-score =0.81, Precision ≈84%, Sensitiv-
ity ≈ 80%, and mAP (mean average precision) = 49.80%.
In terms of F1-score, the performance ordered as follows:
Faster-rcnn > Yolo-v4> EfficientDet-D1. Computation load
breakdown into stages of Fig.1 is listed in Table 5. Faster-rcnn
can reach 27 FPS (frames per sec), indicating our method is
feasible for real-time underwater applications.
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FIGURE 9. (a) Body parts detected. (b) Multiple number of fish identified and body parts thereof. (c) Three postures correctly coded, one failed.

FIGURE 10. Illustration of a state sequence, which matches the template {31, 41, 51, 10, 20, 30} with Min(DTW score) = 0.765.

TABLE 5. Computation load profile.

VIII. CONCLUDING REMARKS
We have presented a novel solution for the detection of
anomalous events for underwater fish. The main contribu-
tions of this study are threefold: (1) based on information
provided by object detectors to implement a graph-based clas-
sification scheme for encoding a fish posture, (2) realization
of a real-time anomalous behavior detection/classification by
treating the fish behavior as an encoded time series, each

comprising a series of postures encoded in the course of a
self-recovery tracking algorithm, (3) providing a framework
for the establishment of AI training dataset and open dataset
for fish behaviors. Compared to RNN and LSTM, our method
is relatively economic as the training of deep learning-based
object detection requires a much smaller amount of labeled
data, and hence much less computing resource, to train the
object detection of fish body parts.

Our method is characterized in that information such as
coordinates of bounding boxes provided by the object detec-
tors is fully utilized in the implementation of all subse-
quent processes of DCG, fish tracking, and polar descriptor
calculations. With Lemma-1, a valid DCG can be generated
despite some falsely undetected body parts This property
is significant, as state-of-the-art object detectors can rarely
deliver mAP exceeding 70%, such an inherently imperfection
leads to occasional detection failure. A valid DCG used in
conjunction with the bounding box of object detectors scribed
into a 3 × 3 grid is effective for implementing a posture
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classifier. We have verified the self-recovery tracking scheme
can predict the trajectory of fish to alleviate the problem of
sudden change in the swimming direction or sudden stop,
implementation ofwhich is also based on the object detection.
In (9) and (10), we have seen that a unique polar descriptor
can be defined for a specific posture based on bounding
boxes. The descriptor assigned to a specific posture is inde-
pendent of the fish size. Such scale invariance can only be
achieved in RNN and LSTM at the expense of expensive
hardware, computing time, and a huge amount of training
data. More importantly, the polar descriptor is ideal for quan-
tifying the coded posture so as to provide the signal values
needed for DTW computation.

Experiments in Fig.9 and Fig.10 were conducted in a small
glass tank to purposely illustrate the robustness of our method
against untidy background and light reflections and interfer-
ences. The test results have also verified that despite the high
performance of Faster-rcnn, imperfect instance segmentation
could occur. However, as specified in Lemma-1, unless the
detection result of the object detector fits in any of the six fail-
ure cases as discussed in Section VI, our method can handle
most cases of failure detection such as fish-2 in Fig.9. Confu-
sion matrix results given in Table 2,3, and 4 all verified that
our method, when using different object detectors, always
has stable performance in terms of classification accuracy
and computation cost. In the future, more behavior templates
or classes and environmental parameters of temperature and
salinity will be used together to conduct a more extensive
study on the relevance between behavior and other factors
such as genome and stress/strain imposed on the fish. Last
but not the least, we will also consider the deployment of
edge computing in sea cages that involves the compressed or
lite version of Faster-rcnn, EfficientDet-D1, and YOLO-v4.
Extensive studies on the relevance between 0behavior and
other factors such as genome and stress/strain imposed on the
fish.
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