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ABSTRACT Accurate wind speed forecasting exerts a critical role in energy conversion and management of
wind power. In term of this purpose, a hybrid model based on multi-stage principal component extraction,
kernel extreme learning machine (KELM) and gated recurrent unit (GRU) network is developed in this
paper, where the multi-stage principal component extraction combines complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN), singular spectrum analysis (SSA) and phase space
reconstruction (PSR). Firstly, CEEMDAN is employed to decompose the raw wind speed data into a
sequence of intrinsic mode functions (IMFs) and a residual component. Then the principal components
and residual components of all IMFs are captured by SSA. Meanwhile, all residual components obtained by
CEEMDAN decomposition and SSA processing are added to form a new component. Subsequently, PSR is
utilized to construct each forecasting component obtained by CEEMDAN-SSA into the input and output of
training set and testing set for the prediction model. Later, KELM and GRU neural network are conducted
to predict the high-frequency and low-frequency components, respectively. Eventually, the prediction values
of each component are accumulated to acquire the final prediction result. To evaluate the performance of
the proposed model, four datasets from Sotavento Galicia wind farm are adopted to conduct experimental
research. The experimental results manifest that the proposed model achieves higher accuracy of multi-step
prediction than other comparative models.

INDEX TERMS Multi-step short-term wind speed prediction, multi-stage principal component extraction,
complete ensemble empirical mode decomposition with adaptive noise, singular spectrum analysis, phase
space reconstruction, kernel extreme learning machine, gated recurrent unit network.

I. INTRODUCTION
With the express development of the world economy, great
changes have taken place in the energy structure. Meanwhile,
the environmental problems and energy crisis caused by
the massive consumption of traditional fossil energy have
attracted extensive attention [1]. Therefore, finding renew-
able energy that can replace fossil energy has become the
focus of current research. With the green and pollution-free
characteristics, wind energy has turned into one of the most
rapidly developing renewable energy sources [2]. However,
due to the intermittency and randomness of wind speed, wind
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power grid connection produces a negative impact on the
safe and stable operation of the power system [3]. Through
relevant studies, accurate wind speed prediction can decrease
the negative influence brought by wind power grid connec-
tion, which is of great significance to maintain the secure and
steady operation of the power system [4].

In recent years, a large number of researches have been
carried out by many scholars in the field of wind speed
forecasting [5]. Generally, these prediction approaches can
be divided into four categories: (1) physical models; (2) sta-
tistical models; (3) artificial intelligence models; (4) hybrid
models. Physical models are modelled by physical formu-
las based on relevant parameters [6], such as temperature,
humidity, pressure and topography, etc., among which one
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of the most widely applied models is numerical weather
prediction (NWP) [7]. However, the physical models possess
disadvantages in short-term wind speed forecasting because
of their complexity and professionalism and need to consume
many computing resources [8]. By contrast, statistical models
utilize historical wind speed data to predict current wind
speed data, which is easy to implement and more suitable for
short-term wind speed forecasting [9], [10]. The traditional
statistical models mainly include autoregressive (AR) [11],
autoregressive moving average (ARMA) [12], autoregres-
sive integrated moving average (ARIMA) [13] and fractional
autoregressive integrated moving average (FARIMA) [14]
and they are utilized for wind speed prediction research by
many scholars in recent years. Specifically speaking, Maatal-
lah et al. [15] combined the Hammerstein model with AR
model to propose a new wind speed prediction model, and
finally obtained a higher prediction accuracy. Two hybrid
models combining ARMA model with the non-parametric
model were presented by Han et al. [16], and the exper-
imental results demonstrated that the prediction results of
the hybrid model are better than that of comparing models.
Nevertheless, the statistical model is commonly employed for
the prediction of linear time series, and it is not appropriate
for directly forecasting wind speed with nonlinear as well
as nonstationary characteristics [17]. At present, artificial
intelligence (AI) technology develops rapidly and has been
widely applied in many fields and achieves fine effects.
These models mainly include back propagation neural net-
work (BPNN) [18], support vectormachine (SVM) [19], [20],
extreme learning machine (ELM) [21], Gaussian Process
Regression (GPR) [22] as well as long short-term memory
network (LSTM) [23], and many of which are applied for
studying wind speed forecasting. To be specific, Zhou et al.
[24] developed a systematic research to regulate the parame-
ters of SVM in short-term wind speed prediction, and results
showed a better forecasting performance. Guo et al. [18]
proposed a hybrid method utilizing BPNN which improved
the forecasting accuracy of wind speed effectively. A novel
prediction method based on ELM was proposed by Fu et al.
[3]. The experimental results demonstrated that the proposed
method can achieve higher forecasting accuracy in multi-step
wind speed prediction. Although the AI method has better
predictive ability than the linear model, it still has some
problems, such as easy to fall into local optimal or overfitting,
low convergence speed, and some key parameters that are
difficult to determine [25], [26].

According to relevant research, each model has its own
advantages and disadvantages, and it is hard to acquire ideal
experimental results by directly utilizing them for predic-
tion. In order to further improve the prediction accuracy of
wind speed time series, data preprocessing techniques and
optimization algorithms are applied to wind speed predic-
tion methods to form hybrid prediction models [27], [28],
[29]. Among these data preprocessing techniques, decompo-
sition algorithms are commonly employed, such as wavelet
decomposition (WD) [30], empirical mode decomposition

(EMD) [31], wavelet packet decomposition (WPD) [32] and
ensemble empirical mode decomposition (EEMD) [33] etc.
In addition, the optimization algorithms mainly include par-
ticle swarm optimization (PSO) [34], genetic algorithm (GA)
[35], harris hawks optimization (HHO) [36] etc. Based on
this, several hybrid models have been proposed. To be spe-
cific, Wang et al. [33] presented a hybrid prediction model
including EEMD and GA for wind speed prediction, and
the experimental results revealed that the presented model
can effectively boost the prediction performance. Two novel
hybrid models proposed by Zhang et al. [37] for short-term
wind speed forecasting was composed of feature selection,
EMD, ANN and SVM. It can be concluded that the proposed
models achieved satisfactory prediction accuracy from the
experimental results, which is suitable for short-term wind
speed prediction. Moreover, some hybrid models are proved
to have superior predictive performance by combining sin-
gular spectrum analysis (SSA). For instance, a hybrid model
composed of EMD and SSA was developed by Yu et al.
[25], in which SSA was adopted to process the highest fre-
quency component decomposed. The experimental results
indicated that the proposed model can achieve higher pre-
diction accuracy. Yu et al. [38] developed a hybrid model
including wavelet transform (WT) and SSA, where SSA
was implemented to capture dominant components of the
highest frequency subseries decomposed by WT and the
experiments results demonstrated that the performance of
the hybrid model is better than that of other models. Although
the aforementioned EMD and EEMD decomposition algo-
rithms can promote the forecasting accuracy of the hybrid
model to a certain degree, they still exist some shortcomings
which can be summarized as the mode mixing problem of
EMD as well as the residual noise problem of EEMD. More-
over, some scholars have presented a variety of hybrid models
based on dual predictors and obtained good experimental
effect. For example, Liu et al. [39] successfully designed a
hybrid multi-step forecasting model using LSTM network
and ELM as predictors, where LSTM network was adopted
to predict the low-frequency sub-components acquired by
decomposing while ELM was conducted to predict the
high-frequency sub-components acquired by decomposing.
The experimental results indicated that the designed model
achieved a satisfactory predictive effect. A hybrid model
using convolutional long short-term memory (ConvLSTM)
network as well as kernel extreme learning machine (KELM)
as predictors was developed by Fu et al. [40], where KELM
was implemented to predict high-frequency components
while ConvLSTM was employed to predict low-frequency
components. The experimental results demonstrated that the
hybrid model possesses higher prediction accuracy.

Inspired by the above analysis, the hybrid model comb-
ing complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN), SSA, phase space reconstruc-
tion (PSR), KELM and gated recurrent unit (GRU) neural
network is proposed in this paper. First of all, CEEMDAN
and SSA are utilized for multi-stage principal component
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extraction of the raw wind speed data, in which CEEMDAN
is adopted to decompose the raw wind speed data into a
sequence of intrinsic mode functions (IMFs) and a residual
component while SSA is adopted to further capture principal
components and residual components of each IMFs, and all
the residual components obtained by CEEMDAN decompo-
sition and SSA processing are added to form a new predicted
component. Meanwhile, among all the new IMFs compo-
nents, the top five components with the biggest fluctuation
are taken as high-frequency components, while the rest are
treated as low-frequency ones. Secondly, KELM and GRU
neural network are utilized to forecast the high-frequency and
low-frequency components reconstructed by PSR, respec-
tively. Ultimately, the forecasting results of all components
are superimposed to acquire the final predicted values. The
main contributions of this study can be summarized as
follows:

1) Considering the nonlinear and non-stationarity of raw
wind speed data, the multi-stage principal component extrac-
tion method based on CEEMDAN and SSA is utilized to
promote the predictive capability of proposed hybrid model
for multi-step wind speed forecasting effectively.

2) PSR is implemented to reconstruct the wind speed
data with chaotic characteristics into the input and output of
training set and testing set for the proposed model.

3) KELM with high predictive efficiency is conducted
to forecast the high-frequency components acquired by
CEEMDAN-SSA while GRU neural network with strong
nonlinear processing capability is conducted to forecast the
low-frequency components acquired by CEEMDAN-SSA.

The remaining of this paper is arranged as follows:
Section II introduces relevant methodology including
CEEMDAN, SSA, PSR, KELM and GRU neural net-
work. Section III presents the detailed procedures of hybrid
multi-step forecasting model in this study. The case study
section discusses experiment results and comparative analy-
sis of the proposed hybrid method for wind speed prediction.
Finally, the conclusion of this paper is summarized in the last
section.

II. METHODOLOGY
In this section, the theoretical methods related to the proposed
hybrid prediction model will be introduced, including
CEEMDAN, SSA, PSR, KELM and GRU neural network.

A. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION WITH ADAPTIVE NOISE
CEEMDAN is a signal processing method proposed by
Torres et al. [41] which decomposes the original signal
into intrinsic mode functions (IMFs). By adding a finite
amount of adaptive white noise to each decomposition pro-
cess, this method not only overcomes the problem of model
mixing caused by EMD decomposition but also addresses
the problem of incompleteness caused by EEMD decom-
position as well as low computational efficiency created by
increasing the average number of times. It can be used to

analyze nonlinear and nonstationary time series with high
signal-to-noise ratio and owns good time-frequency focusing.

Set x(t) as the original signal, which is added with Gaus-
sian white noise ε0ω(t)(i) obeying standard normal distribu-
tion. Then the expression of the i-th sequence can be depicted
as x(t)(i) = x(t) + ε0ω(t)(i), (i = 1, . . . , I ), where ω(t)(i)

represents a set of Gaussian white noise sequences with zero
mean and unit variance, and ε0 denotes the standard deviation
of Gaussian white noise. The specific steps can be formulated
as follows:
Step 1: The EMD decomposition is performed for x(t)(i) to

obtain the first IMF and take its mean value as the first IMF1.

IMF1 =
1
I

I∑
i=1

E1[x(t)(i)] (1)

r1 = x(t)− IMF1 (2)

where E is the EMD decomposition operator, r1 denotes the
residual signal after the first decomposition.
Step 2: Adding specific noise to the new signal, EMD

decomposition is continued to obtain the second IMF2 of the
original signal and corresponding residual signal r2.

IMF2 =
1
I

I∑
i=1

E1(r1 + ε1E1[ω(t)(i)]) (3)

r2 = r1 − IMF2 (4)

Step 3: Similarly, for i = 3, . . . , k , calculate the k-th mode
component and corresponding residual signal rk according to
step 2.

IMFk =
1
I

I∑
i=1

E1(rk−1 + εk−1Ek−1[ω(t)(i)]) (5)

rk = rk−1 − IMFk (6)

Step 4: Repeat step 3 until the residual signal no more
meets the EMD decomposition condition that the number of
IMFs local extremum points is less than 3, and the algorithm
is terminated. Hence, the decomposition consequence of the
original signal can be described as:

x(t) =
K∑
k=1

IMFk + rk (7)

B. SINGULAR SPECTRUM ANALYSIS
SSA algorithm, a powerful method for studying nonlinear
time series data, can be widely employed to solve many
varieties of problems, including principal or pseudo-periodic
component detection and capture, signal denoising, forecast-
ing and edge point detection [30], [42]. Because of its strong
processing ability to nonlinear signal, many scholars have
applied it to the field of wind speed prediction [40]. The
standard SSA includes four steps: embedding, singular value
decomposition (SVD), grouping and diagonal averaging and
its specific steps can be described as follows:

1) embedding. Assume that the time series of wind speed
with sample number N is set as Y = [y1, y2, . . . , yN ]T and
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the embedded dimension of SSA is represented by L, where 2
≤ L ≤ N . Then the lag order L vector can be defined as
Xi = [yi, yi+1, . . . , yi+L−1]T, where i = 1, 2, . . . ,K,K =
N − L + 1. Thus, the raw wind speed data is reconstructed
into a trajectory matrix named Hankel matrix, which can be
defined as follows:

X =


y1 y2 · · · yK
y2 y3 · · · yK+1
...

... · · ·
...

yL yL+1 · · · yN

 (8)

2) SVD. Through SVD, theHankelmatrixX can be decom-
posed into d components, where d = rank(X ). Additionally,
the i-th triplet eigenvector of the SVD for the matrix X is (λi,
Ui,Vi), where λi denotes the i-th eigenvalue of the covariance
matrix XXT,Ui and Vi represent i-th left eigenvector as well
as right eigenvector of matrix XXT. Therefore, the Hankel
matrix X can be further expressed as follows:

X =
d∑
i=1

Xi (9)

Xi =
√
λiUiVi (10)

3) Grouping. The d components generated by SVD are
divided into main m components as the dominant compo-
nents. For I = I1, I2, . . . , Im}, the matrix XI corresponding
to the group I can be defined as follows:

XI = XI1 + XI2 + · · · + XIm (11)

4) Diagonal averaging. In this process, each matrix
grouped in Eq.(11) is transferred into the new time series by
the following procedure. Assuming that X is a P × J matrix
with elements xij,P∗ = min(P, J ), J∗ = max(P, J ). IfP < J ,
let x∗ij = xij, otherwise, let x∗ij = xji. Then the reconstructed
time series Z = {z1, z2, . . . , zN } can be expressed as follows:

zk =



1
k

k∑
q=1

x∗q,k−q+1 1 ≤ k ≤ P∗

1
P∗

P∗∑
q=1

x∗q,k−q+1 P∗ ≤ k ≤ J

1
N − k + 1

N−J∗+1∑
q=k−J∗+1

x∗q,k−q+1 J∗ ≤ k ≤ N

(12)

C. PHASE SPACE RECONSTRUCTION
PSR algorithm, a practical method to study chaotic systems,
was proposed by Packard et al [43]. The main purpose of
PSR is to reconstruct a phase space based on the sequence
data produced by original dynamical system. Due to that the
evolution information would be implied in the data develop-
ing process, PSR can reflect the inherent law of the original
dynamical system. Thus, preprocessing wind speed with PSR
by selecting the appropriate delay time τ as well as embed-
ding dimension d, the wind speed prediction accuracy would

FIGURE 1. The structure of GRU unit.

be promoted. Let a one-dimensional wind speed data with
length N as x = {xi|i = 1, 2, . . . ,N}, the input matrix form
of PSR at different prediction levels h is expressed as follows:

X = [X1 X2
. . . XL]T =



x1 x1+τ · · · x1+(d−1)τ
...

...
. . .

...

xi xi+τ · · · xi+(d−1)τ
...

...
. . .

...

xL xL+τ · · · xL+(d−1)τ


(13)

where L = N − (d − 1)τ − h, τ and d denote delay time
and embedded dimension, respectively. Xi denotes the i-th
input sample vector in the input matrix. Hence, the matched
reconstructed outputmatrix form can be expressed as follows:

Y = [Y1Y2 · · · YL]T= [x1+h+(d−1)τ , x2+h+(d−1)τ · · · xN ]T

(14)

where Yi is the prediction value according to the i-th vector
in the input matrix.

D. KERNEL EXTREME LEARNING MACHINE
ELM, a machine learning theory, was proposed by
Huang et al. [44]. Based on this theory, some relevant algo-
rithms like a modified version combined with kernel function
have been derived, namely KELM. It utilizes kernel function
to replace random mapping in ELM, which improves the
stability and generalization ability of the model. Because the
kernel function is employed, the number of hidden nodes do
not need to be given, and the specific process can be shown
as follow:

For the ELMmodel with L hidden nodes, the training sam-
ples of N groups are given as {(xi, yi)|xi ∈ Rg, yi ∈ Rc, i =
1, 2, . . . ,N}. Therefore, the weight matrix β between hidden
layer and the output layer can be formulated as follows:

β = HT (
I
C
+HHT )−1T (15)

whereH is the hidden layer output matrix; T is the output tar-
get matrix; I is the identity matrix, and C is the regularization
coefficient.

On the basis of ELM, the KELM method introduces the
kernel function to achieve better stability and generaliza-
tion performance, which can map all input samples from n-
dimensional space to high-dimensional hidden layer feature
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FIGURE 2. The framework of the hybrid multi-step prediction model.

space. The kernel matrix is defined as �ELM whose element
is �ELM(i, j).

�ELM = HHT
;�ELMi,j = h(xi) · h(xj) = K (xi, xj) (16)

where K (xi, xj) is the kernel function. Radial basis function
is usually chosen as the kernel function of the KELM model,
and its expression can be expressed as follows:

K (x, y) = exp(−
‖x − y‖2

δ2
) (17)

where δ represents the kernel parameter. Therefore, the ulti-
mate output of KELM can be signified in the following:

f (x) = h(x)β = h(x)HT (
I
C
+HHT )−1T

=

 K (x, x1)
...

K (x, xN )


T

(
I
C
+�ELM )−1T (18)

E. GATED RECURRENT UNIT NEURAL NETWORK
GRU neural network has been widely applied for wind speed
prediction in recent years [45], [46]. As an important variant

of LSTM network, it not only inherits the ability of LSTM
network to deal with nonlinear time series problems, but
also simplifies the structure of LSTM network. GRU neu-
ral network improves the design of the gate. That means it
combines the input gate and forgetting gate in LSTM into
a single gate called the update gate and retain the original
reset door. Therefore, the number of parameters is reduced
and the training speed is greatly improved. The structure of
GRU unit is illustrated in Fig.1. From the figure, it can be
observed that zt represents the update gate which is utilized
to regulate the degree of state information from the previous
moment brought into the current state while rt represents the
reset gate which is utilized to regulate the degree of state
information ignored in the former moment.

The state of reset gate rt as well as update gate zt are
defined as follows:

rt = σ (Wr · [ht−1, xt ]) (19)

zt = σ (Wz · [ht−1, xt ]) (20)

where xt ,Wr ,Wz signify the input wind speed data,
the weight matrixes of reset gate and update gate, respec-
tively. Furthermore, the hidden state ht and the candidate
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FIGURE 3. Short-term wind speed time datasets with 10 min and 1 h intervals.

hidden state h̃t can be calculated according to the following
formula:

ht = (1− zt ) · ht−1 + zt · h̃t (21)

h̃t = tanh(W · [ht−1 ∗ rt , xt ]) (22)

where · denotes point multiplication. In Equations (19), (20)
and (22), two different activation functions can be determined
respectively as follows:

σ (x) =
1

1+ exp(x)
(23)

tanh(x) =
1− exp(2x)
1+ exp(2x)

(24)

III. THE HYBRID MULTI-STEP FORECASTING MODEL
The specific procedure of the proposed multi-step forecasting
model is illustrated in Fig.2. and its detailed process can be
explained as follows:

(1) CEEMDAN decomposition technique is employed to
decompose the raw wind speed data into a sequence of
IMFi(i=1,2,...,n) and a residual component named Res.

(2) SSA is utilized to capture principal components Ci’ and
residual components Cir ’’ (i = 1, 2, . . . , n) of each IMFi,
then all the residual component Cir ’’ and the Res are added
together as a new component named Cn+1’. Meanwhile,
among all Ci’ components newly constituted, the first five
components are taken as high-frequency components and the
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TABLE 1. Statistical information of the four collected datasets.

remaining ones as low-frequency components according to
the degree of fluctuation.

(3) PSR is utilized to construct the input and output of
training set and testing set of all high-frequency and low-
frequency Ci′(i=1,2,...,n+1) acquired by CEEMDAN-SSA for
the proposed model. Subsequently, KELM is employed to
forecast high-frequency Ci’ while GRU neural network is
employed to forecast the low-frequency Ci’.
(4) The final forecasting result of the raw wind speed

sequence is acquired by summing up the predicted values of
each component.

IV. CASE STUDY
A. WIND SPEED DATA COLLECTION
In this section, four wind speed data datasets possessing
time intervals of 10 minutes and 1 hour are collected from
Sotavento Galicia (SG) wind farm. Besides, four datasets in
this study are expressed as SG Jan., SG Jul., SG Sep. and SG
Dec. whose date details are orderly January 01-31 in 2018
(SG Jan.), July 15-21 in 2018 (SG Jul.), September 08-14 in
2018 (SG Sep.) and December 01-31 in 2018 (SG Dec.).
Furthermore, the corresponding visual presentation and sta-
tistical information are depicted in Fig.3. and table 1, respec-
tively. Meanwhile, the statistical information includes the
maximum (Max.) value, minimum (Min.) value, mean value,
skewness (Skew.), kurtosis (Kurt.), and standard deviation
(Std.). It can be distinctly discovered that the original wind
speed data holds strong non-linearity and non-stationarity,
which entails that it is hard to develop accurate prediction
model. Moreover, the input and output of the training set and
testing set corresponding to each predictive component are
derived from PSR with different parameters, and the last 200
samples of SG Jul. and SG Sep. datasets at the 10 minutes
interval are served as the testing sets while the last 150 sam-
ples of SG Jan. and SG Dec. datasets at the 1 hour interval are
served as testing sets.

B. EXPERIMENTAL DESCRIPTION
1) CONTRAST MODELS AND EVALUATION INDEXES
To validate the effectiveness of the proposed hybrid model,
four experiments are performed. Besides, in each experiment,
several single models and compositional models are imple-
mented as comparing models for 1-step, 3-step and 5-step
prediction. The single models include SVR, KELM and GRU
neural network. The remaining three comparing composi-
tional models include CEEMDAN-GRU, CEEMDAN-SSA-
PSR-KELM and CEEMDAN-SSA-PSR-GRU.

TABLE 2. Six evaluation metrics.

In order to quantitatively assess the prediction capability of
all experimental forecasting models, three accuracy indexes
are employed in this study containing mean absolute percent-
age error (MAPE), mean absolute error (MAE) as well as
root mean square error (RMSE) [47]. Besides, for purpose
of comparing the improvement rates of these three indexes
between the proposed predictionmodel and different compar-
ison models, the corresponding improvement rates of indexes
are defined and proposed. The detailed definitions and for-
mulas of the above six evaluation indexes are presented in
table 2, in which N represents the amount of predictive wind
speed data, Y and Ŷi signify the actual wind speed as well as
predicted values, respectively.

2) PARAMETERS SETTING OF ALL EXPERIMENTAL MODELS
It is noteworthy that the predictor GRU neural network is
developed with Python 3.7.0 and Keras 2.3.1 backend with
TensorFlow 2.0.0, and the rest modules are conducted with
MATLAB R2018b. At the same time, Adam optimization
algorithm is employed to optimize the internal parameters of
GRU neural network. Besides, grid search(GS) is utilized to
identify the regularization coefficient C and kernel parame-
ters δ in SVR, KELM as well as the KELM-based comparing
model, whose searching scope is [2−8, 28] and [2−10, 210],
and both grow exponentially at 0.8 steps. Additionally, the
hyper-parameters of the proposed model and comparison
model involving GRU neural network are consistent to better
compare the performance of corresponding prediction mod-
els, specifically including a single hidden layer, 500 times
epochs of training and batch size 32. Simultaneously, Adam
optimization algorithm is conducted to optimize the inher-
ent parameters of GRU neural network. Similarly, the set-
ting of relevant parameters of the compositional models
involving CEEMDAN remains uniform, where the standard
deviation of the added white noise, the number of real-
izations as well as the maximum number of sifting itera-
tions are set as 0.2, 500 and 5000 in order. Besides, for
all prediction models based on SSA, the embedded dimen-
sion L of the embedding phase and the grouping threshold
of the grouping stage within SSA are set as 9 and 80%
respectively [40].
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TABLE 3. Performance evaluation of models with various prediction horizons for four datasets.

C. EXPERIMENTAL ANALYSIS OF MULTI-STEP
FORECASTING
In this part, the prediction results acquired by all the predic-
tion models at different forecasting levels on four datasets are
analyzed and discussed in detail. The indexes MAPE, MAE,
and RMSE mentioned above for all the prediction models
are described in Table 3. Additionally, the corresponding
indexes decline rate between the proposed model as well as
the comparison model are expressed in Table 4.

After the comprehensive analysis of Table 3 and Table 4,
the following conclusions can be drawn as follows:

(1) Comparing the values of the single models and the
combined models on the indicators MAPE,MAE and RMSE,
it can be found that the compositional models combined with
data preprocessing technology achieve more excellent perfor-
mance on the three indicators, which indicates that the data
preprocessing technology can contribute to improving the
capability of the forecasting model. For instance, in the case
of SG Dec. dataset, from one-step to multi-step forecasting,
the MAPE values of CEEMDAN-GRUmodel are 12.1471%,
17.3304% and 20.2347%, respectively, while that of GRU
model are 33.7705%, 49.4284% and 58.9822%, respectively,
as well the same situation occurs on indicators MAE and

RMSE. Similarly, the law continues to be maintained for
other three datasets.

(2) The proposed CEEMDAN-SSA-PSR-KELM-GRU
model performs better multi-step forecasting capability than
CEEMDAN-GRU model. For instance, in the case of
SG Dec. dataset, from one-step to multi-step forecasting,
the MAPE values are decreased by 45.5420%, 20.3073% and
25.4340%, respectively; the MAE values are decreased by
50.3602%, 25.7230% and 26.3663%, respectively; the RMSE
values are decreased by 51.1593%, 24.7373% and 27.3538%,
respectively.

(3) CEEMDAN-SSA-PSR-GRU model performs better
multi-step prediction capability than that of CEEMDAN-GRU
model which means that data preprocessing combined with
SSA technology and PSR algorithm can further enhance the
prediction performance of the model. For instance, in the case
of SG Dec. dataset, from one-step to multi-step forecasting,
the MAPE values of CEEMDAN-SSA-PSR-GRU model are
8.1264%, 15.2603% and 18.9584%, respectively while that
of CEEMDAN-GRU model are 12.1471%, 17.3304% and
20.2347%, respectively, and the same situation occurs on
indicators MAE and RMSE. Similarly, the law continues to
be maintained in other three datasets.
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TABLE 4. Decrement ratio of the evaluation indicators obtained by the proposed model compared with relevant contrast models.

(4) The proposed CEEMDAN-SSA-PSR-KELM-GRU
model performs better multi-step forecasting capability than
the CEEMDAN-SSA-PSR-KELM model, which demon-
strates that the proposed hybrid model based on two predic-
tors can achieve higher multi-step prediction performance.
For instance, in the case of SG Dec. dataset, from one-step
to multi-step forecasting, the MAPE values are decreased by
6.1594%, 2.4743% and 12.5833%, respectively; the MAE
values are decreased by 8.8595%, 3.2159% and 13.3328%,
respectively; the indexes RMSE are decreased by 6.7609%,
2.7762% and 10.3464%, respectively.

(5) The proposed CEEMDAN-SSA-PSR-KELM-GRU
model performs better multi-step forecasting capability than
the CEEMDAN-SSA-PSR-GRU model. For instance, in the
case of SG Dec. dataset, from one-step to multi-step,
the MAPE values are decreased by 18.5982%, 9.4970% and
20.4141%, respectively; the MAE values are decreased by
11.4288%, 9.7781% and 28.2018%, respectively; the RMSE
values are decreased by 6.6631%, 8.8272% and 29.8123%,
respectively.

(6) The CEEMDAN-SSA-PSR-GRU model achieves high
prediction accuracy in the prediction of 1-step of SG
Jan. dataset and the prediction accuracy of CEEMDAN-SSA-
PSR-KELM is similar to the proposed model. This indi-
cates that compared with other models, the proposed model
removes some detail components and extracts the principal
components in the wind speed sequence. However, in all
experimental models, the proposed multi-step forecasting
model obtains the optimal results.

D. VISUAL ANALYSIS OF FORECASTING RESULTS
In this part, the visual presentation of prediction results of the
experiment on SGDec. dataset is taken as an example for dis-
cussing separately. The forecasted curves of all experimental
models and the bar diagram of actual wind speed values as
well as scatter diagrams describing the degree of fit for each
model are illustrated in Fig.4. (a)-(c). From the Fig.4, it can
be clearly observed that with the increasement of prediction
level, the fitting curves of single models will diverge from
the actual wind speed values while the forecasting curves of
compositional models based on decomposition are relatively
stable. Therefore, the conclusions (4) and (5) can be drawn
more evidently from Fig.4. and the fitting curves of different
prediction levels derived from the proposed model are closer
to the actual wind speed values region. Furthermore, accord-
ing to the scatter diagrams of different forecasting levels, it is
clearly that the predicted values of actual wind speed for the
proposed model are distributed most uniformly on the regres-
sion line as well as the index R of the proposed model is the
optimal in all experimental models, i.e., 0.98686, 0.95689 and
0.94992, respectively. Namely, compared with other compar-
ing models, the prediction accuracy of the proposed model
would not decrease markedly with the increasement of the
forecasting level. Therefore, the predictive capability of the
proposedmodel in multi-step short-termwind speed forecast-
ing has been well verified

Moreover, the evaluation indexes illustrated in Table 3 are
visually demonstrated in Fig.5 with radar charts and each
indicator implemented at different forecasting levels is
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FIGURE 4. Multi-step forecasting results of all models for dataset of SG Dec.: (a) one-step, (b) three-step and (c) five-step.

explained successively in the same subgraph. Therefore,
it can be clearly observed that the variation trends of indexes

with the increasement of prediction levels. To be more spe-
cific, it can be concluded from the forecasting results of all
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FIGURE 5. Radar charts for visualized observation of the indexes and the variation tendency in different prediction levels obtained by all
models: (a)SG Jan. (b)SG Jul. (c)SG Sep. (d)SG Dec.

models for dataset SG Dec. as shown in figure 5(a) that the
three indexes representing the prediction performance are all
minimum, as well the variation range of each index is small.

V. CONCLUSION
In order to establish an accurate multi-step short-term
wind speed forecasting model, the hybrid model includ-
ing multi-stage principal component extraction, GRU neu-
ral network and KELM is proposed in this paper. Among
which, multi-stage principal component extraction combines
CEEMDAN, SSA and PSR. Firstly, CEEMDAN is employed
to decompose the raw wind speed data into a sequence of
IMFs and a residual component. Then, SSA is adopted to
further capture dominant and residual components of all
IMFs and all residual components obtained by CEEMDAN
decomposition and SSA processing are added to form a

new predicted component. Subsequently, PSR is utilized
to construct each component obtained by CEEMDAN-SSA
into the input and output of training set and testing set for
the prediction model. Following, GRU neural network is
employed to forecast the low-frequency components while
KELM is employed to forecast the high-frequency compo-
nents. Finally, the predicted values of all components are
accumulated to acquire the ultimate prediction result of the
raw wind speed data with different prediction levels. To ver-
ify the multi-step forecasting capability of the proposed
model, some comparing models including SVR, KELM,
GRU neural network, CEEMDAN-PSR-GRU, CEEMDAN-
SSA-PSR-KELM aswell as CEEMDAN-SSA-PSR-GRU are
employed for comparison. The experimental results of four
datasets demonstrate that the proposed hybrid model can
achieve better multi-step wind speed prediction effect.
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However, there still exists some limitations in this study,
such as the quality of the raw wind speed data as well
as the selection of relevant parameters of the experimental
models according to the research results of other scholars.
In future research work, we will develop effective methods to
further improve the quality of raw wind speed data, and uti-
lize corresponding optimization methods to optimize model
parameters.
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