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ABSTRACT The end of growing season (EOS) is an effective indicator of annual vegetation growth. Previous
studies have revealed the dynamics of the EOSwith climate change, while the influence of vegetation growth
in preceding stage and peak of growing season (POS) on the EOS has not been thoroughly documented.
In this study, we used four smoothing methods to obtain EOS dates from the Normalized Difference
Vegetation Index (NDVI) in northeast Inner Mongolia (NIM) between 2001–2017, assessed the differences
in the spatiotemporal variations of the EOS obtained by the four smoothing methods, and then investigated
the impacts of climate factors, summer/ autumn vegetation growth and POS on the EOS. The results showed
that the EOS dates obtained with different smoothing methods were broadly consistent in terms of their
spatial patterns and temporal trends. In terms of climate factors, the EOS was driven mainly by preseason
precipitation for the majority of vegetation types and advanced with increasing precipitation. For the steppe,
both minimum temperature (Tmin) and relative humidity (RHU) played the most important roles in regulating
the variation of EOS which was delayed with an increase in Tmin and reduction in RHU. Furthermore, our
study found an earlier POS and vigorous vegetation growth in summer would jointly advance the steppe
EOS, but these relationships were the opposite of each other in meadow and forest regions. Interestingly,
the EOS of NIM was more related with vegetation growth in the most recent period before the EOS. This
study highlights the importance of ecological processes in the preceding growth stage for understanding the
dynamics of EOS.

INDEX TERMS End of growing season, northeast Inner Mongolia, climate change, peak of growing season,
preceding growth stage of vegetation.

I. INTRODUCTION
Global warming continuously affects the structure and func-
tion of terrestrial ecosystems [1], [2]. As a fundamental
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indicator of ecological processes, land surface vegetation
exerts a feedback on the climate system by regulating
hydrothermal circulation [3] and carbon exchange at the
Earth’s surface [4], [5]. Phenology, i.e., the events that occur
during plant growth and their development rhythm[6], [7],
has become the focus of global change studies due it being
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an essential element of ecosystem models [8]–[10]. Numer-
ous studies have reported that a delayed end of growing
season (EOS) is one of the major determinants of a pro-
longed growing season in the middle and high latitudes of
the Northern Hemisphere [11], [12], which will result in an
increase in the carbon storage of terrestrial ecosystems [13].
However, some researchers have reported that a later EOS
would also lead to the loss of carbon by ecosystem respiration
during autumn warming [14]. This suggests that a thorough
monitoring of the EOS could expand our understanding of the
terrestrial ecosystem carbon cycle.

The Normalized Difference Vegetation Index (NDVI),
which is derived from satellite remote sensing, has been
widely applied in the estimation of land surface phenology in
recent years [15]–[17]. Various methods have been developed
to extract the EOS from the NDVI [18], which generally
involve two main steps: elimination of the noise in NDVI
data and identification of the EOS [19], [20]. In the first
step, several methods, such as the Savitzky–Golay filter [21],
Fourier decomposition [22], and logistic function [23], have
been adopted to eliminate the noise in NDVI data, which
is due to contamination by cloud cover, seasonal snow, and
atmospheric variability. In the next step, the predetermined
thresholds and the inflection point methods are frequently
used to identify the EOS on the NDVI curve [6], [24]. Pre-
vious studies have concluded that the EOS identification
method has a substantial impact on the spatiotemporal pat-
tern of the EOS [19], [25]. However, the impact of noise
smoothing methods on the magnitude and trend of the EOS
remain uncertain. Although some studies have revealed dis-
tinctions among the available smoothing methods [26], [27],
they were mainly based on the use of one-year data to assess
the performance of smoothing methods at test points. Only
a few of them have quantitatively characterized the influ-
ence of various filters on the interannual changes of the
EOS [27].

Most studies have attempted to explain the changes in EOS
through daily mean temperature and precipitation [20], [28].
However, the temperature has experienced faster warm-
ing during the nighttime than daytime over the past five
decades [29], which has an asymmetric effect on phenolog-
ical parameters [30]. In addition, some studies have found
that an increase in Tmax has a greater impact on the start
of growing season (SOS) than Tmin in the Northern Hemi-
sphere, which is mainly caused by the combined effects of
sunshine duration and daytime temperature [2]. However,
Chew et al. [31] proposed that the temperature effects on
the flowering time were mediated mainly by sunshine dura-
tion during spring and summer days, but the nighttime tem-
perature was found to play a pivotal role in temperature
effects as days shorten in autumn in the phenology model.
Yang et al. [32] revealed the asymmetric responses of the
EOS to Tmin and Tmax in the Tibetan Plateau. However, the
contribution of Tmin versus Tmax on the EOS in temper-
ate ecosystems is not well known and how the temperature
and sunshine duration co-determine the EOS also remains

uncertain. Moreover, relative humidity could trigger rainfall
regardless of dry or wet soil conditions [33], which will
induce the stomatal opening of plants and improve photo-
synthetic efficiency [34]. Therefore, it should be included
in assessments to determine if humidity triggers the EOS.
As the main part of the growing season, the variation of
the summer vegetation growth has a residual effect on the
EOS [35], [36]. Previous studies have quantified the sum-
mer vegetation growth as the average NDVI of summer
and found that the summer vegetation growth increases the
cost of soil water overconsumption which then advances the
EOS in the Tibetan Plateau [35]. In contrast, the summer
vegetation growth could delay the EOS in the Yellow River
Basin, because the increasing precipitation induced by veg-
etation activity is sufficient to offset enhanced evapotran-
spiration [36]. These conflicting results imply the complex
responses of biomes under different climate conditions, and
none of these studies quantified the relative importance of the
vegetation growth in each preceding month in determining
the EOS. Furthermore, the peak of growing season (POS) of
plant activity, referring to the timing of the highest degree of
photosynthetic capacity, directly affects carbon uptake and
water consumption [37]. Evidence from several studies has
noted that the POS has shifted towards spring throughout the
majority of the Northern Hemisphere mid-latitudes [12] and
the earlier occurrence of POS results in vigorous vegetation
activity through enhanced carbon assimilation early in the
growing season [38], [39]. Yet, little is known about the
impact of change in the POS on the EOS of different biome
types.

Northeast Inner Mongolia (NIM) is located in a climate
transitional zone, including a range of terrestrial ecosys-
tems along the moisture gradient from semi-arid steppe and
semi-humid forest, and contains a cropland region. This
region contains one of the world’s four largest natural pas-
tures and the important forest area of the Mongolian Plateau,
which extends over the Greater Khingan Mountains, with a
low intensity of human disturbance [40]. The extensive diver-
sity of vegetation and highly vulnerable ecosystems in the
region, especially their phenological shifts, are very sensitive
to global warming [41]. Consequently, it is an ideal region
for investigating the response of EOS variations to climate
and the preceding growth stage of vegetation. The main
objectives of our study were to: (i) assess the influence of
different NDVI smoothingmethods on interannual changes in
the EOS; (ii) investigate how the EOS changed over the NIM
from 2001 to 2017; (iii) systematically analyze the effects
of multiple preseason climate factors on the EOS variation;
and (iv) explore the impact of the preceding growth stage
of vegetation before the EOS on the interannual variation of
the EOS, especially for different plant functional types. The
results of this study improve our understanding of how the
multiple climate factors and the preceding growth stage of
vegetation jointly affect the EOS in temperate ecosystems.
It would be useful to consider these mechanisms in future
carbon cycle models.
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II. MATERIALS AND METHODS
A. STUDY AREA
The NIM region extends from approximately 47◦05′

−53◦20′ N and 115◦31′ −126◦04′ E, covering a total area
of about 2.53 × 105 km2. The elevation of NIM ranges
from 167 m in the east to 1,675 m in the central mountains.
The annual total precipitation varies widely from 195 mm in
the west to 510 mm in the east, with most rainfall received
in June to August. The vegetation across the NIM exhibits
an extensive natural diversity along with precipitation and
topography gradients, and can be divided into four major
types: steppe, meadow, forest, and cropland (Fig. 1). The
steppe mainly occurs in western parts of NIM, with an annual
mean temperature range of −3-0 ◦C. Forest is widely dis-
tributed in the Greater Khingan Mountains across the central
part of the study area, with an annual mean temperature range
of−5 to−2 ◦C. The transition zone between steppe and forest
mainly contains meadows. Cropland areas are spread across
the eastern part of NIM and are scattered among mountains
toward the west, with an annual mean temperature range
of 0-2 ◦C.

FIGURE 1. Geographic location, distribution of elevation, vegetation
types, and meteorological stations of northeast Inner Mongolia (NIM).

B. DATASETS
Moderate-resolution Imaging Spectro-radiometer (MODIS)
NDVI datasets spanning the period from 2001–2017 were
used to retrieve the land surface phenology metrics across
the study area. The 16-day maximum-value composite
NDVI data (MOD13Q1) at a spatial resolution of 250 km
were pre-processed and released by the Level-1 and
Atmosphere Archive and Distribution System (LAADS)
of the National Aeronautics and Space Administration
(NASA) (http://ladsweb.nascom.nasa.gov/). We further pro-
cessed the NDVI data, i.e., mosaicking image scenes,
converting the geographic coordinate system, and clip-
ping by boundaries. Climate records for the period of
2001–2017 were obtained from the China Meteorolog-
ical Data Service Center of the China Meteorological

Administration (http://cdc.cma.gov.cn). The climatic datasets
were collected from nine meteorological stations (Fig. 1)
and then spatial interpolation data was obtained using the
Kriging method [42], including the daily minimum temper-
ature (Tmin), daily maximum temperature (Tmax), sunshine
duration (SSD), relative humidity (RHU), and precipitation.
The vegetation types were obtained from a vegetation map
of Inner Mongolia, with a scale of 1:1000000. The data
was collected in 2000 and was further grouped into steppe,
meadow, forest, and cropland. Previous studies have shown
that the cropland area has increased substantially in Northeast
InnerMongolia since 2000 [43]. Hence, the range of cropland
in this study was updated based on the 2010 MODIS Land
Cover Type Product (MCD12C1), and the remaining regions
retained their original properties.

C. DETERMINATION OF THE PHENOLOGY PARAMETERS
FROM THE NDVI
Original NDVI data is usually affected by residual noise
despite being processed by the standard maximum value
compositing (MVC) technique [44]. Therefore, we adopted
the harmonic analysis of time series (HANTS), asymmetri-
cal Gaussian function (AG), double logistic function model
(DL), and Savitzky Golay (SG) filtering methods to smooth
the NDVI time-series data before identifying the EOS dates
(Table S1). Furthermore, we applied the cumulative NDVI
based logistic regression curve method to determine the EOS
from smoothed NDVI data (Table S2). This method was
developed by Hou et al. [45] and is widely used for retriev-
ing phenological phases. First, we calculated the cumulative
NDVI based on the smoothed NDVI data and then fitted
the cumulative NDVI to interpolate daily NDVI values using
the logistic model. Second, we obtained the change rate of
fitted logistic NDVI curves. Finally, we specified the EOS
as the time when the change in the curvature rate reached
its minimum value (Fig. S1b). The summer average NDVI
(June, July, and August) and September NDVI represented
the preceding growth stage of vegetation and was used to
identify the impact on the EOS. In addition, we used the sixth-
degree polynomial function [46] to interpolate daily NDVI
from the 16-day NDVI, and then the timing of the occurrence
of maximum NDVI in summer was defined as the POS date
(Fig. S1a).

D. ANALYSES
The Theil-Sen median trend analysis and Mann-Kendall test
method [47] were used to assess the spatial characteristics
of EOS trends in each pixel. To further investigate the dif-
ferences in EOS trends among different vegetation types,
we calculated the spatial average EOS of each vegetation
type to examine the overall trends. In addition, to under-
stand the effects of the potential driving factors on the EOS,
Pearson correlation coefficients [55] were calculated and
a t-test was performed to assess the relationships between
the EOS and both preseason climate factors and the pre-
ceding growth stages of vegetation (June, July, August, and
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FIGURE 2. The spatial distribution of the multiyear averaged Normalized Difference Vegetation Index (NDVI). The four enlarged
panels show the curves smoothed by four different methods (harmonic analysis of time series (HANTS), asymmetric Gaussian (AG)
function, double logistic (DL) function, Savitzky-Golay (SG) filter) and the corresponding end of growing season (EOS). The sample
pixels are in steppe (top left), meadow (bottom left), forest (top right), and cropland (bottom right).

September NDVI, summer average NDVI and POS). Here,
based on the multiyear (2001–2017) spatial average EOS
for each vegetation type, we determined that the last day of
September could be regarded as the start of the preseason in
the steppe, meadow, and cropland regions, while the last day
inmid-October was considered to be the start of the preseason
in the forest area. Furthermore, we used stepped intervals
of 10 days to calculate the mean Tmin for each of 15 periods,
with durations ranging from 10–150 days (i.e., 10, 20, 30, . . . .,
150) for each pixel. The same procedure was executed for
the other climate factors. Hence, the preseason length of each
climate factor was defined as the period which had the largest
correlation coefficient for the relationship with the EOS.

III. RESULTS
A. ANALYSIS OF THE DIFFERENT SMOOTHING
METHODS TO EXTRACT THE EOS
The performance of four smoothing methods and the corre-
sponding EOS at four sample sites selected from 2006 are
displayed in Fig 2, in which each inset represents a vegeta-
tion type. It was observed that all denoising methods were
effective for smoothing the time series of NDVI data. Com-
paring four EOS dates obtained using the different smoothing
methods, we found that the dates obtained with AG, DL,
and SG were extremely similar (within 3 days) for most
biomes, and were even in the same day in the forest region.
Moreover, the EOS date obtained with HANTS was usually
earlier than the date obtained with the other three methods,
which was four days earlier in most of the forest area. The
spatial distribution of the multiyear average EOS, which was
derived from the four filtered NDVI values during the period
of 2001–2017 is shown in Fig. 3. The spatial patterns of the
four EOS dates were extremely consistent with each other.
The earliest EOS dates were located in the southwest and east
of the study area, whereas the later EOS dates were mainly

identified in the central mountain region. We calculated the
standard deviation (SD) of the EOS obtained with the four
smoothing methods (Fig. 3f). Nearly 90% of the total pixels
had SDs of less than 4 days, while only 10% of all pixels had
SDs of more than 4 days, of which 2% of pixels had SDs of
more than 6 days. In contrast, the SDs were smaller in the
steppe area than in the other biomes (Fig. S2).

A comparison of the multiyear average EOS for each
biome at regional scales (Fig. 4a) revealed a good resem-
blance among AG, DL and SG method. However, the EOS
obtained from the NDVI smoothed by HANTS was approxi-
mately 5 days earlier than the value obtained using the other
methods for the entire study area and the different vegetation
types (Fig. 4a). Fig 4b-f shows the interannual variations of
the EOS estimated from the different smoothed NDVI data
and their mean values during 2001–2017 for different plant
functional types. The curves of interannual changes of the
EOS based on the different methods were in good agreement
with each other (Fig. 4b) and the slope values were almost
the same across the whole study area (Table S3). Consistent
results were obtained for all vegetation types (Fig. 4c-f).
Overall, the EOS results obtained using the different methods
displayed similar characteristics, and therefore, we used the
average value of the four EOS dates in the following analysis.

B. SPATIAL DIFFERENCES AND TEMPORAL TRENDS
The spatial distribution of multiyear average EOS is shown
in Fig. 3e. The EOS was in the range of days 240–300 (late
August to late October). The earlier EOS dates, ranging from
days 240 to 270, were mainly located in the southwestern and
eastern parts of NIM. The central and northern regions had
EOS dates ranging from days 270–300. In addition, we found
that the spatial average EOS date in NIM was around day
271 ± 7 (late September) (Fig. 4a). In terms of plant func-
tional types, the earliest EOS dates were observed in steppe
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FIGURE 3. The spatial pattern of EOS in the study area obtained with the four smoothing methods and their average EOS: HANTS (a),
AG function (b), DL (c), SG filter (d), mean (e), and its standard deviation (f) for the four EOS dates. The top left inset shows the
percentage of each interval in which the value was indicated by the map legend.

(day 262± 14) and cropland (day 266± 10), while later EOS
dates were found in meadows (day 273 ± 9) and forest (day
278 ± 6). Fig 4b-f shows the interannual changes of EOS

during the period of 2001–2017, and clearly shows discrep-
ancies in the EOS trends for different biomes. At the regional
level, the EOS across the NIM displayed no significant
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FIGURE 4. Average dates and standard deviation of EOS for the four smoothing methods and their mean (a). The interannual variations of EOS using
the four smoothing methods (HANTS, AG, DL and SG) and mean EOS from 2001–2017 for entire study area (b), steppe (c), meadow (d), forest (e), and
cropland (f).

advancing trend, with a rate of 0.1 d·a−1 (P = 0.76)
(Fig. 4b). The EOS of steppe and cropland experienced
advancing trends at rates of 0.33 d·a−1 (P = 0.24) and
0.42 d·a−1 (P = 0.04), respectively (Fig. 4c and f). The EOS
of forest biome was delayed by 0.14 d·a−1 (Fig. 4e), but the
delaying trendwas not significant (P= 0.53). For themeadow
ecosystem, there was no obvious trend (Sen’s slope =
-0.02 P = 0.95) in the EOS (Fig. 4d). We mapped the spatial
distributions of EOS trends for the study period (Fig. 5). Over
the study area, an advance of the EOS was observed across
more than 63.7% of the total pixels, although it was signifi-
cant in only 5.42% of the pixels, and the advance was more
pronounced in the east of the Greater KhinganMountains and
western steppe area of NIM. In contrast, a delay in the EOS
was observed in 36.3% of all pixels (significant in 3.86% of
pixels), which were generally concentrated in the northern
Greater Khingan Mountains.

C. RESPONSES OF THE EOS TO POTENTIAL
DRIVING FACTORS
1) RESPONSES OF THE EOS TO MULTIPLE
CLIMATE FACTORS
At the regional scale, both Tmin (R= 0.27, p> 0.05) and Tmax
(R = 0.41, P > 0.05) exhibited a positive influence on the
EOS of the NIM, which occurred approximately at preseason
day 80 (Fig. S3). In addition, the correlation between SSD and
EOS was in general similar to the corresponding correlations
found for Tmin and Tmax (Fig. S3), implying that a longer
SSD was conducive to vegetation growth in autumn. How-
ever, the preseason length of SSD which had the strongest
effect on the EOS was generally longer than the preseason
length of Tmin and Tmax. In contrast, negative relationships
between the EOS and both RHU (R = −0.46) and precip-
itation (R = −0.62) were observed (Fig. S3). These results
implied that the EOS of NIM advanced under increased

FIGURE 5. The trend of multimethod averaged EOS in NIM during
2001–2017 (the top left (upper) inset shows the pixels significant at p <

0.05, the top left (lower) inset shows the percentage of each interval that
is indicated on the map).

RHU and precipitation. The strongest impacts of RHU and
precipitation on the EOS mainly occurred in the short-term,
within 10 days of the preseason. Biome-specific correlations
between the EOS and preseason climate factors are presented
in Fig. 6. It can be clearly seen that the relationship between
the EOS and Tmin varied substantially among the plant func-
tional types. The EOS of steppe (R = 0.46, P > 0.05) and
meadow (R= 0.26, P> 0.05) were positively correlated with
Tmin. In contrast, a negative correlation was found in forest
(R = −0.38, P > 0.05) and cropland (R = −0.44, P > 0.05)
regions. In general, the EOS for steppe and meadow would
be delayed with a Tmin increase, but it would advance with
a Tmin increase in the forest and cropland biomes. It was
apparent that Tmax had a positive impact in most subregions,
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FIGURE 6. Correlation coefficients between the annual changes of the
EOS with minimum temperature (Tmin), maximum temperature (Tmax),
sunshine duration (SSD), relative humidity (RHU), and precipitation in
NIM from 2001 to 2017. ∗ and ∗∗ indicate significance at p < 0.05 and
p < 0.01, respectively.

except for the cropland (R = −0.41, P > 0.05) area. The
forest EOS was significantly related to Tmax (R = 0.54,
P < 0.05). This indicates that a rising Tmax was beneficial
to vegetation growth for most vegetation types, especially in
the forest region, but it restricted the growth of cropland in
autumn. Furthermore, the EOS of all biomes were positively
correlated with SSD, particularly for the forest (R= 0.53, P<

0.05) and cropland (R = 0.51, P < 0.05) areas. However, the
EOS dates in all subregions were negatively correlated with
RHU and precipitation.

To determine the effects of climate factors on the EOS
at the pixel scale, the correlation coefficients between
the EOS and preseason climate factors were calculated
(Fig. 7a-f). Across the study area, the EOS was positively
correlated with Tmin in 48.59% of the pixels in the total area
(significant in 11.96% of pixels), and there was a negative
correlation in 51.41% of pixels (significant in 12.91% of
pixels). The EOS was positively correlated with Tmax in most
pixels (74.17%), with the correlation being significant for
21.66% of total pixels (Fig. 7f). In most pixels (74.08%)
there was a positive correlation between SSD and the EOS
throughout the NIM, with 24.78% being significant. In the
remaining pixels, which represented 25.92% of the total
areas, there was a negative correlation (Fig. 7f). Compared
with the SSD, the opposite pattern was observed in the rela-
tionship between the EOS and both RHU and precipitation.
Specifically, the EOS across NIM was negatively correlated
with RHU and precipitation in 82.77% and 84.03% of all
pixels, of which 31.52% and 40.21% were significant at the
0.05 level, respectively (Fig. 7f). Additionally, the EOS of
NIM was most closely associated with Tmin and Tmax during
the period of days 10–110, and themid-value occurred at days
60 and 80, respectively (Fig. S4). In contrast, the preseason
durations of SSD, RHU, and precipitation were concentrated
over shorter time scales, with the mid-values mostly occur-
ring at about day 30 (Fig. S4). In line with the across-biome
results reported above, more than 70% of pixels had a positive
correlation between the EOS and Tmax for each biome, except
cropland (Fig. 7b-f). The relationship between the EOS of

cropland and Tmax was ambiguous, with positive and negative
correlations in 44.96% and 55.04% of all pixels, respectively.
There was a positive correlation between SSD and the EOS
in more than 63% of each biome, and around 30% of these
positive correlations were significant at the 0.05 level, except
for the steppe (significant in 7.35%) and meadow (significant
in 16.25%) regions (Fig. 7f). Consistent results were also
found for RHU and precipitation, with a negative correla-
tion between the EOS with RHU and precipitation observed
at more than 68% of pixels for each vegetation type, and
most were significant in more than 20% of pixels (Fig. 7f).
Compared with the factors mentioned above, there were large
differences in the effects of Tmin on the EOS among the
different vegetation types. For steppe, more than 86% of the
pixels had a positive correlation, and about 30% of the pixels
were significant at the 0.05 level (Fig. 7f). With regard to
forest and cropland areas, negative correlations between the
EOS and Tmin were observed in 63.81% (forest) and 75.31%
(cropland) of pixels (Fig. 7f). The meadow EOS was posi-
tively correlated with Tmin in 48.97% of pixels and negatively
correlated with Tmin in 51.03% of pixels, although the corre-
lation was not significant in most pixels (Fig. 7f). Overall,
the EOS of NIM was most strongly related to precipitation
(Fig. 7a, Fig. S5), with an average correlation coefficient of
−0.33, suggesting that the precipitation was the dominant
climate factor controlling the variation of EOS. Consistent
results were also found for meadow, forest, and cropland,
with average correlation coefficients of −0.36, −0.44 and
−0.33, respectively (Fig. 7c-e, Fig. S5). For steppe, both
Tmin and RHU were the driving climate factors that best
explained the trend of EOS, with average correlation coef-
ficients of 0.33 and −0.33, respectively (Fig. 7b, Fig. S5).
Although the other climatic variables were selected in rela-
tively few pixels, their influences on the EOS could not be
ignored.

2) RESPONSES OF THE EOS TO VEGETATION
GROWTH AND THE POS
The spatial patterns of correlation between the EOS and
both summer average NDVI and POS are shown in Fig. 8.
We found that a positive correlation between the EOS and
summer average NDVI was distributed in the northern and
northeastern parts of NIM (52.17% of total pixels), while
a negative correlation was identified in 47.83% of pixels
(Fig. 8a). The spatial distribution of the relationship between
the EOS and POS had the opposite sign to the relationship
between summer average NDVI and EOS in most pixels
(Fig. 8b). The EOS was negatively correlated with the POS
in 51.53% of pixels and positively correlated with the POS
in 48.47% of pixels in the NIM.

For steppe and cropland regions, the EOS was mainly
negatively correlated with summer average NDVI in 77.03%
and 63.47% of their total areas, with average correlation
coefficients of −0.15 and −0.11, respectively (Fig. 8c, d).
In contrast, the EOS was positively correlated with the POS
in 78.39% and 65.46% of pixels, with average correlation
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FIGURE 7. The frequency distribution of correlation coefficients between the EOS and climate factors: entire study area (a), steppe (b), meadow (c),
forest (d), and cropland (e), and the percentages of correlation coefficients (f: bars above zero line represent percentage of positive correlations, and
the underneath show negative percentages, colored sections show the percentage of significant correlations at p < 0.05).

coefficients of 0.18 and 0.13, respectively. This suggests that
the EOS of steppe and cropland would advance with an
increase in the summer average NDVI and an advance in the
POS in most pixels. However, the summer average NDVI
had a positive (67.00% of pixels) impact on the forest EOS,
with an average correlation coefficient of 0.13, and the POS
had a negative (64.75% of pixels) impact on the forest EOS,
with an average correlation coefficient of −0.12 (Fig.8c, d).
This indicated that the forest EOS would be delayed with
the growth of vegetation in summer and an advanced POS.
In addition, the response of meadow EOS on the summer
average NDVI and POS were ambiguous (Fig. 8c, d), with
a positive/negative correlation of the EOS with summer aver-
age NDVI of 58.39% / 41.61%, respectively. The meadow
EOS was positively correlated with the POS in 40.58% of
pixels and negatively correlated in 59.42% of pixels. Fur-
thermore, we obtained the relationship between the EOS and
NDVI for each summer month and September. For the entire
study area, we found that the EOS was negatively correlated
with the NDVI in June and July, while it was positively cor-
related with the NDVI in August and September (Fig. S6a).
A similar pattern was observed in steppe and cropland regions
(Fig. S6b, e). This implied that the vegetation activity in
early summer would restrict the growth of autumn vegetation,
while vegetation activity in late summer and early autumn
would delay the vegetation degradation. For the meadow and
forest areas, the NDVI had a positive effect on the EOS in
all months, especially in August and September (Fig. S6c, d),
indicating that the NDVI in all periods prior to leaf senes-
cence was sufficient to promote vegetation growth in autumn
and delay the EOS.

IV. DISCUSSION
A. RESPONSES OF DIFFERENT SMOOTHING METHODS
ON THE EXTRACTION OF THE EOS
Numerous studies have concluded that all smoothingmethods
can effectively remove the residual noise in the NDVI [18],
but the different methods produce differences in the descrip-
tion of overall trend of vegetation dynamics [48] and in the
retention of details of seasonality signals [49]. In this study,
we adopted the four frequently-used methods (HANTS, AG,
DL, and SG) to smooth the time series of NDVI data and then
extracted the EOS in NIM during the period of 2001–2017.
The results of the comparison showed that the spatial distri-
butions of the EOS retrieved from the different smoothing
methods displayed similar patterns and the SDs were mainly
within 6 days (Fig. 3f). This was inconsistent with previous
studies in which large disparities (range of days 20–50) were
reported in the SOS and length of growing season (LOS) and
that the SG filter was more reliable than the AG and DL for
temperate grassland [27]. Several researchers have reported
that the effects of smoothing methods on the estimation of
land surface phenology vary greatly for different levels of
vegetation coverage [24], [26]. In contrast, our study found
that the EOS dates using different smoothing methods were
similar at sample sites with different vegetation types (Fig. 2).
The average SDs were relatively smaller in steppe (2 days)
than the other biomes (4 days) at the pixel scale (Fig. S2).
The differences in errors among the vegetation types may
be caused by the signal to noise ratio of the NDVI time
series, which is proportional to the confidence level for clear
sky labeling [50]. Furthermore, Cong et al. [28] consid-
ered that the interannual changes of the EOS were mainly
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FIGURE 8. Spatial pattern of the correlation coefficients of the EOS to summer NDVI (a), and peak of growing season (POS) (b), (The
red (negative) and blue (positive) pixels in the top-left (upper) inset indicate significance at p < 0.05; the top left inset (lower) shows
the percentage of each interval that is indicated on the map legend). The frequency distribution of the correlation coefficients
between the EOS and summer average NDVI (c) and POS (d) for different vegetation types, (P and N represent the positive and
negative correlations, respectively).

dependent on the smoothing method rather than the identi-
fication method, and found an obvious distinction between
the Tibetan Plateau EOS trends based on the cubic spline
and HANTS functions. Liu and Zhan [51] also found that the
DL function was better than the SG filter for describing the
overall trend of the SOS. However, our results showed that the
interannual variations of the EOS using various filter were
in good agreement with each other for all biomes (Fig. 4),
indicating that the use of different smoothing methods had
little impact on the EOS trend in NIM. The inconsistency in
the results of the different studies may be attributed to the
differences in the methodology of phenology extraction [19],
land surface conditions [28], and data resolution [52], [53].

B. SPATIAL DIFFERENCES AND TEMPORAL TRENDS
Our results showed that the EOS ranged between days
240 and 300 (Fig. 3e), which was in agreement with pre-
vious studies that found the EOS mainly occurred in late-
August to mid-October in the Mongolian Plateau [16] and
temperate China [19], including NIM. Despite there being no
clear patterns along the latitudinal or longitudinal gradients,

the EOS of NIM displayed a spatial heterogeneity among the
different vegetation types, with the forest EOS always being
later than in steppe and meadow regions. This discrepancy
may be attributed to plant functional types [54]. For exam-
ple, the forest vegetation was more cold-resistant than the
grassland as the temperature fell in autumn, therefore, leaf
senescence occurred later in forest than in steppe andmeadow
areas [15].

In addition, this study identified a slight but non-significant
advancing trend in the EOS of NIM during the past 17 years
(Fig. 4). The absence of an EOS tendency was mainly due
to the offsetting effect caused by spatial variations [28], [35].
Our study observed that the forest EOS was delayed with a
rate of 0.14 d·a−1. The delaying trend was consistent with
previous results reported in forests in the eastern United
States and semi-arid mountains of China, but its magnitude
was different between arid and humid areas [56]–[58]. In con-
trast, the EOS of steppe displayed an advanced trend at a rate
of 0.33 d·a−1, and the meadow EOS had a slightly earlier
trend (0.02 d·a−1). This advancing trend of grassland was
consistent with previous studies. For example, Bao et al. [16]
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investigated the EOS of the Mongolian Plateau over a long
observation period and found an earlier trend in grassland
areas. Liu et al. [19] studied the variation of the EOS from
1982–2011 in temperate China and observed an advancing
trend (0.02 ± 0.01 d·a−1) in grassland areas of Inner Mon-
golia. However, a delaying trend of the EOS was reported in
some other studies. Gong et al. [59] found that the EOS over
the entire Inner Mongolia grassland during 2002–2014 was
delayed at a rate of 0.51 d·a−1. Yang et al. [60] found that
the EOS of temperate grassland in China was delayed by
0.08 d·a−1 during 1982–2010. The different rates of change
and diverse EOS trends in grassland might be due to the
different types of grassland, target periods, data resolution,
and extraction methods.

C. RESPONSES OF THE EOS TO POTENTIAL
DRIVING FACTORS
Previous studies have reported differential warming in recent
decades in terms of Tmin and Tmax, which had asymmetric
effects on the land surface phenology [2], [15], [30]. How-
ever, we found an equal effect of Tmin and Tmax on the EOS
for steppe and meadow areas, with an increase in both Tmin
and Tmax delaying the EOS (Fig. 6). These positive correla-
tions may be partly due to the fact that a higher Tmin could
eliminate the risk of frost damage in autumn and slow the
degradation of chlorophyll in plants [32]. An increase in Tmax
could enhance vegetation photosynthesis with the decline in
temperature in autumn and postpone the EOS date [28], [61].
Although Tmin is considered to be strongly related to the fre-
quency of chilling damage in the boreal ecosystem [62], [63],
our study identified a negative correlation between Tmin
and the EOS of the forest and cropland biomes (Fig. 6).
An increased nighttime temperature would strengthen leaf
respiration, consume large amounts of leaf carbohydrates,
and then accelerate the development of autumn leaf col-
oration [30], [64]. This mechanism could partly explain the
negative impact of Tmin on the EOS. It should be noted that
the cropland EOSwas negatively correlated with Tmax, which
was mainly ascribed to the fact that a higher Tmax may lead
to decreasing the water content in the soil and restraining the
vegetation growth in the irrigated agricultural area [65]. Sig-
nificantly, there were great uncertainties in the relationship
between the cropland EOS and climate factors due to this
particular region being extraordinarily vulnerable to human
management, such as changes in crop variety, irrigation, and
fertilizers [66]. In most boreal and wet temperate regions,
the vegetation growth was more sensitive to the photoperiod
due to the seasonal temperature varying strongly [67]. Our
results showed that the SSD had a positive effect on EOS for
all biomes (Fig. 6). This was mainly because a longer SSD
would stimulate the photosynthesis capacity of plants and
thereby slow the speed of vegetation degradation [35], [68].
Additionally, we found that the EOS was negatively corre-
lated with both RHU and precipitation for all biomes. This
phenomenon may be explained by the fact that increasing
precipitation was associated with lower radiation [15], and

a higher RHU could result in a higher risk of freezing injury
with the drop in autumn temperature in colder areas, subse-
quently promoting leaf senescence in autumn [60], [69].

Plants of each life-cycle rely heavily on their previous
growth stage [37], [70]. For the steppe, we found that summer
vegetation growth had a negative effect on the EOS (Fig. 8c),
which was in accordance with the previous study in the
alpine vegetation of the Tibetan Plateau [35]. This may be
caused by the vigorous vegetation growth in summer being
accompanied by the over consumption of soil water, thus,
resulting in an earlier EOS for water-limited ecosystem [71].
The steppe vegetation grew fastest in June and needed more
water at this time [72], and therefore the EOS of steppe was
most strongly related to the NDVI in June (Fig. S6b). Inter-
estingly, the forest EOS was positively correlated with the
NDVI in months prior to the EOS and most strongly related
to September NDVI (Fig. S6d). This suggests that vegetation
growth in all periods prior to leaf senescence would delay the
EOS, especially in the autumn. Compared with herbaceous
plants, woody plants with developed roots are habituated to
uptake deeper soil water [20], resulting in less dependence
on land surface water variability. Additionally, woody plants
are likely to be more drought resistant than herbaceous plants
due to their ability to store water [20]. Additionally, strong
preseason vegetation activity indicates an improvement in
carbon sequestration [13]. As a result, vegetation growth in
the preceding stage would slow the rate of leaf senescence
and postpone the forest EOS. Furthermore, with the decline in
autumn temperature, the stronger photosynthetic capacity of
vegetation would have a heat preservation function, keeping
the land surface temperature relatively stable in autumn [73].
This phenomenon could explain the strongest impact of
NDVI on the forest EOS being strongest in September. Cong
et al. [28] demonstrated that plants with a shorter grow-
ing season have lower plasticity in regulating the length of
growing season and have a more conservative strategy. Thus,
an earlier or later peak season activity is accompanied by
advanced or delayed degradation of vegetation with a shorter
length of growing season [74]. These results may help to
explain the positive correlation between the POS and EOS
in steppe and cropland areas (Fig. 8d). Nevertheless, there
were negative effects of the POS on forest and meadow EOS,
which could be attributed to several factors. First, the forest
andmeadow plants with a longer growing season had a higher
plasticity in adjusting their life-cycle stage and were more
sensitive to preseason climate factors [75]. Furthermore,
the earlier POS enabled the vegetation to assimilate more
carbon [76] and accelerated vegetation photosynthesis in
autumn [12].

V. CONCLUSION
The reliable detection and attribution of variations in the
EOS are the prerequisites for simulating ecosystem carbon
cycle processes under climate change. This study provided an
important comparative analysis of the effect of four smooth-
ing methods on the extraction of the EOS for different plant
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functional types. Overall, there was a fairly good agreement
among the EOS dates obtained with the four smoothing
methods in terms of their representation of spatial patterns
and interannual variations. Furthermore, we found advancing
trends of EOS in the grassland and cropland regions, and
an extensive delayed trend in the forest region during the
period of 2001-2017. Our study also revealed that Tmin, Tmax,
and SSD exerted positive effects on the EOS trends across
the NIM, while an increase in RHU and precipitation would
lead to an earlier EOS. We further investigated the relation-
ship between EOS and both vegetation growth in the period
before the EOS and POS, and found a heterogeneous spatial
pattern. Summer vegetation growth generally advanced the
steppe EOS, while delayed the EOS of meadow and forest
regions. In addition, an earlier POS would advance the EOS
of steppe, but the relationship was the opposite in meadow
and forest areas. These observations indicated that climate
factors and the preceding growth stage of vegetation jointly
determined the variation of EOS in the NIM. Future studies
are needed to investigate the potential interactions between
the environmental controlling factors and to develop a full
understanding of the mechanisms influencing the autumn
phenology.
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