
Received November 14, 2020, accepted December 2, 2020, date of publication December 10, 2020,
date of current version December 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3043750

Towards Dynamic and Partial Reconfigurable
Hardware Architectures for Cryptographic
Algorithms on Embedded Devices
ARKAN ALKAMIL , AND DARSHIKA G. PERERA , (Senior Member, IEEE)
Electrical and Computer Engineering Department, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA

Corresponding author: Darshika G. Perera (darshika.perera@uccs.edu)

ABSTRACT In the era of IoT, embedded systems are becoming the cornerstone of many IoT related
applications, such as smart cars and wearable devices. However, embedded devices have numerous con-
straints and requirements, including stringent area and power, reduced cost and time-to-market, and increased
speedup. Furthermore, these applications are becoming increasingly compute/data-intensive requiring
more processing power. Also, especially for IoT related applications, security is another major issue in
resource-constrained embedded devices. Although cryptographic algorithms are widely used to ensure the
security of these applications, commonly used ones, such as AES, are unsuitable for highly constrained
embedded devices, due to their sheer complexity. Hence, several lightweight cryptographic algorithms were
proposed in the literature that might be better suited for embedded devices. From these, SPECK and SIMON,
introduced by NSA, are the two most popular ones. Another important challenge is how to incorporate the
cryptographic algorithms in to embedded devices, efficiently and effectively, without compromising the
integrity of the compute/data-intensive applications running on these small-footprint devices. Our previous
analysis demonstrated that FPGAs are currently the best avenue to support compute/data-intensive applica-
tions running on resource-constrained embedded devices, due to FPGA’s many attractive traits, including,
post-fabrication reprogrammability, dynamic and partial reconfiguration capabilities, and reduced time-to-
market. Also, FPGAs can be utilized to provide several advantages/features required for the embedded
device’s security, such as cryptographic algorithm agility, algorithm upload, algorithm modification, and
resource efficiency. In this research work, we introduce novel, unique, and efficient dynamic and partial
reconfigurable hardware architectures for the most popular SPECK and SIMON algorithms on embedded
devices, considering the constraints associated with these devices and the requirements of the applications
running on embedded devices.We also introduce unique system-level architectures for our proposed designs.
To the best of our knowledge, no similar work exists in the literature that provides dynamic and partial
reconfigurable hardware for SPECK and SIMON, and also provides system-level architecture. Our dynamic
and partial reconfigurable hardware designs achieve 28% space saving compared to its static reconfigurable
hardware, and 59 times speedup compared to its software counterpart.

INDEX TERMS FPGAs, reconfigurable hardware, dynamic and partial reconfiguration, embedded systems,
embedded hardware, cryptographic algorithms, SPECK and SIMON algorithms.

I. INTRODUCTION
With the advent of Internet of Things (IoT) era, embed-
ded systems are becoming the cornerstone of many IoT
related applications, such as intelligent transportation sys-
tems, implantable and wearable medical devices, smart

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

grids, and smart homes [1], [2]. The continuous prolif-
eration of embedded devices into these applications is
mainly due to the advancements in embedded hardware
and software technologies, which enable creating complex
but efficient embedded systems for a given application [3].
Conversely, embedded devices have various constraints
and challenges, including stringent area and power limita-
tions, reduced cost and time-to-market requirements, and

221720 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9302-2011
https://orcid.org/0000-0001-9106-4381
https://orcid.org/0000-0001-6829-2263


A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

increased speed-performance requirements [4], [5]. Fur-
thermore, the IoT related applications running on these
devices are becoming increasingly complex (compute/
data-intensive), requiring more processing power [4], [6].
In addition, as the complexity and utilization of embedded
devices in these applications expands, security is becoming
another major issue in these resource-constrained embedded
devices [3], [7].

In general, cryptographic algorithms are widely used to
ensure the security of IoT related applications [8]. How-
ever, the cryptographic algorithms utilized for resource-
constrained embedded devices must differ from that of the
commonly used ones, since typical cryptographic algorithms
require heavy computation load and large memory require-
ments [2], [9]. For instance, as stated in [10], [11], one
of the most popular cryptographic algorithms, Advanced
Encryption Standard (AES), is considered to be unsuitable or
infeasible for highly constrained embedded devices, due to its
sheer complexity. This has opened up the lightweight cryp-
tography domain [9], [11]. Several lightweight cryptographic
algorithms were proposed in the literature [9], [10], [12],
that could potentially lead to more compact designs on
embedded devices than that of the AES cryptographic
algorithm. To facilitate this endeavor, the National Secu-
rity Agency (NSA) also introduced a new family of
lightweight cryptographic algorithms, specifically SPECK
and SIMON [11]. As stated in [11], both the SPECK and
SIMON algorithms could potentially be designed in such
a way to have different configurations to process different
block sizes and different key sizes; whereas, it was observed
in [13], [14] that most of the other existing lightweight cryp-
tographic algorithms were often designed for one security
configuration at a time. As a result, the SPECK and SIMON
algorithms could be utilized for a variety of applications
with diverse security requirements, and could potentially be
designed in such a way to integrate into the embedded devices
while satisfying the associated constraints.

Then another important challenge is how to incorporate the
cryptographic algorithms to embedded devices [2], [3], effi-
ciently and effectively, without compromising the integrity
of the compute/data-intensive applications running on highly
constrained embedded devices, especially with their stringent
area limitations.

Our previous work [15], [16], [17] and analyses [18]
illustrated that Field Programmable Gate Array (FPGA)
based systems are currently the best avenue to support
compute/data-intensive applications/algorithms running on
resource-constrained embedded devices. This is mainly
because FPGAs comprise many attractive features that are
beneficial to support applications/algorithms on embed-
ded devices. For instance, FPGAs provide higher flexibil-
ity compared to the Application-Specific-Integrated-Circuits
(ASICs) and higher performance compared to the equiv-
alent software running on processors [18], [19]. Unlike
ASICs, FPGA’s post-fabrication reprogrammability allows
post-design optimizations and upgrades in applications.

This feature also enables reusing the same chip/FPGA to exe-
cute numerous tasks/algorithms, by reconfiguring the on-chip
hardware from one task to another as needed. Furthermore,
with the dynamic and partial reconfiguration capabilities,
parts of the chip/FPGA can be modified, while other parts are
still operational. This in turn leads to significant space sav-
ings on chip for complex embedded applications [20], [21].
In addition, with FPGAs, time-to-market is reduced, since
FPGAs are pre-fabricated, hence, immediately available. Due
to these attractive traits, there is a dramatic increase in uti-
lization of FPGAs to support and accelerate many real-time
compute/data-intensive applications [15], [22], [23], [57],
specifically on resource-constrained embedded devices.

As stated in [7], [24], [25], apart from supporting and accel-
erating compute/data-intensive applications, FPGAs can also
be utilized to improve the security within the embedded sys-
tems. As in [26]–[29], the advantages of using FPGAs for the
embedded device’s security mainly include, algorithm agility,
algorithm upload, algorithm modification, and resource
efficiency. For instance, embedded systems often require
processing multiple and diverse security protocols and
standards [7], [24]. This algorithm agility feature [24], [26],
which enables switching the cryptographic algorithms during
the run-time life of the application, can be provided with
dynamic and partial reconfiguration capabilities of FPGAs.
Furthermore, FPGA’s post-fabrication reprogrammbility
and dynamic and partial reconfiguration capabilities can
provide [26], [27]: the algorithm upload feature, which allows
updating the cryptographic algorithm with a new one at any
time, without interrupting the system’s operations; and the
algorithm modification feature, which enables modifying the
cryptographic algorithm or changing the configurations as
needed. In addition, most of the embedded security sys-
tems use different cryptographic algorithms for different
scenarios but not necessarily at the same time [24], [26].
With dynamic and partial reconfiguration capabilities of
FPGAs, different cryptographic algorithms can be loaded
and utilized as needed, thus saving valuable area on chip
of these embedded devices. The above facts illustrate that
FPGA is indeed a promising avenue to support cryptographic
algorithms (or security mechanisms/primitives), specifically
on resource-constrained embedded devices.

Our main objective is to create novel, unique, and efficient
FPGA-based dynamic and partial reconfigurable hardware
architectures to support cryptographic algorithms on embed-
ded devices, considering the constraints associated with these
devices as well as the requirements of the applications run-
ning on embedded devices. In this research work, we focus
on dynamic and partial reconfigurable hardware architectures
for SPECK and SIMON lightweight cryptographic algo-
rithms [13], currently, the most popular algorithms in the
lightweight cryptographic domain. In this article, we make
the following contributions:
• We introduce novel, unique, and efficient FPGA-based
reconfigurable hardware architecture/structure for
SPECK. Our reconfigurable hardware structure for

VOLUME 8, 2020 221721



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

SPECK is created in such a way to be generic, parame-
terized, and scalable; thus, without changing the internal
architecture, our hardware design can be reconfigured
to any one the 20 different configurations, in order to
perform the encryption and decryption, as well as to pro-
cess different plaintext/ciphertext blocks with varying
sizes and different keys with varying sizes. In this case,
the reconfiguration can be done on-the-fly (i.e., dynam-
ically), without interrupting the system’s operation
and without human intervention. Similarly, in previous
work [13], we introduced a unique FPGA-based recon-
figurable hardware architecture/structure for SIMON,
which can also be dynamically reconfigured to 20 dif-
ferent configurations.

• Next, we introduce novel and unique dynamic and par-
tial reconfigurable hardware architecture for SPECK
and SIMON algorithms. Our reconfigurable hardware
architecture is created in such a way, so that after pro-
cessing one cryptographic algorithm (e.g., SIMON),
the specific region of the chip is reconfigured dynami-
cally (on-the-fly) and partially to the next cryptographic
algorithm (e.g. SPECK) and that algorithm is processed.
As a result, the SIMON and SPECK algorithms (with
any configurations) can be processed any number of
times as needed, without interrupting the system’s oper-
ations and often without human interventions.

• We also introduce unique and efficient system-level
architectures for our aforementioned reconfigurable
hardware architectures for SPECK and SIMON algo-
rithms.With the system-level architecture, we create and
incorporate unique pre-fetching techniques to reduce
the memory access latency of our proposed reconfig-
urable hardware architectures for SPECK and SIMON
algorithms.

• We perform experiments on SPECK and SIMON (with
20 different configurations each) as individual entities.
We also perform experiments on dynamic and partial
reconfigurable architecture for SPECK and SIMON
together. We analyze the execution times, reconfigura-
tion time overhead, resource utilization, reconfiguration
space overhead, and speedup. In addition, we investigate
and analyze the existing works on dynamic and partial
reconfigurable hardware architectures for cryptographic
algorithms, and the existingworks on FPGA-based hard-
ware architectures for SPECK and SIMON, in the pub-
lished literature.

From our investigations on the existing works (presented
in Sections V.C and V.D), and to the best of our knowledge,
no similar work exists in the literature that provides dynamic
and partial reconfigurable hardware architectures for SPECK
and SIMON lightweight cryptographic algorithms. We also
could not find any similar work in the literature that provides
reconfigurable hardware architectures for SPECK, which can
also be dynamically reconfigured to 20 different configu-
rations, without changing the internal architecture. Previ-
ously, in [13], we introduced similar reconfigurable hardware

architecture for SIMON with 20 configurations. None of the
existing works on SPECK and SIMON proposed system-
level architectures, which is imperative for embedded appli-
cations in real-world scenarios.

This article is organized as follows: In Section II, we dis-
cuss and present the structure and the functionality of
SPECK and SIMON lightweight cryptographic algorithms.
Our design approach and development platform are discussed
and presented in Section III. In this section, we also discuss
and present our proposed system-level architecture, our pro-
posed top-level architecture, and dynamic and partial recon-
figuration process on Virtex-6 FPGA. Our proposed novel
and unique embedded and dynamic reconfigurable hardware
architectures for SPECK and SIMON are discussed and pre-
sented in Section IV. In this section, we present our novel,
unique, customized, and optimized internal architectures for
SPECK, which include the key generation function, round
function, and encryption and decryption functions. Next,
we present the top-level architecture for dynamic and par-
tial reconfigurable hardware for SPECK and SIMON. Our
experimental results and analysis in terms of resource utiliza-
tion, reconfiguration space overhead, reconfiguration time
overhead, execution times, and speedups are reported and
discussed in Section V. Our analysis on existing works on
dynamic and partial reconfigurable hardware architectures
for cryptographic algorithms, and our analysis on existing
works on FPGA-based hardware architectures for SPECK
and SIMON, are also presented in Section V. In Section VI,
we summarize our work, conclude, and discuss the future
work.

II. BACKGROUND – SPECK AND SIMON ALGORITHMS
The SPECK and SIMON algorithms come from the realm of
lightweight cryptography family [11]. Both these algorithms
are based on the symmetrical block ciphers, since symmetric
keys are employed to encrypt the blocks of data.

Similar to the SIMON algorithm [11], [13], SPECK algo-
rithm can also support ten different configurations based on
the block size (2n) and the key size (mn). This leads to
20 configurations, 10 for the encryption and 10 for the
decryption. In this article, the block size and the plaintext size
are used interchangeable. Table 1 presents varying parameter
selections for the SPECK and SIMON algorithms. As illus-
trated in Table 1, both these algorithms can process five
different block sizes (in column 1) and each block size com-
prises a set of keys (in column 2). In this case, the block size
(or the plaintext size) is denoted by 2n, where n is the word
size (in column 3), which varies from 16, 24, 32, 48, and 64.
The key size is denoted by mn, where m is the key words
(in column 4), which varies from 2, 3, and 4.

A. SPECK – STRUCTURE AND FUNCTIONALITY
The SPECK round function for encryption and decryption is
denoted by R, as depicted in equations (1) and (2), respec-
tively. As shown, for both the encryption (equation (1)) and
decryption (equation (2)), the SPECK round function mainly

221722 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

TABLE 1. Parameters of SPECK and SIMON algorithms.

uses XOR (⊕) logic operators, addition and subtraction oper-
ators, and left-shift (Sj) and right-shift (S−j) circular oper-
ators, where j is the number of bits being shifted. For both
the equations, the rotation amounts of β and α are 2 and
7 respectively, for the block size equal to 32; and for all
other block sizes, these two rotation amounts are 3 and 8,
respectively.

R(x, y) = ((S−αx + y)⊕ k,Sβy⊕ (S−αx + y)⊕ k) (1)

R−1(x, y) = (Sα((x ⊕ k)− S−β (x ⊕ y)), S−β (x ⊕ y)) (2)

Figure 1 illustrates the typical structure of the SPECK
round function [11]. As shown in Figure 1 as well as from
equations (1) and (2), x is the leftmost block (Xi), y is the
rightmost block (Yi), k is one of many round keys (k0, k1,
. . . , kT−1), and T is the number of rounds (in column 7).
From our previous work [13] and from equations (1) and (2),
it is observed that the encryption and the decryption have
similar structures/flows with respect to the direction of the
shift; however, there are minor differences with respect to the
value ki, which varies in each round.

FIGURE 1. Structure of SPECK round function [11].

Figure 2 demonstrates the structure of the SPECK key
generation function [11], which generates the round keys
from the original key K . The key generation function uses
the aforementioned round function to produce the round key
(ki) in each round. In this case, K = (lm−2 ,. . . ,lo ,k0) and

FIGURE 2. Structure of SPECK key generation function [11].

m = {2,3,4}, then the key generation function can be rep-
resented with equation (3), where ki is the ith round key, for
0 < i < T:

li+m−1 = ((ki + S−αli)⊕ i), ki+1 = Sβki ⊕ li+m−1 (3)

B. SIMON – STRUCTURE AND FUNCTIONALITY
Similar to SPECK, R is considered as the SIMON round
function for encryption and decryption as in equations (4)
and (5), respectively. The SIMON round function utilizes
XOR (⊕) and AND (&) logic operators, and left-shift (Sj)
circular operators, where j is the number of bits being shifted.

R(x, y, k) = ((S1(x)&S8(x))⊕ S2(x)⊕ y⊕ k,x) (4)

R−1(x, y, k) = ((y, S1(y)&S8(y))⊕ S2(y)⊕ x ⊕ k) (5)

Figure 3 illustrates the structure of the SIMON round
function [11]. From equations (4) and (5) as well as from
Figure 3, x is the leftmost block (Xi+1), y is the rightmost
block (Xi), k is one of many round keys (k0, k1, . . . , kT−1), and
T is the number of rounds (in column 9). Similar to SPECK,
for SIMON algorithm, the encryption and decryption have
similar structures/flows with respect to the direction of the
shift; however, there are minor variations with respect to the
value ki, which varies in each round. In this case, as shown
in Figure 3, in encryption, the input block (i.e., plaintext) is

FIGURE 3. Structure of SIMON round function [11].

VOLUME 8, 2020 221723



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

FIGURE 4. Structures of SIMON key expansion function [11].

initially divided into two sub-blocks: leftmost block (Xi+1)
and rightmost block (Xi). Next, the Xi block goes through
3 XOR-operations to reach the next round as the Xi+2 block.
In decryption, the input block (i.e., ciphertext) is also divided
into two sub-blocks; however, unlike the encryption, the left-
most block is Xi and the rightmost block is Xi+1, while the
rest of the process is similar to the encryption.

Figure 4 demonstrates the structure of the SIMON key
expansion function [11], which generates the round keys
from the original key K . The key expansion function uti-
lizes the above SIMON round function to produce the round
key (ki) in each round. Although the key expansion process
is the same for each round, the structure of the key expan-
sion function increases with the increasing key words (m).
As shown in Figures 4(a), 4(b), and 4(c), the structures for
key expansion function vary for 2-word (m = 2), 3-word
(m = 3), and 4-word (m = 4) keys, respectively. These
structures are based on the equation (6). As in equation (6),
the key expansion function comprises a parameter known
as constant sequence zj. As in Table 1, there are 5 constant
sequences (z0, z1,...,z4), which vary among ten different con-
figurations of SIMON algorithm. For instance, the configu-
rations 48/72 and 48/96 (row 2) have two constant sequences
z0 and z1. In this case, for 0 < i < (T-m) and for constant
sequence (zi), where j = 0,1,. . . ,4; and for parameters c =
2n-4, block size = 2n, round key k , key words m; the round
keys (km−1,. . . , k1, k0) can be represented with equation (6).

Ki+m = C⊕(Zj)i⊕ki ⊕ (1⊕ S−1)S−3ki+1, if m = 2,

Ki+m = C ⊕ (Zji)⊕ ki ⊕ (1⊕ S−1)S−3ki+2, if m = 3,

Ki+m = C⊕(Zj)i⊕ki⊕(1⊕S−1)(S−3ki+3⊕ki+1), if m = 4

(6)

As shown in Figures 4(a), 4(b), and 4(c), the key expansion
function increments with the key word (m). Let’s consider
Figure 4(c) for the key expansion function for 4-word key: in
this case, the input is divided intomwords (km to k0) of n bits
each. In each round/iteration, the rightmost word ki moves
towards the output, and replaces the leftmost word ki+m−1
after going through 3XOR-operations. In this case, eachword
moves to the right and replaces the adjacent word on the right.
Also, a new key is generated in each round. This process
continues until the total number of rounds (T ) is completed.

III. DESIGN APPROACH AND DEVELOPMENT PLATFORM
In this research work, we introduce novel, unique, and effi-
cient dynamic and partial reconfigurable hardware archi-
tectures for SPECK and SIMON lightweight cryptographic
algorithms for embedded devices. We create our unique
dynamically reconfigurable hardware architectures as two
versions: static reconfigurable hardware (SRH) for SPECK as
a separate entity, which can also be dynamically reconfigured
to 20 different configurations, without changing the internal
architecture; and dynamic reconfigurable hardware (DRH)
for SPECK and SIMON together, which can be dynamically
and partially reconfigured from SIMON to SPECK and vice
versa, by reconfiguring the on-chip hardware from one cryp-
tographic algorithm to another. Although the former can be
dynamically reconfigured, we call it SRH, mainly because
the partial reconfiguration is not utilized. Both these versions
are discussed and distinguished in Section IV. We also create
novel and unique embedded software architectures for the
SPECK and SIMON algorithms in order to evaluate our
embedded reconfigurable hardware architectures.

In our designs, both the software and hardware versions
of various operations are implemented using a hierarchical

221724 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

platform-based design approach to facilitate component
reuse at different levels of abstraction, where higher-level
functions utilize lower-level sub-functions and operators.
Furthermore, we introduce novel, unique, and efficient
system-level architectures for our proposed embedded and
dynamic reconfigurable hardware designs for SPECK and
SIMON. Our system-level architectures are created in such
a way to enhance the efficiency of the overall system.

A. EXPERIMENTAL PLATFORM
All our embedded hardware and software experiments
are carried out on the Xilinx ML605 development
platform [30], which utilizes a Virtex-6 XC6VLX240T-
FF1156 FPGA device, built on 40nmCMOS process technol-
ogy. This development platform includes large on-chip logic
resources (37680 slices), 2-MB on-chip block random access
memory (BRAM), and 512-MB DDR3-SDRAM external
memory to hold large volume of data/results. It enables
instantiating MicroBlaze soft processors on chip, and pro-
vides onboard configuration circuitry for development pur-
pose. The ML605 board has several external non-volatile
memories such as 128-MB Platform Flash XL, 32-MB
BPI Linear Flash, and 2-GB Compact Flash, which can
be used to hold the configuration bitstreams. It should be
noted that we utilized ML605 with Virtex-6 FPGA as a
prototyping platform to design, develop, test, and verify our
proposed architectures. However, in a real-world scenario,
our intention is to execute our DRH design on low-cost small-
footprint FPGAs.

Both the static reconfigurable hardware (SRH) and
dynamic reconfigurable hardware (DRH) modules are
designed in mixed VHDL and Verilog. They are executed
on the FPGA (running at 100MHz) to verify their correct-
ness and performance. Xilinx ISE 14.7 and XPS 14.7 are
used for the SRH designs. Xilinx ISE 14.7, XPS 14.7, and
PlanAhead 14.7 (with partial reconfiguration features) are
used for the DRH designs. ModelSim SE and Xilinx
ChipscopePro 14.7 are used to verify the results and func-
tionalities of the designs. The software modules are writ-
ten in C and executed on the 32-bit RISC MicroBlaze soft
processor (running at 100MHz) on the same FPGA. Xilinx
XPS 14.7 and SDK 14.7 are used to design and verify the soft-
ware modules. The execution times presented in this article
are obtained using the Advanced Extensible Interface (AXI)
Timer running at 100MHz [33]. The performance-gain (i.e.,
speedup) is evaluated using the baseline execution times of
software over the improved execution times of hardware.

It should be noted that all our designs, including SRH,
DRH, and embedded software on MicroBlaze, are actually
implemented on the FPGA, and the real dynamic and partial
reconfiguration is performed for DRH design. Furthermore,
hardware verification is performed, while these designs are
actually running on the chip, which is detailed in Section III.B
and Section IV.D. In addition, all the experimental results
presented in this article, are obtainedwhile our proposed SRH

and DRH designs, and software design are actually running
(in real-time) on the FPGA.

B. OUR SYSTEM-LEVEL ARCHITECTURE
In this sub-section, we discuss and present our unique and
efficient system-level architectures for both the SRH and
DRH architectures for the SPECK and SIMON lightweight
cryptographic algorithms. As detailed in [13], in a real-world
scenario, the system-level architectures are imperative for the
lightweight cryptographic algorithms, especially on embed-
ded devices, since these devices often communicate with the
external world; thus, the cryptographic algorithms need to
secure these devices from the threats/hackers from the exter-
nal environments. Customized and optimized system-level
architectures provide the necessary peripherals/modules to
facilitate this process and also to provide the necessary
hardware-software interfaces for both the SRH and DRH
architectures for the SPECK and SIMON algorithms. To the
best of our knowledge, no similar work exists in the literature
that provides system-level architectures for the embedded
hardware designs for either SPECK or SIMON algorithms.

Figure 5 demonstrates how our user-designed hardware
modules interface with the rest of the system. In this case,
as detailed in Section III.C, our user-designed hardware mod-
ules consist of either SRH and DRH for SPECK and SIMON
algorithms. With the system-level design, for both the SRH
and DRH architectures, we incorporate the on-chip BRAM to
store the necessary data required to process the SPECK and
SIMON algorithms. These on-chip BRAMs support both the
single and burst read/write transactions [31]. As illustrated,
our user-designed hardware modules (i.e., SRH and DRH
for SPECK and SIMON algorithms) communicate with the
MicroBlaze soft processor and the on-chip BRAM via the
AXI bus [32]. In this case, the AXI bus acts as the glue logic
for the system. Our user-designed hardware modules act as
the Master when communicating with the BRAM.

With this system-level interfacing, our user-designed hard-
ware modules (both SRH and DRH) typically receive a start
signal from the MicroBlaze processor via the AXI bus to:
select and execute either the encryption or the decryption pro-
cess of the cryptographic algorithm, read/write data/results
from/to the on-chip BRAM; and hardware modules send a
stop signal to the MicroBlaze processor after completing
the execution. After sending a start signal, the MicroBlaze
processor can be utilized to perform other tasks, until it
receives a stop signal from the user-designed hardware mod-
ule; thus, creating amulti-processor system. After completing
the execution, the final results, stored in the on-chip BRAM,
are brought to the external HyperTerminal window [42]
of a desktop computer via the MicroBlaze processor and
RS232 UART (in Figure 5). These final results are compared
with the software results for SIMON and SPECK to verify
the correctness and functionalities of our proposed hardware
designs.

Although our main focus of this article is to introduce static
reconfigurable hardware (SRH) and dynamic reconfigurable

VOLUME 8, 2020 221725



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

FIGURE 5. System-level architecture for our proposed embedded and
dynamic reconfigurable hardware cryptographic algorithms.

hardware (DRH) architectures for lightweight cryptographic
algorithms, we also create embedded software architectures
for the SPECK and SIMON algorithms, mainly to evaluate
our proposed reconfigurable hardware designs. As in [13],
during our initial embedded software design phase, it was
observed that our embedded software architectures for the
SMION algorithm could not be executed on the MicroBlaze
process due to the limitations of the cache memory, although
we utilized the maximum available cache memory of 128KB
for the MicroBlaze on ML605 [34]. This is also true for
the SPECK algorithm. In this case, our embedded software
designs (for both the SPECK and SIMON) need to access
several large data arrays (with data elements of varying sizes),
which require more memory resources than that of the max-
imum available cache memory. As a result, we integrate the
on-chip BRAM to overcome these memory constraints, while
striving to reduce the memory access latency. Furthermore,
the integration of the on-chip BRAMs, at the system-level,
enhances the efficiency and the flexibility of the embedded
software designs at the internal architecture-level as detailed
in [13]. Similar outcomes are observed for the embedded and
reconfigurable hardware designs, as detailed in Section V.

C. OUR TOP-LEVEL ARCHITECTURE OF PROPOSED
RECONFIGURABLE HARDWARE DESIGN
The top-level architecture of our user-designed hardware
modules (for SRH and DRH designs) is demonstrated
in Figure 6. As depicted, the top-level architecture comprises:
the reconfigurable cryptographic module (i.e., the data path
designed for the SPECK or SIMON algorithm), the control
path module, slave registers, extra internal registers, and
Read/Write (R/W) module. In order to simplify the design
and routing complexity of the control path module, we design
and integrate a unique R/W module to our user-designed
hardware. The control path module uses the R/W module
to assign the addresses and other control signals required
for the R/W operations from/to the on-chip BRAM, whereas
the data path module receives/sends data/results from/to the
on-chip BRAM using the R/W module. In addition, extra

FIGURE 6. Top-level architecture of our proposed user-designed
hardware modules.

Registers are utilized to buffer the data/results to/from the
reconfigurable cryptographic module to avoid any timing and
metastability issues, as well as data loss.

As illustrated in Figure 6, the slave registers (also known as
software accessible registers) are incorporated to the top-level
architecture, in order to establish communication between
the user-designed hardware and the MicroBlaze processor,
through the AXI Intellectual Property Interface (IPIF), using
a set of ports called the Intellectual Property Interconnect
(IPIC). In this case, the MicroBlaze processor as well as
the user-designed hardware can send/receive certain sig-
nals/instructions (such as start/stop signals) via the slave
registers and the control path module. Based on these sig-
nals, the user-designed hardware module can be configured
to perform any one of these tasks at a time: key sched-
ule, encryption, and decryption. The control path module
(in Figure 6) monitors and controls the proper opera-
tions of the aforementioned tasks and also within suitable
timelines.

For both the SRH and DRH architectures, during the
encryption process, firstly, the control path module sends the
read request signal and the first read data address to the R/W
module. Next, the R/W module asserts the essential IPIC
port signals to read the data from the on-chip BRAM via
the IPIF interface. Then the read data (i.e., the plaintext),
is fetched from the BRAM in a single read data transaction
mode, and is buffered to the registers via the R/W module.
Secondly, the reconfigurable cryptographic module performs
the encryption process on the read input data (i.e., the plain-
text) and transforms it to the ciphertext (i.e., the write output
data). Thirdly, the control pathmodule sends the write request
signal and the write data address to the BRAM via the R/W
module and the IPIF interface. Next, the write data (i.e.,
the ciphertext) is buffered to the registers, and then written
to the BRAM in a single write data transaction mode. Once
the ciphertext is written to the on-chip BRAM, the control
path module triggers an encryption complete signal. During
the decryption process, similar steps are followed as for the
encryption process; however, in this scenario, the read input
data is the ciphertext, and thewrite output data is the plaintext.

221726 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

D. DYNAMIC AND PARTIAL RECONFIGURATION PROCESS
ON VIRTEX-6 FPGA
Typically, FPGA-based reconfigurable hardware
designs [35], [36], written in Verilog and/or VHDL, have
to undergo a series of steps to fit into the FPGA’s avail-
able logic, including synthesis, technology mapping, place-
ment and routing, and the final step, bitstream generation,
which creates a ‘‘configuration bitstream’’ for programming
the FPGA.

We have been investigating different FPGA-based recon-
figuration methods for embedded devices [37]–[40]. As illus-
trated [37], [38], [40], [56], the reconfigurable hardware
can be divided into two types: static and dynamic. With
static reconfigurable hardware (SRH), a full configuration
bitstream of an application/algorithm is downloaded to the
FPGA at the system start-up, then the chip is configured
only once, and often never changed during the run-time life
of the application/algorithm. Most of the traditional FPGA-
based designs are SRH designs, which typically utilize single
context reconfiguration method [35], [36]. Especially with
this reconfiguration method [35], [36], [38], in order to exe-
cute a different application/algorithm, the corresponding full
bitstream has to be downloaded and the entire FPGA has
to be reconfigured, which typically requires interrupting the
system’s operations.

With dynamic reconfigurable hardware (DRH), initially,
a full bitstream of an application/algorithm is downloaded
to the FPGA, and the on-chip hardware is configured, but
is often allowed to change during the run-time life of
the application/algorithm, without interrupting the system’s
operations and also without human interventions. In this
case, the reconfiguration can be done autonomously and
dynamically (on-the-fly) based on certain stimuli (or param-
eters) by the system, without any assistance or involvement
from a human (or person). With dynamic reconfiguration
techniques, we can modify either parts of the chip or the
whole chip as needed on-the-fly, can execute numerous
applications/algorithms on a single chip by reconfiguring the
hardware on chip from one application to another, and can
execute large and complex applications on a smaller FPGA,
regardless whether these applications fit into the chip or not,
by decomposing these into smaller sub-circuits and executing
the sub-circuits at different times.

With Virtex-6 FPGA, we can use two different reconfigu-
ration methods [37], [38]: (1) MultiBoot method [41], which
allows full bitstream reconfiguration; (2) Partial Reconfigura-
tion method [42], [43], which allows partial bitstream recon-
figuration. For our dynamic reconfigurable hardware (DRH)
designs, we utilize partial reconfiguration method, since our
intention is to reconfigure only some parts of the design/chip,
while other parts are still operational.

As stated in [37], [38], [40], the dynamic partial reconfig-
uration method enables us to reconfigure parts of the chip
(or the design) that require modification, while interfacing
with the rest of the system that remains operational [42], [43].
This is facilitated by the non-glitching feature of Virtex-6

FPGAs [43], [44]. Figure 7 demonstrates the basic premise
of partial reconfiguration method [42], [43]. As illustrated,
during the design phase, the logic in the reconfigurable hard-
ware is partitioned into reconfigurable parts versus static
parts. With this method, firstly, the FPGA is fully configured
with an initial full bitstream for the entire chip. Secondly,
the specific parts of the chip/design that require modifica-
tions are reprogrammed with new functionalities by loading
the corresponding partial bitstreams and reconfiguring those
specific parts. In this case, as in Figure 7, the tasks/functions
realized in the reconfigurable modules/parts are replaced by
the contents of the partial bitstreams, ‘‘without compromising
the integrity’’ of the application/system running on the rest
of the chip [42], [43].

FIGURE 7. Basic premise of partial reconfiguration [42], [43].

For the dynamic and partial reconfiguration, typically,
the full and partial bitstreams are stored in the external
non-volatile memory [43], and the configuration controller
manages the loading of the bitstreams and reconfiguring the
chip as needed. These bitstreams can also be stored in an
external device such as a desktop computer [58]. The con-
figuration controller can be either a microprocessor or rou-
tines (simple finite state machine [42]) programmed into the
FPGA. As stated in [42], [43], [59], partial reconfiguration
can be done using a wide variety of techniques, one of which
is illustrated in Figure 12 (in Section IV.D). Figure 12 (mod-
ified from [42], [43]) demonstrates our top-level architecture
and system-level setup for the dynamic and partial reconfig-
uration process on Virtex-6 FPGA. As depicted in Figure 12,
in our designs, the full and partial bitstreams are stored in
the compact flash (CF) non-volatile memory. For our design,
in order to facilitate the in-circuit reconfiguration, the AXI
hardware internal configuration access port (ICAP) [45] is
instantiated and controlled through the software running on
the MicroBlaze processor. In this case, the ICAP module
is used to load the partial bitstreams to the FPGA. During
the run-time life of the application, the partial bitstreams
are fetched from the CF via the MicroBlaze to the ICAP to
accomplish the dynamic and partial reconfiguration process.

IV. EMBEDDED AND DYNAMIC RECONFIGURABLE
HARDWARE ARCHITECTURES FOR SPECK AND
SIMON CRYPTOGRAPHIC ALGORITHMS
In this section, we discuss and present our unique embedded
and dynamic reconfigurable hardware architectures for the
SPECK and SIMON lightweight cryptographic algorithms.

VOLUME 8, 2020 221727



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

As briefly mentioned in Section III, we create our unique
dynamically reconfigurable hardware architectures as two
versions: static reconfigurable hardware (SRH) for SPECK
and SIMON as separate entities, and dynamic reconfigurable
hardware (DRH) for SPECK and SIMON together.

For the SRH, we introduce unique, customized, and opti-
mized reconfigurable hardware architecture for SPECK in
such a way that without changing the internal architec-
ture, our SPECK hardware design can be reconfigured to
20 different configurations, in order to perform encryption
and decryption, as well as to process varying block sizes
and varying key sizes. In this case, the reconfiguration is
performed dynamically (on-the-fly) without interrupting the
system’s operation and without human intervention, but not
utilizing partial reconfiguration. As previous work, in [13],
we already introduced similar SRH design for SIMON cryp-
tographic algorithm, which can also be reconfigured to
20 different configurations. Although this version can be
dynamically reconfigured, this is called SRH,mainly because
the partial reconfiguration is not employed.

For the DRH, we introduce novel and unique dynamic
and partial reconfigurable hardware architectures for both
SPECK and SIMON in such a way that after processing
one cryptographic algorithm (e.g., SIMON), the specific
region (i.e., the reconfigurable part) of the chip consisting
of the cryptographic algorithm is dynamically (on-the-fly)
and partially reconfigured to another cryptographic algorithm
(e.g., SPECK), and that algorithm is processed. Then the
chip can be dynamically and partially reconfigured back
to SIMON (or SPECK) and so on. Hence, using partial
reconfiguration, the SIMON and SPECK algorithms (with
any configurations) can be processed any number of times
as needed, without interrupting the system’s operations and
often without human interventions.

For both versions, in order to introduce internal archi-
tectures for SPECK, first, we investigate and partition the
SPECK algorithm into two sub-tasks: round function and
the key generation function. Then we create customized and
optimized internal hardware architectures for these sub-tasks
in such a way that our proposed hardware designs are generic,
parameterized, and scalable, as well as highly flexible and
reconfigurable. This is analogous to the previously proposed
internal architectures of our SIMON algorithm in [13].

For our embedded hardware architectures for SPECK algo-
rithm, considering the two inputs, i.e., the block/plaintext
size (2n) and the key size (mn), we compute the following
parameters: word size (n), key word (m), alph shift (α), beta
shift (β), and number of rounds (T ), as in Table 1. These
parameters play a significant role in determining a specific
SPECK configuration. For the SIMON, except the α and β
parameters, all the above parameters played a crucial role
in determining a specific SIMON configuration [13]. For
instance, for both SPECK and SIMON, the number of rounds
(T ) forms the encryption and the decryption models, and also
determines the level of security. In this case, the T increases
with the size of the inputs (i.e., block sizes and key sizes), and

the security increases with T . For SIMON only, the constant
sequence (Z [j]) distinguishes the configurations that com-
prise same block/plaintext size (column 1) but different key
seizes (column 2).

In addition to computing the aforementioned parameters,
for our embedded hardware architectures for SPECK, we cre-
ate two other functions that can operate as lookup tables.
These two functions have the same inputs, i.e., the key size
and block/plaintext size. The first function is created to select
an appropriate number of rounds (T ). The second function
is created to select a suitable number of shifts, i.e., for alph
shift (α) and for beta shift (β). These functions and parame-
ters are essential to initialize the SPECK functionality.

In the following sub-sections, we discuss and present the
internal architectures for the two sub-tasks of SPECK, i.e.,
the round function and the key generation function.

A. INTERNAL ARCHITECTURE FOR SPECK KEY
GENERATION FUNCTION
Figure 8 illustrates our proposed internal architecture of the
computation data path for the embedded hardware SPECK
key generation function. From Table 1 (column 4), there
are three different key words, where the key word m varies
from 2, 3, to 4. This in turn leads to three different hardware
structures for the SPECK key generation function. How-
ever, in this research work, we create only one hardware
structure/design for the SPECK key generation function.
Our unique hardware structure is created in such a way to
be generic, parameterized, and scalable; thus, our hardware
design can be reconfigured to process any key word (i.e.,
m = 2, 3, 4), without changing the internal architecture of
this computation data path (in Figure 8).

FIGURE 8. Computation data path for SPECK key generation function.

As demonstrated in Figure 8, the computation data path
generates the round keys for the SPECK round func-
tion. In this case, a different round key is generated for
each round. This computation data path comprises dividers,
several general multiplexers (denoted by MUXi), several
feedback multiplexers (denoted by FBi), several registers
(denoted by Ki), and encryption module (denoted by Enc).
As depicted, the process starts with the division operation.
In this case, the input key, which is the original key, is divided

221728 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

intom number of equal-sized blocks, known as the key words
(as in Table 1). Based on the value of the key words (m),
we can enable or disable certainKi registers via themultiplex-
ers to change the architecture and routing of the design. For
an example, if the key word (m) is four (i.e., m = 4), then all
four registers and all the general and feedback multiplexers
are enabled, and the internal architecture is reconfigured to
process 4 keywords. Analogously, if the keyword (m) is three
(i.e., m = 3), then only one general multiplexer, one feed-
back multiplexer, and one register, (in this case, MUX3, FB3
andK3) are disabled, and the internal architecture is reconfig-
ured to process 3 key words. Furthermore, if the key word (m)
is two (i.e., m = 2), then the general multiplexers, feedback
multiplexers, and registers annotated with numbers 2 and 3
(in Figure 8) are disabled, and the internal architecture is
reconfigured to process 2 key words.

Figure 8 also shows the data flow from the most significant
register (either K3 or K2) to the least significant register (K1),
and then to the encryption module (Enc). In this case, the data
is forwarded from one register to another in each round.
Furthermore, themost significant register (MSR) varies based
on the key word (m); for instance, if m = 4, the MSR is K3,
else ifm = 3, theMSR isK2. TheK0 register always produces
the round key in each round, then forwards this newly gener-
ated round key as an input to the encryption module (Enc),
as well as to the FB0 multiplexer. As illustrated in Figure 8,
the encryption (Enc) module receives three inputs: (1) one
input from theK0 register, which is the round key; (2) another
input from the data flow via register K1 if m = 2, or via
registers K1 and K2 if m = 3, or via K1, K2, and K3 if m = 4;
(3) third input is the round counter value, which depends on
the block/plaintext size (as in Table 1). The result of the Enc
module is divided into two equal-sized blocks/lines (known
as F0 and F1). The Enc module encompasses the encryp-
tion function. The internal architecture of the Enc module is
detailed in Section IV.C.

The final results (or outputs) of the key generation function
are the round keys, which are utilized as inputs for the SPECK
round function in Section IV.B. As mentioned before, a new
round key is generated in each round.

B. INTERNAL ARCHITECTURE FOR SPECK ROUND
FUNCTION
Figure 9 demonstrates our proposed internal architecture
of the computation data path for the embedded hardware
SPECK round function. As detailed in Section II, the SPECK
algorithm is based on the symmetric block ciphers, since
symmetric keys are utilized to encrypt the blocks of data. As a
result, this computation data path (in Figure 9) is created in
such a way to perform the symmetric process.

As illustrated in Figure 9, this computation data path com-
prises a divider, general multiplexers (MUXA and MUXB),
buffer module, and encryption and decryption module
(denoted by Enc/Dec). The symmetric process of the SPECK
round function starts with the division operation, where the
input data block (either plaintext or ciphertext) is divided into

FIGURE 9. Computation data path for SPECK round function.

two equal-sized blocks. For instance, if the input data block
size is 64-bits, then it is divided into two 32-bit data blocks.
The outputs of the division operation, i.e., these two data
blocks, are represented as A and B lines/blocks in Figure 9.

Depending on a specific function, i.e., either encryption or
decryption, the two multiplexers swap the positions of these
two lines using the associated ‘‘Sel’’ signals. For instance, for
the encryption function, both ‘‘Sel’’ signals are de-asserted
(set to logic 0), and MUXA forwards A line/block, while
MUXB forwards B line/block. Conversely, for the decryption
function, both ‘‘Sel’’ signals are asserted (set to logic 1),
and MUXA forwards B line/block, while MUXB forwards A
line/block.

Apart from the plaintext/ciphertext, another input to the
SPECK round function is the round key produced from the
key generation function in Section IV.A. A newly generated
round key (in each round) and the A and B lines/blocks are
the inputs to the Enc/Dec module, which encompasses the
encryption and decryption functions. The internal architec-
tures of the encryption and decryption functions are detailed
in Section IV.C. As shown in Figure 9, the two outputs of
this Enc/Dec module are stored in the buffer, and simultane-
ously forwarded as the new inputs to the Enc/Dec module
in the subsequent round. In each round, the inputs of the
Enc/Dec module alternate between the A and B blocks, and
the Enc/Dec results. This symmetric process continues, and
the final ciphertext/plaintext result is formed after the total
number of rounds (T ) is completed.

C. INTERNAL ARCHITECTURE FOR SPECK ENCRYPTION
AND DECRYPTION FUNCTIONS
Figures 10 and 11 illustrate our internal architectures of the
computation data path for the SPECK encryption function
and SPECK decryption function, respectively. These two are
created based on the equations (1) and (2) for encryption and
decryption, respectively. The Encmodule in Figure 8 encom-
passes the encryption function, whereas the Enc/Decmodule

VOLUME 8, 2020 221729



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

FIGURE 10. Computation data path for SPECK encryption function.

FIGURE 11. Computation data path for SPECK decryption function.

in Figure 9 encompasses both the encryption and decryption
functions.

As demonstrated in Figure 10, the encryption function con-
sists of alpha shift and beta shift operators, addition operators,
XOR logic-operators, and a buffer. As shown, the A and B
lines, and the round keys are the inputs to the SPECK
encryption function. In this case, the A and B lines/blocks
are the same ones (i.e., two equal-sized blocks) used in the
symmetric process in Figure 9. For the encryption function,
out of these two equal-sized blocks, the block with the most
significant bits (MSBs) is assigned to A and the block with
the least significant bits (LSBs) is assigned to B. As depicted
in Figure 10, the B line/block goes through the alpha shift
(from Table 1), followed by the addition operation with the A
line/block. The result of the addition operation goes through
the second XOR operation (XOR2) with the round key. The
result of XOR2 operation is stored in the buffer. Conversely,
the A line/block goes through the beta shift (in Table 1). The
beta shift result goes through the first XOR operation (XOR1)
with the result of XOR2 operation. The result of XOR1 is also
stored in the same buffer as the result of XOR2 operation.
The outputs of the XOR1 and XOR2 are utilized to form the
ciphertext after completing the total number of rounds (T ).

As depicted in Figure 11, the decryption function consists
of XOR logic-operators, alpha shift and beta shift operators,
subtraction operators, and a buffer. Similar to the encryp-
tion function, the A and B lines, and round keys are the
inputs to the SPECK decryption function. In this case also,
the A and B lines/blocks are the same ones (i.e., two equal-
sized blocks) used in the symmetric process in Figure 9. For
the decryption function, unlike the encryption, out of these
two equal-sized blocks, the block with the most significant
bits (MSBs) is assigned to B and the block with the least

significant bits (LSBs) is assigned to A. As shown in
Figure 11, the A and B lines/blocks go through the first XOR
operation (XOR1). Then the result of XOR1 goes through the
beta shift (from Table 1). The beta shift result is stored in
the buffer. Conversely, the B line/block goes through second
XOR operation (XOR2) with the round key. The result of this
XOR2 is subtracted from the result of the beta shift. The result
of the subtraction operation goes through the alpha shift. The
alpha shift result is also stored in the same buffer as the beta
shift result. In this case, the outputs of the beta shift and alpha
shift are used to form the plaintext after completing the total
number of rounds (T ).

D. OUR TOP-LEVEL ARCHITECTURE FOR DYNAMIC AND
PARTIAL RECONFIGURABLE HARDWARE
FOR SPECK AND SIMON
In this sub-section, we discuss and present our top-level archi-
tecture and system-level setup for our dynamic and partial
reconfigurable hardware for SPECK and SIMON lightweight
cryptographic algorithms.

The dynamic and partial reconfiguration process of the
aforementioned two lightweight cryptographic algorithms is
as follows. Initially, the full configuration bitstream that
comprises the reconfigurable module (RM) of the SIMON
is downloaded to the FPGA, then the FPGA is configured
to its appropriate hardware circuitry, and the SIMON algo-
rithm is performed. Once the SIMON algorithm is executed,
the RM for SIMON sends an ‘‘execution complete’’ signal
to the processor or to the configuration controller. Next,
the configuration controller (or the processor) downloads the
partial bitstream for the RM for SPECK, then the RM is
modified from SIMON to SPECK, and the SPECK algorithm
is performed. After executing both the SIMON and SPECK,
the final DRH results for SIMON and SPECK, stored in the
on-chip BRAM, are brought to the external HyperTermi-
nal window [42] of a desktop computer via the MicroB-
laze processor and RS232 UART, in order to verify that the
DRH design operates correctly, and the dynamic and partial
reconfiguration is performed correctly. Additional signals are
utilized to further verify the latter. In our design, the loading
of the partial bitstreams to the reconfigurable parts of the
FPGA (i.e., to the RM) and modifying the functionalities of
the RMs are done without interrupting the operations of the
remaining parts of the FPGA and typically without human
intervention.

Our top-level architecture for the dynamic and partial
reconfiguration process is shown in Figure 12 (modified
from [42], [43]). As detailed in Section III.D, the full and
partial bitstreams are stored in the external non-volatile mem-
ory, and the configuration controller manages the loading
of the bitstreams and reconfiguring the FPGA as needed.
As illustrated in Figure 12, for our design, we employ
the compact flash (CF) memory to store the required full
and partial bitstreams. In order to facilitate the dynamic
and partial reconfiguration process as well as to per-
form the in-circuit reconfiguration, we integrate the internal

221730 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

FIGURE 12. Top-level architecture for our dynamic and partial
reconfigurable hardware for SPECK and SIMON.

configuration access port (ICAP) [46], [47]. Furthermore,
we utilize the MicroBlaze processor as our configuration
controller. The ICAP is also controlled by the MicroBlaze
processor, and is used to load the partial bitstreams to the
FPGA. In this case, the partial bitstreams are fetched from
the CF via the MicroBlaze to the ICAP, and downloaded to
the region of the RM as needed. The specific region of the RM
is typically determined and selected during the design phase,
based on the required resource utilization of the algorithm.

After executing both the lightweight cryptographic algo-
rithms, i.e., SIMON and SPECK, the MicroBlaze processor
can dynamically and partially reconfigure the chip/FPGA
back to SIMON, without downloading the full bitstream.
In this way, the SIMON and SPECK algorithms (with any
one of the 20 different configurations) can be processed any
number of times as needed, without interrupting the system’s
operations and often without human interventions.

V. EXPERIMENTAL RESULTS AND ANALYSIS
We perform experiments to evaluate and illustrate the fea-
sibility and efficiency of our proposed dynamic and par-
tial reconfigurable hardware architectures for SPECK and
SIMON lightweight cryptographic algorithms. Experiments
are also performed to evaluate the internal architectures of
our embedded and reconfigurable hardware for these crypto-
graphic algorithms.

As distinguished in Section IV, we design and imple-
ment our dynamically reconfigurable hardware architectures
as two versions: static reconfigurable hardware (SRH) for
SPECK and SIMON as separate entities, and dynamic recon-
figurable hardware (DRH) for SPECK and SIMON together.
The former can be dynamically reconfigured to 20 different
configurations, without changing the internal architecture;
and the latter can be dynamically and partially reconfigured
from SIMON to SPECK and vice versa, by reconfiguring

the on-chip hardware from one cryptographic algorithm to
another.

A. SPACE AND TIME ANALYSIS
To investigate the feasibility and efficiency of our proposed
dynamic and partial reconfigurable hardware architectures
for the SPECK and SIMON lightweight cryptographic algo-
rithms, cost analysis on space and time is carried out for static
reconfigurable hardware (SRH) and dynamic reconfigurable
hardware (DRH) designs.

1) ANALYSIS ON SPACE SAVINGS
The space (or area) is one of the main criteria for performance
analysis, since area is a major constraint, especially for small-
footprint portable and embedded devices. As stated in [13],
this performance metric directly impacts not only the cost
associated with the final product but also the feasibility of
implementing cryptographic algorithms on a specific embed-
ded platform.

The hardware resource utilization (or the occupied area)
on chip for our proposed SRH and DRH for SIMON and
SPECK algorithms is presented in Table 2. From this table,
significant resource utilization parameters are the number of
occupied slices, number of DSPs, and number of BRAMs,
whereas the number of occupied slices typically contains the
slice registers, slice LUTs, and flip-flops.

TABLE 2. Space statistics for SPECK and SIMON: SRH vs. DRH.

As illustrated in Table 2, the total number of occupied
slices, the total number of DSP slices, and the total number of
BRAMs required for SRH with SIMON (hw-v1a) and SRH
with SPECK (hw-v1b) are 7854 (=4003+3851), 6 (=3+3),
and 170 (=85+85), respectively. Conversely, the total num-
ber of occupied slices, the total number of DSP slices, and the
total number of BRAMs required for DRH (hw-v2) are 5719,
3, and 85, respectively. For the DRH area analysis, we utilize
the DRH design for the SIMON algorithm, which consists of
the largest RM of the two algorithms (SPECK vs. SIMON).

From these results and analyses, considering the total
number of occupied slices on chip, the space saving using
partial reconfiguration is 28%. Furthermore, considering the
total number of DSP slices and total number of BRAMs,
the space savings using partial reconfiguration are 50% and
50%, respectively. This significant space saving is mainly
because the same area of the chip is being reused for both the
SPECK and SIMON lightweight cryptographic algorithms
in DRH design. In this case, the reconfigurable parts (i.e.,
the RM in Figure 12) on the chip are being reconfigured and

VOLUME 8, 2020 221731



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

reused from one algorithm to another (either from SIMON
to SPECK or vice versa), which in turn lead to dramatic
space savings on chip/FPGA. Also, with dynamic and partial
reconfiguration, we can integrate other lightweight crypto-
graphic algorithms as needed, in order to be executed on
the same area of the chip as SPECK and SMION. This will
enable us to incorporate cryptographic algorithms to embed-
ded devices efficiently and effectively, without compromis-
ing the integrity of the compute/data-intensive applications
running on the remainder of these devices. This is indeed
imperative for portable and embedded devices with their
limited hardware footprint.

Apart from this significant space saving from our proposed
dynamic partial reconfiguration architecture, our unique
internal hardware structures for SPECK and SIMON also
lead to major space savings, since each structure is created
in such a way to encompass 20 configurations in one design.
As illustrated Table 2, the resource utilization remains the
same for all 20 SPECK configurations as well as for all
20 SIMON configurations.

2) ANALYSIS ON RECONFIGURATION SPACE OVERHEAD
The reconfiguration space overhead is the extra hardware
required on chip for reconfiguration [37], [38]. As stated
in [38], for some reconfiguration methods, reconfiguration
space overhead is unavoidable, and could potentially occupy
valuable real estate of the chip. Hence, it is imperative to ana-
lyze the reconfiguration space overhead for our dynamic and
partial reconfigurable hardware (DRH) designs, especially
for resource-constrained embedded devices.

As detailed in Sections III.D and IV.D, we integrate the
AXI hardware ICAP (internal configuration access port) [45]
to facilitate the in-circuit reconfiguration on the FPGA. Fur-
thermore, we use the external non-volatile memory, specif-
ically SystemACE compact flash (CF) [48] to store the full
and partial bitstreams of our designs. In this case, the on-
chip AXI SystemACE interface controller [48], known as
the AXI SYSACE, acts as the interface between the AXI
bus and the SystemACE CF external memory on the board.
Then, we utilize the MicroBlaze and ICAP to fetch the full
and partial bitstreams from and CF, and to download and
reconfigure the FPGA at run time, without interrupting the
system’s operations. As a result, the ICAP module and the
SystemACE interface controller are the only extra hardware
required on chip for dynamic and partial reconfiguration.
Based on the user guides for ML605 [30], the number of
occupied slices for ICAP is 436, whereas the number of
occupied slices for SystemACE interface controller is 46.
Hence, the total number of occupied slices is 482. This value
is indeed an approximation, since area often varies based
on how these modules interface with the rest of the system.
Considering the total number of slices (i.e., 37680 slices) on
Virtex-6 FPGA, the reconfiguration space overhead (or the
extra hardware required on chip) for reconfiguration is about
1.28% of the chip, and is constant. Also, considering the total
number of occupied slices (i.e., 5,719, from Table 2) for the

DRH design, the extra hardware (i.e., 482) occupies only
8.43% of our DRHdesign. This percentage of reconfiguration
space overhead would be amortized and decreased, if we
integrate other lightweight cryptographic algorithms to our
DRH design.

3) ANALYSIS ON RECONFIGURATION TIME OVERHEAD
The reconfiguration time overhead is the time required to load
and change the configuration from one algorithm (or task) to
another [37], [38]. As stated in [38], this has to be done every
time, we change the application or the functionality of the
hardware on chip.

From our experimental results presented in Table 5 and 6,
the reconfiguration time overhead is approximately
749 milliseconds for our DRH design, while our design is
actually running (in real-time) on the FPGA at 100MHz.

Next, we investigate and analyze our experimental results
obtained in order to gain further insight into the reconfigura-
tion time overhead. It is observed that the partial bitstream
created (with Xilinx PlanAhead tools) for the reconfig-
urable module (RM) (in Figure 12), is 9,232,561 bytes,
or 73,860,488 bits. As stated in [38], [42], when utilizing
the ICAP running at 100MHz and 3.2Gbps, the aforemen-
tioned partial bitstream can be loaded in: 73,860,488 bits/
3.2Gbps = 23 millisecond. This theoretical value of
23 milliseconds for reconfiguration time overhead is much
less than the actual experimental value of 749 milliseconds.

For the theoretical value, it is assumed that the ICAP
is continuously enabled at 100MHz, and the configuration
utilizes the full bandwidth of 3.2Gbps. However, in a practical
scenario, the partial bitstreams are stored in the external
non-volatile CF and the MicroBlaze processor fetches and
executes data/instructions sequentially, which often leads to
higher reconfiguration time overhead. This difference was
further investigated, analyzed, and detailed in [21], [38].
From our previous work [20], [21], it was observed that
the partial reconfiguration time overhead is in the range of
milliseconds for the bit files of similar sizes. All these facts
and our previous work [20], [21], [40], [49] illustrate that this
difference between theoretical and experimental values for
reconfiguration time overhead is quite normal.

There are several existing works [50], [51] that propose
techniques to reduce the reconfiguration time overhead.
Although, this is beyond the scope of this article, these tech-
niques will be investigated as future work, in order to further
enhance our DRH designs.

B. ANALYSIS OF EXECUTION TIMES AND SPEEDUPS
FOR SRH AND DRH DESIGNS
The execution time, which directly relates to the speedup,
is another main criteria for performance analysis for our
proposed embedded and reconfigurable hardware designs.
Hence, in this sub-section, we discuss and analyze the exper-
imental results obtained for each configuration in terms of
execution times and the speedup.

221732 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

As detailed in Section II and III, both the SPECK and
SIMON algorithms have 20 different configuration options
(i.e., 10 for encryption and 10 for decryption), based on the
varying key sizes and varying block (plaintext/ciphertext)
sizes. However, in this research work, we create only one
hardware architecture/structure for the SPECK algorithm,
in such a way to be generic, parameterized, and scalable;
thus, without changing the internal architecture, our hardware
design can be reconfigured to any one of the 20 configura-
tions. Similarly, in [13], we introduced a unique hardware
structure for SIMON, which encompasses 20 configurations
in one design.

In this article, we perform experiments for all 20 config-
urations for both the SPECK and SIMON by reconfiguring
the embedded and reconfigurable hardware designs from one
configuration to another as needed on-the-fly. We obtain the
execution times for each configuration for both the SPECK
and SIMON algorithms.

1) ANALYSIS ON EXECUTION TIMES FOR SRH
In order to evaluate our proposed dynamic and partial recon-
figurable hardware (DRH – hw-v2) architecture for SPECK
and SIMON lightweight cryptographic algorithms, we design
and implement static reconfigurable hardware (SRH) designs
for SIMON (hw-v1a) and SPECK (hw-v1b) algorithms sepa-
rately. Our proposed SRH and DRH designs are detailed and
distinguished in Section IV.

With our SRH designs for cryptographic algorithms,
firstly, a full configuration bitstream comprising the SIMON
algorithm is downloaded to the FPGA and the FPGA is
reconfigured to its appropriate hardware circuity, only once.
After the SIMON is executed, in order to execute the SPECK
algorithm, a full bitstream consisting of the SPECK is down-
loaded to the FPGA, and the entire FPGA is reconfigured
again. This process can continue from SIMON to SPECK
and vice versa. For SRH designs, the system’s operation is
interrupted for every download and reconfiguration process.

The experiments are performed on SRH designs for
SIMON (hw-v1a) and SPECK (hw-v1b) for 20 different con-
figurations, i.e., for encryption and decryption with varying
block sizes and with varying key sizes. Then the execution
times are obtained separately for each configuration and
presented in Tables 3 and 4 for encryption and decryption,
respectively. The execution time for each configuration is
measured 10 times and the average is presented. In this
case, the total execution times (presented in the column 4 in
Tables 3 and 4) do not include the download and the recon-
figuration times between the two SRH designs.

The execution times for SRH designs are obtained using
the AXI Timer [33], while our designs are actually running
(in real-time) on the FPGA at 100MHz. The execution time
is measured in clock cycles, which is a standard unit; hence
could potentially be used to estimate the time/speedup of our
proposed designs on different platforms.

Visually, from Figure 13 and also from Table 3, the exe-
cution times for SRH with SIMON (hw-v1a) and SRH with

TABLE 3. Separate execution times for SRH for SIMON and SPECK for
encryption.

TABLE 4. Separate execution times for SRH for SIMON and SPECK for
decryption.

FIGURE 13. Graph for SRH for SIMON and SPECK encryption: execution
times vs. varying configurations.

SPECK (hw-v1b) for encryption remain almost the same,
i.e., around 13.57µs -13.95µs (column 2) and 72.73µs -
79.26µs (column 3), respectively for all the configurations
regardless of the block sizes and the key sizes. As illustrated
from Table 4, the execution times for SRH for decryption
show similar behaviors. This is mainly because our efficient
and generic architectures for SPECK and SIMON, including
the system-level and internal architectures, are created in such
a way that the execution times are not affected by the input
data sizes.

Furthermore, the execution times for SPECK (column 3) is
much higher than the execution times for SIMON (column 2).
This is mainly due to the higher design complexity of the
SPECK algorithm compared to that of SIMON.

2) ANALYSIS ON EXECUTION TIMES FOR DRH
With our DRH designs for cryptographic algorithms, initially,
a full configuration bitstream comprising the reconfigurable

VOLUME 8, 2020 221733



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

module (RM) of the SIMON algorithm is downloaded, and
the FPGA is reconfigured to its appropriate hardware circuity,
and the SIMON algorithm is performed. After the execution
of SIMON, the partial bitstream for the RM of the SPECK
algorithm is downloaded to the specific region (i.e., the recon-
figurable part) of the chip consisting of the SIMON RM, and
that region is reconfigured to the SPECK algorithm. Then
the SPECK algorithm is performed. Since both SIMON and
SPECK comprise 20 different configurations each, in order to
process varying configurations, the hardware is again recon-
figured, partially and dynamically, back to SIMON without
downloading the full bitstream or without interrupting the
system’s operation.

The experiments are performed on DRH designs (hw-v2)
for 20 different configurations, i.e., encryption and decryp-
tion with varying block sizes and with varying key sizes.
Unlike our SRH designs, for our DRH designs, the execution
times (for each configuration) are measured consecutively
from one cryptographic algorithm to another (i.e., SIMON
→ SPECK), without interrupting the remaining parts of the
system, and without human intervention. Then the execution
times are obtained separately for each configuration and
presented in Tables 5 and 6 for encryption and decryption,
respectively. The execution time for each configuration is
measured 10 times and the average is presented. The execu-
tion times for DRH designs are also obtained using the AXI
Timer [33], while our designs are actually running (in real-
time) on the FPGA at 100MHz, and are measured in clock
cycles.

In Tables 5 and 6, the total execution times (presented
in column 5) include the reconfiguration time overhead for
the DRH designs. The reconfiguration time overhead from
one cryptographic algorithm to another, in our case, from
SIMON to SPECK, are presented in column 3. Considering
the values in column 3, the reconfiguration times slightly vary
from 749 to 756 milliseconds. As detailed in Section V.A.3,
in an ideal scenario, the reconfiguration time often depends
on the size of the partial bitstream, i.e., the area of the recon-
figurable module (RM). However, in a practical scenario,
other factors, for instance, storing the partial bitstreams in
off-chip CF and MicroBlaze processor fetching/executing
data/instructions sequentially, can lead to slight variations in
reconfiguration time.

In Tables 5 and 6, for DRH designs, columns 2 and 4
illustrate the individual execution times for SIMON and
SPECK, respectively, for each configuration. Visually, from
Figure 14 and also from Table 5, the individual execution
times for DRH with SIMON and with SPECK for encryp-
tion remain almost the same, i.e., around 13.57µs - 14.05µs
(column 2) and 72.9µs - 79.33µs (column 4), respectively
for all the configurations regardless of the block sizes and the
key sizes. This is analogous to the SRH designs for SIMON
and SRH designs for SPECK. As illustrated from Table 5,
the individual execution times for DRH for decryption show
similar behaviors. This is also because our efficient and
generic architectures for SPECK and SIMON, including the

TABLE 5. Separate execution times for DRH for SIMON and SPECK for
encryption.

TABLE 6. Separate execution times for DRH for SIMON and SPECK for
decryption.

FIGURE 14. Graph for DRH for SIMON and SPECK encryption: execution
times vs. varying configurations.

system-level and internal architectures, are created in such a
way that the execution times are not impacted by the input
data sizes.

From Tables 3–6, the individual execution times for DRH
designs for SIMON (in column 2) and SPECK (in column 4)
are also very close to the execution times for SRH designs for
SIMON (column 2) and SPECK (column 3) for each config-
uration. As detailed in Section IV and as in [13], the internal
hardware architectures for the SIMON and SPECK are the
same for both the DRH and SRH designs, leading to almost
similar individual execution times for each configuration.

From our previous work on dynamic and partial recon-
figurable hardware architectures for data mining/analytics
applications [20], [21], [40], [49] on embedded devices,
it was observed that the percentage of reconfiguration time

221734 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

TABLE 7. Speedup for SIMON and SPECK for encryption: SRH and DRH vs. software.

TABLE 8. Speedup for SIMON and SPECK for decryption: SRH and DRH vs. software.

was amortized and decreased, as the computation complexity
(i.e., the number of iterations/computations) increases as well
as the size of the data increases; however, the percentage
of reconfiguration time was significant for lower number
of iterations/computations and smaller data sizes [20], [21].
Conversely, for our DRH designs for cryptographic algo-
rithms, the percentage of reconfiguration time remains almost
the same for each configuration. This is mainly because the
individual execution times for DRH designs with SIMON and
with SPECK for encryption and decryption remain almost the
same for all the configurations. These results and analyses
(from this researchwork and from our previouswork) demon-
strate that the more compute and data-intensive the applica-
tions/tasks are, the lesser the impact of the reconfiguration
time overhead is.

3) ANALYSIS ON SPEEDUPS: SRH AND DRH VS. SOFTWARE
In order to evaluate our DRH designs as well as our
SRH designs, we perform additional software experiments

using the embedded MicroBlaze soft processor on the same
ML605 development platform. In this case also, the exper-
iments are performed on software designs for 20 different
configurations, i.e., encryption and decryption with varying
block sizes and with varying key sizes. Similar to the DRH
designs, for the software designs, the execution times (for
each configuration) are also measured in sequence from
one cryptographic algorithm to another (i.e., SIMON →
SPECK). Then the execution times are obtained separately
for each configuration and presented in Tables 7 and 8
(columns 4 and 9) for encryption and decryption,
respectively.

Although the execution times for our DRH and SRH for
SPECK and SIMON are quite similar for varying configu-
rations, the execution times for embedded software increase
drastically with the increasing block (plaintext/ciphertext)
sizes, and with the same key size. For instance, as illustrated
in Table 7 (column 9), the execution times are 1.084 ms and
1.224 ms for the SPECK configurations of 48/96 and 64/96

VOLUME 8, 2020 221735



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

(plaintext/ciphertext), respectively. Furthermore, the embed-
ded software execution times also increase with the increas-
ing key sizes and with the same block size; however, the
incremental rate is not high as the one with the increasing
block size. For instance, the execution times are 1.429 ms
and 1.463 ms for the SPECK configurations of 96/96 and
96/144, respectively. The execution times for SIMON embed-
ded software showed similar behaviors in [13]. As presented
in Table 1, these differences are mainly because the increase
in block size leads to dramatic increase in the number of
rounds (or number of iterations), whereas the increase in key
size leads to only minor increase in the number of rounds, and
the number of rounds in turn impacts the execution times in
embedded software designs for both SPECK and SIMON.

For the performance-gain (speedup) comparisons between
the DRH and SRH, we focus on the individual execution
(processing) times of the DRH and SRH designs with SPECK
and SIMON algorithms. Initially, we measure the speedups
of our hardware designs (both SRH and DRH) versus the
software counterparts on the MicroBlaze processor. These
speedups are presented in Tables 7 and 8 for encryption and
decryption, respectively. In these tables, the speedups for
SRH with SIMON and SPECK are in columns 5 and 10,
respectively, whereas the speedups for DRHwith SIMONand
SPECK are in columns 6 and 11, respectively. As illustrated
in Tables 7 and 8, the speedups vary from 18 to 59 for
SRH designs with SIMON for varying configurations for
both the encryption and decryption, whereas the speedups
vary from 18 to 58.5 for DRH designs with SIMON for
varying configurations for both the encryption and decryp-
tion. Furthermore, the speedups vary from 14 to 26 for SRH
designs with SPECK for varying configurations for both the
encryption and decryption, whereas the speedups vary from
14 to 26 for DRH designs with SPECK for varying configura-
tions for both the encryption and decryption. This illustrates
that DRH designs and SRH designs achieve almost similar
speedups, when considering the individual execution times
of the SIMON and SPECK algorithms.

Visually, as shown in Figures 15 and 16, the speedups
increase exponentially for the DRH and SRH designs with
SPECK and SIMON, respectively for encryption, with the
increasing block sizes and also with the increasing key sizes.
Similar behaviors are observed for the decryption for both
SPECK and SIMON. From these results and analysis, it is
evident that our DRH and SRH designs achieve much higher
speedups compared to the software counterparts on the same
embedded platform.

Figure 17 demonstrates the speedups for SPECK and
SIMON for both the DRH and SRH designs, during the
encryption process. As illustrated, for both the cryptographic
algorithms, the speedups (performance) increase, with the
increasing block sizes and also with the increasing key sizes.
However, the incremental rate of performance improvement
is much higher for SIMON (top line) compared to the that
of SPECK (bottom line). Similar behaviors are observed for
the decryption process. This is mainly due the higher design

FIGURE 15. Speedup graph for DRH and SRH designs for SPECK
encryption: speedup vs. varying configurations.

FIGURE 16. Speedup graph for DRH and SRH designs for SIMON
encryption: speedup vs. varying configurations.

FIGURE 17. Speedup graphs for DRH and SRH designs for encryption:
SPECK vs. SIMON.

complexity of SPECK, which in turn leads to higher execu-
tion times, thus lesser speedup, compared to that of SIMON
hardware designs.

It should be noted that we do not make performance-gain
(speedup) comparison between the DRH and SRH designs
considering the total execution times. This is mainly because
a significant percentage of the total execution time is spent on
reconfiguration, thus, our DRHdesignswould not showmuch
performance-gain. However, as detailed in Section V.A.1, our
DRH designs achieve significant space savings compared to
our SRH designs, i.e., 28%, 50%, and 50% space savings in
terms of total number of occupied slices, number DSP slices,
and number of BRAMs, respectively. Hence, it is crucial to

221736 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

consider these speed-space tradeoffs, especially in portable
and embedded devices with their limited hardware footprint.

As mentioned in Section V.A.3, for future work, we are
planning to investigate and incorporate techniques to reduce
the reconfiguration time overhead to further enhance the
speedup of our DRH designs, although this is beyond the
scope of this article.

From our previous work on dynamic and partial recon-
figurable hardware architectures for data mining/analytics
on embedded devices [20], [21], [40], [49], it was observed
that the DRH designs and SRH designs achieved similar
speedups, when considering the execution times for individ-
ual tasks/operations. This behavior is similar to the speedup
results of our DRH and SRH for SPECK and SIMON algo-
rithms, presented in this article.

When considering the total execution times in [20],
[21], [40], [49], as anticipated, the DRH design achieved
lesser speedup than that of the SRH design, i.e., 53 times
versus 66 times, respectively. Although this 53 times speedup
was significant, it was from the DRH design with the high-
est computation complexity and with the largest data size,
whereas the speedup wasmuch less (or almost non-existence)
for the DRH design with low computation complexity and
with small data size [20], [21]. This behavior is not simi-
lar to the speedup results of our DRH design for SPECK
and SIMON algorithms, reported in this article. This is
mainly because the hardware execution times for the DRH
design for data mining/analytics application in [20], [21]
varied with the computation complexity (i.e., number of iter-
ations/computations) and with the data size. Conversely, the
hardware execution times for our DRH designs for cryp-
tographic algorithms remain almost the same for varying
configurations.

C. ANALYSIS ON EXISTING WORKS ON DYNAMIC PARTIAL
RECONFIGURABLE HARDWARE ARCHITECTURES FOR
CRYPTOGRAPHIC ALGORITHMS
We investigated the existing works on dynamic and par-
tial reconfigurable hardware architectures for cryptographic
algorithms in the published literature. This investigation
revealed that there were only few existing works on dynamic
and partial reconfigurable hardware designs for crypto-
graphic algorithms [52], [53], [54], [55], however, all of
these focused on the AES (advanced encryption standard)
algorithm.

A hardware-software co-design architecture was proposed
in [52], in order to implement several Rijndael (AES) algo-
rithms on the FPGAs. These AES algorithms were designs
and developed on two platforms, Xilinx Spartan-2 and Altera
EPEX-2. The dynamic reconfiguration was performed from
one key size to another (128, 192, and 256). Although the
authors claimed that partial reconfiguration was utilized,
no experimental results were presented to validate this claim.
Furthermore, only the simulation results were presented, and
there was no indication of the actual implementation of the
proposed design.

An FPGA-based reconfigurable co-processor was pro-
posed for AES algorithm in [53]. In this case, the AES can
be reconfigured from one key size to another (128, 192,
and 256) using dynamic and partial reconfiguration. Similar
to our DRH designs, Microblaze processor was utilized as
a configuration controller. Experiments were performed on
two platforms, Xilinx Spartan-2 and Virtex-2. In this arti-
cle, the resource utilization results were presented separately
for each configuration, which is unusual for DRH design.
Typically, for DRH design, the resource utilization results
are obtained from the DRH configuration that comprises the
largest RM. Furthermore, the authors did not report the space
savings due to the dynamic and partial reconfiguration of
the AES algorithm, nor did they report the time overhead
associated with the partial reconfiguration.

Another FPGA-based reconfigurable architecture was pro-
posed for AES algorithm in [54], in which the AES was
reconfigured from one key size to another (128, 192, and
256) using dynamic and partial reconfiguration. In this case
also, experiments were performed on two platforms, Xilinx
Virtex-2 and Virtex-5. Authors did not present any experi-
mental results to validate the claim of utilizing the partial
reconfiguration for DRH designs. Similar to [52], only the
simulation results were presented, and therewas no indication
of the actual implementation of the proposed DRH design
using partial reconfiguration.

In [55], two reconfigurable architectures were proposed
for AES algorithm, based on two pipelined versions: mod-
ular pipelined for high-speed and simpler pipelined for area-
efficiency. In this case also, theAES can be reconfigured from
one key size to another (128, 192, and 256) using dynamic and
partial reconfiguration. Experiments were performed on the
Xilinx Zed board. Similar to [53], authors reported resource
utilization separately for each configuration. In this article,
the reconfiguration time was theoretically analyzed and pre-
sented, but actual reconfiguration time was not measured,
while the DRH design was running on the chip.

It should be noted that all the above dynamic recon-
figurable hardware (DRH) architectures were proposed for
only one cryptographic algorithm, i.e., for AES algorithm,
in which the AES was reconfigured to 3 different configura-
tions with varying key sizes. Conversely, our proposed DRH
architecture is designed for two cryptographic algorithms,
i.e., for SPECK and SIMON, in which our DRH design
can be dynamically and partially reconfigured from SIMON
to SPECK and vice versa. Furthermore, our proposed SRH
architectures for SIMON and SPECK, as separate entities,
are created in such a way to be generic, parameterized,
and scalable, hence, without changing the internal architec-
tures, our SPECK and SIMON hardware designs can also
be dynamically reconfigured to 20 different configurations,
in order to perform the encryption and decryption, and to
process varying block sizes and varying key sizes. For our
SRH designs, partial reconfiguration is not utilized.

Based on the above investigation, we create a performance
comparison table (Table 9) for most of the existing DRH

VOLUME 8, 2020 221737



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

TABLE 9. Performance analysis: existing DRH designs vs. our proposed DRH designs for cryptographic algorithms.

designs for any cryptographic algorithms, since we could
not find any similar work for DRH designs specifically for
SIMON and SPECK, in the published literature. In Table 9,
we do not include the details from [3], since authors did
not present enough evidence that partial reconfiguration was
considered. Although the values (presented in Table 9) do
not provide direct performance comparisons between our
proposed DRH designs and the existing DRH designs for
cryptographic algorithms, these values can be used as guide-
lines to enhance the design and development of future DRH
designs not only for cryptographic algorithms but also for
other similar algorithms.

In Table 9 (column 4), we present the total number of occu-
pied slices, number of DSP slices, and number of BRAMs,
for DRH designs. As illustrated, none of the existing works
reported the occupied area for the DRH designs. In Table 10
(column 5), we present the total number of occupied slices,
number of DSP slices, and number of BRAMs, for SRH
designs as separate entities. As shown, existing works also
reported the total number of occupied slices for the SRH
designs as separate entities, but did not report the number
of DSP slices or the number of BRAMs for these designs.
It should be noted that our DRH design as well as our
SRH designs encompass all 20 configurations in one design,
whereas the existing designs were created to comprise only
one configuration at a time. Regardless, our DRH design
occupy less area on the chip as a single module, compared to
the combined areas of the three different configurations for
the existing ones in the literature.

In Table 9, the execution times (or speedup) val-
ues are not presented, since timing/speedup comparison
between DRH designs for completely different cryptographic

algorithms is not necessarily fair. Hence, in Table 9, we only
present the resource utilization values, since these values
are crucial when designing cryptographic algorithms on
resource-constrained embedded devices, with their limited
hardware footprint.

From the above investigation (Table 9, column 6), it is evi-
dent that most of the existing DRH designs for cryptographic
algorithms were not fully and actually implemented on the
FPGA, since no valid experimental results and analysis were
presented to support these claims. Furthermore, the existing
works did not report the reconfiguration time overhead, while
the DRH designs were actually running on the chip. None of
the existing works reported and analyzed the space savings
due to the dynamic and partial reconfiguration. In addition,
most of the existing works did not design and implement the
system-level architectures.

From this investigation and to the best of our knowledge,
we could not find any similar work as ours in the literature that
provides dynamic and partial reconfigurable hardware archi-
tectures, specifically for SPECK and SIMON lightweight
cryptographic algorithms, nor could we find any similar
work that provides system-level architecture for the proposed
DRH designs.

D. ANALYSIS ON EXISTING WORKS ON FPGA-BASED
HARDWARE ARCHITECTURES FOR SPECK AND SIMON
We also investigated the existing works on FPGA-based hard-
ware architectures for SPECK and SIMON algorithms in the
published literature, since we could not find any existing
works on dynamic and partial reconfigurable hardware archi-
tectures for these two algorithms.

221738 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

In [67], an FPGA-based bit-serialized hardware archi-
tecture was proposed for only one SIMON configuration,
i.e., for 128/128 configuration. Experiments were performed
on two platforms: Xilinx Spartan-3 and Spartan-6. The pro-
posed SIMON design was compared with different crypto-
graphic algorithms, including AES, PRESENT, etc., in terms
of area, specifically with the number of slices, in order to
illustrate that SIMON is an alternative to AES for low-cost
FPGA-based systems.

In [68], FPGA-based hardware architectures were pro-
posed for both SIMON and SPECK algorithms for only two
configurations, i.e., for 64/128 and 128/128 configurations.
These designs were created as separate individual modules
for each configuration and for each algorithm. The proposed
designs were executed on Xilinx Spartan-3 platform, and
compared with existing AES, PRESENT, and SIMON in
terms of area (number of slices) and throughput, in order to
demonstrate that SIMON and SPECK are more suitable for
IoT applications and devices.

Another FPGA-based hardware architecture was pro-
posed in [69], for only one SIMON configuration, i.e., for
32/64 configuration. The proposed design was executed on
Xilinx Virtex-5 FPGA, and compared with different crypto-
graphic algorithms, specifically Hummingbird and X-TEA,
in terms of area (i.e., IOs, LUTs, registers, and buffers)
and maximum frequency, to illustrate that SIMON is more
appropriate for embedded applications.

An FPGA-based hardware architecture was proposed
in [70], for only one SPECK configuration, i.e., for
128/128 configuration. Experiments were performed on
Xilinx Spartan-3 platform. The proposed design was com-
pared with various cryptographic algorithms, including AES,
PRESENT, SIMON, etc., in terms of area (number of slices)
and throughput, to demonstrate that SPECK is suitable for
low-cost FPGAs.

From this investigation, it is evident that most of the afore-
mentioned existing designs for SPECK and SIMON,were not
generic, parameterized, or scalable. With these designs, usu-
ally, only one configuration was designed and implemented
at a time, with only one block size and one key size. Hence,
to create a different configuration, the underlying hardware
circuitry needs to be changed, and then the design has to
go through the whole synthesis and implementation process.
Conversely, our SRH designs for SPECK and SIMON are
created in such a way to be generic, parameterized, and
scalable; thus, without changing the underlying hardware
circuity, our design can be reconfigured on-the-fly to any
one of the 20 different configurations. Furthermore, most
of the existing works did not report the execution time or
speedup for the proposed hardware designs. Also, none of the
existing works proposed system-level architectures, which
is imperative for embedded applications in real-world sce-
narios. Consequently, the existing works did not report the
corresponding system-level area, and did not consider the
associated memory access latency while reporting through-
put/latency. As a result, we could not make any direct

performance comparisons with the existing works on FPGA-
based hardware architectures in the published literature.

VI. CONCLUSION AND FUTURE WORK
In this article, we introduced novel, unique, and effi-
cient dynamic and partial reconfigurable hardware archi-
tectures for the most popular lightweight cryptographic
algorithms: SPECK and SIMON. We created our dynam-
ically reconfigurable hardware as two versions. As the
first version, we introduced unique, customized, and opti-
mized FPGA-based reconfigurable hardware architecture for
SPECK, which was generic, parameterized, and scalable.
As the second version, we introduced novel and unique
dynamic and partial reconfigurable hardware architectures
for both SPECK and SIMON. The first version can be dynam-
ically reconfigured to 20 different configurations, without
changing the internal architecture, which was analogous to
our previously proposed SIMON reconfigurable hardware
architecture in [13]. The second version can be dynami-
cally and partially reconfigured from SIMON to SPECK
and vice versa, by reconfiguring the on-chip hardware from
one cryptographic algorithm to another. For both versions,
the dynamic reconfiguration can be done without inter-
rupting the system’s operations and often without human
intervention.

In this article, we distinguished the first and the sec-
ond versions as the SRH (static reconfigurable hardware)
and the DRH (dynamic reconfigurable hardware) designs,
respectively. Although the first version can be dynamically
reconfigured, we named this version SRHmainly because the
partial reconfiguration was not utilized.

Due to the various reconfigurable features, our proposed
hardware versions are highly flexible to accommodate dif-
ferent data arrays and data elements with varying data sizes;
and the same architectures can be utilized for other embed-
ded applications with diverse security requirements and not
limited to IoT-related applications.

We also introduced unique and efficient system-level
architectures for our proposed SRH and DRH designs for
SPECK and SIMON lightweight cryptographic algorithms.
With the system-level architecture, we created and incor-
porated unique pre-fetching techniques to reduce the mem-
ory access latency of our proposed reconfigurable hardware
architectures for SPECK and SIMON algorithms. To the
best of our knowledge, we could not find any similar work
in the published literature that provides dynamic and par-
tial reconfigurable hardware architectures for SPECK and
SIMON; nor could we find any similar work that provides
reconfigurable hardware architectures for SPECK, which can
be dynamically reconfigured to 20 different configurations,
without changing internal architectures. Also, we could not
find any existing work on SPECK and SIMON that proposed
system-level architecture, which is imperative for embedded
applications in real-world scenarios.

From our experimental results and analysis, our DRH
design showed a significant space savings, since the same

VOLUME 8, 2020 221739



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

area of the chip/FPGA was being reused by reconfigur-
ing the on-chip hardware circuity from one cryptographic
algorithm to another (i.e., from SIMON → SPECK →
SIMON →. . . ), which is important for embedded devices
with their stringent area constraints. With our DRH design,
the space savings were about 28%, 50%, and 50% in terms
of number of occupied slices, number of DSP slices, and
number of BRAMs, respectively. Furthermore, the recon-
figuration space overhead, which is the extra hardware
required for reconfiguration, was relatively low compared
to the whole chip (i.e., about 1.28%), and remained the
same.

Considering the reconfiguration time overhead, we
observed that there was a difference between the experi-
mental value (749 milliseconds) and the theoretical value
(23 milliseconds). This difference was mainly because, in our
experimental setup, we utilized the MicroBlaze processor,
with its sequential execution nature, as our configuration
controller to bring the partial bitstreams from the off-chip CF.
From our previous work [20], [21], it was observed that this
difference between theoretical and experimental values for
the reconfiguration time overhead is quite normal. Although,
this is beyond the scope of this article, as future work, we are
planning to investigate and incorporate techniques, such
as [50], [51], to reduce the reconfiguration time overhead to
further enhance the performance of our DRH designs.

Our current reconfigurable hardware architectures (both
SRH and DRH designs) for SIMON and SPECK executed
up to 59 times and 26 times, respectively, faster than their
software counterparts on the embedded processor. In addi-
tion, for both SRH and DRH designs, it was observed that
the processing times for SPECK remained almost the same
for all 20 configurations. Similar behavior was observed for
SIMON in [13]. This was mainly because our efficient and
generic architectures for SPECK and SIMON, including the
system-level and internal architectures, were created in such
a way that the processing times were not affected by the input
data sizes.

These experimental results are encouraging and show a
great potential in utilizing FPGAs to create and incorporate
lightweight cryptographic algorithms, specifically on embed-
ded devices, considering the constraints associated with these
devices, as well as the requirements of the applications run-
ning on these devices.

Power consumption is another major issue in the
resource-constrained embedded devices. It has been
demonstrated [65], [66] that FPGA-based reconfigurable
hardware often consumes less power than embedded
microprocessor-based software-only designs. Furthermore,
as stated in [60]–[64], the dynamic and partial reconfiguration
could potentially lead to reduction in power consumption.
However, as future work, we are planning to investigate
sophisticated power analysis tools to measure the power
consumption of our reconfigurable hardware designs, since
Xilinx Power Analysis tools for Virtex-6 only report esti-
mated power, which does not reflect accurate values.

REFERENCES
[1] M. M. Kermani, M. Zhang, A. Raghunathan, and N. K. Jha, ‘‘Emerging

frontiers in embedded security,’’ in Proc. 26th Int. Conf. VLSI Design 12th
Int. Conf. Embedded Syst., Jan. 2013, pp. 203–208.

[2] S. Surendran, A. Nassef, and B. D. Beheshti, ‘‘A survey of cryptographic
algorithms for IoT devices,’’ in Proc. IEEE Long Island Syst., Appl. Tech-
nol. Conf. (LISAT), May 2018, pp. 1–8.

[3] D. N. Serpanos and A. G. Voyiatzis, ‘‘Security challenges in embedded
systems,’’ ACM Trans. Embedded Comput. Syst., vol. 12, no. 1s, pp. 1–10,
Mar. 2013.

[4] N. B. F. Silva, D. F. Pigatto, P. S. Martins, and K. R. L. J. C. Branco,
‘‘Case studies of performance evaluation of cryptographic algorithms for
an embedded system and a general purpose computer,’’ J. Netw. Comput.
Appl., vol. 60, pp. 130–143, Jan. 2016.

[5] W. Jiang, Z. Guo, Y. Ma, and N. Sang, ‘‘Measurement-based research on
cryptographic algorithms for embedded real-time systems,’’ J. Syst. Archit.,
vol. 59, no. 10, pp. 1394–1404, Nov. 2013.

[6] O. Hyncica, P. Kucera, P. Honzik, and P. Fiedler, ‘‘Performance evaluation
of symmetric cryptography in embedded systems,’’ in Proc. 6th IEEE Int.
Conf. Intell. Data Acquisition Adv. Comput. Syst., Sep. 2011, p. 277.

[7] T. Wollinger, J. Guajardo, and C. Paar, ‘‘Cryptography in Embedded Sys-
tems: An Overview,’’ in Proc. Embedded World Exhib. Conf., Feb. 2003,
pp. 735–744.

[8] D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großsschädl, and
A. Biryukov, ‘‘Triathlon of Lightweight Block Ciphers for the Internet
of Things,’’ in Proc. NIST Lightweight Cryptogr. Workshop, Jul. 2015,
pp. 1–21.

[9] W. J. Buchanan, S. Li, and R. Asif, ‘‘Lightweight cryptography methods,’’
J. Cyber Secur. Technol., vol. 1, nos. 3–4, pp. 187–201, Sep. 2017.

[10] M. Appel, A. Bossert, S. Cooper, T. Kußmaul, J. Lö̈ffler, C. Pauer, and
A. Wiesmaier, ‘‘Block ciphers for the IoT–SIMON, Speck, KATAN, LED,
TEA, PRESENT, and SEA compared,’’ in Proc. Appel Block CF, 2016,
pp. 1–37.

[11] R. Beaulieu, D. Shors, and J. Smith, The Simon and Speck of Lightweight
Block Ciphers. Fort Meade, MD, USA: National Security Agency,
Jun. 2013.

[12] P. Yalla and J.-P. Kaps, ‘‘Lightweight cryptography for FPGAs,’’ in Proc.
Int. Conf. Reconfigurable Comput. FPGAs, Dec. 2009, pp. 225–230.

[13] A. Alkamil andD. G. Perera, ‘‘Efficient FPGA-based reconfigurable accel-
erators for SIMON cryptographic algorithm on embedded platforms,’’ in
Proc. Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2019,
pp. 1–8.

[14] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, ‘‘The SIMON and SPECK block ciphers on AVR 8-bit
microcontrollers,’’ in Proc. 3rd Int. Workshop Lightweight Cryptogr. Secur.
Privacy (LightSec), in Lecture Notes in Computer Science, vol. 8898.
Springer, 2014, pp. 3–20.

[15] S. N. Shahrouzi and D. G. Perera, ‘‘Optimized hardware accelerators for
data mining applications on embedded platforms: Case study principal
component analysis,’’ Microprocessors Microsyst., vol. 65, pp. 79–96,
Mar. 2019.

[16] A. K.Madsen andD. G. Perera, ‘‘Efficient embedded architectures for fast-
charge model predictive controller for battery cell management in electric
vehicles,’’ EURASIP J. Embedded Syst., vol. 2018, no. 1, p. 2, Jul. 2018.

[17] M. A. Mohsin and D. G. Perera, ‘‘An FPGA-based hardware accelerator
for K-Nearest neighbor classification for machine learning on mobile
devices,’’ in Proc. 9th Int. Symp. Highly-Efficient Accel. Reconfigurable
Technol., Jun. 2018, pp. 1–7.

[18] D. G. Perera and K. F. Li, ‘‘Analysis of single-chip hardware support
for mobile and embedded applications,’’ in Proc. IEEE Pacific Rim Conf.
Commun., Comput. Signal Process. (PACRIM), Aug. 2013, pp. 369–376.

[19] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, ‘‘An overview of
reconfigurable hardware in embedded systems,’’ EURASIP J. Embedded
Syst., vol. 2006, pp. 1–19, Dec. 2006.

[20] S. N. Shahrouzi and D. G. Perera, ‘‘Dynamic partial reconfigurable
hardware architecture for principal component analysis on mobile and
embedded devices,’’ EURASIP J. Embedded Syst., vol. 2017, no. 1, p. 25,
Feb. 2017.

[21] D. G. Perera and K. Fun Li, ‘‘FPGA-based reconfigurable hardware for
compute intensive data mining applications,’’ in Proc. Int. Conf. P2P,
Parallel, Grid, Cloud Internet Comput., Oct. 2011, pp. 100–108.

[22] D. G. Perera and K. F. Li, ‘‘Embedded hardware solution for principal
component analysis,’’ in Proc. IEEE Pacific Rim Conf. Commun., Comput.
Signal Process., Aug. 2011, pp. 730–735.

221740 VOLUME 8, 2020



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

[23] A. K. Madsen, M. S. Trimboli, and D. G. Perera, ‘‘An optimized FPGA-
based hardware accelerator for physics-based EKF for battery cell man-
agement,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020,
pp. 1–5.

[24] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin,
‘‘Reconfigurable hardware for high-Security/ high-performance embedded
systems: The SAFES perspective,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 16, no. 2, pp. 144–155, Feb. 2008.

[25] S. Drimer, ‘‘Security for volatile FPGAs,’’ Comput. Lab., Univ. Cam-
bridge, Cambridge, U.K., Tech. Rep. UCAM-CL-TR-763, Nov. 2009.

[26] T. Wollinger and C. Paar, ‘‘How secure are FPGA in cryptographic appli-
cations? (Long version),’’ in Field Programmable Logic and Application.
FPL (Lecture Notes in Computer Science), vol. 2778. Berlin, Germany:
Springer, 2003.

[27] B. Badrignans, J.-L. Danger, V. Fischer, G. Gogniat, and L. Torres, Secu-
rity Trends for FPGAS, From Secured to Secure Reconfigurable Systems.
New York, NY, USA: Springer, 2011.

[28] T. Wollinger and C. Paar, ‘‘How secure are FPGAs in cryptographic
applications,’’ in Proc. 13th Int. Conf. Field-Program. Logic Appl., 2003,
pp. 91–100.

[29] T. Wollinger and C. Paar, ‘‘Security aspects of FPGAs in cryptographic
applications,’’ in New Algorithms, Architectures and Applications for
Reconfigurable Computing, P. Lysaght and W. Rosenstiel, Eds. Dordrecht,
The Netherlands: Springer, 2005, pp. 265–278.

[30] Xilinx, Inc. (2011).ML605Hardware User Guide. UG534(v1.5). [Online].
Available: www.xilinx.com/support/documentation/boards_and_kits/
ug534.pdf

[31] Xilinx, Inc. (2012). LogiCORE IP AXI Block RAM Controller, (v1.03a).
[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/axi_bram_ctrl/v1_03_a/ds777_axi_bram_ctrl.pdf

[32] Xilinx, Inc. (Dec. 2012). LogiCORE IPAXI Interconnect. DS768 (v1.06.a).
[Online]. Available: http://www.xilinx.com/support/documentation/
ip_documentation/axi_interconnect/v1_06_a/ds768_axi_interconnect.pdf

[33] Xilinx, Inc. (Jul. 2012). LogiCORE IP AXI Timer. DS764 (v1.03.a).
[Online]. Available: http://www.xilinx.com/support/documentation/ip_
documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf

[34] Xilinx, Inc. (2013). MicroBlaze Processor Reference Guide. UG081,
(v 14.7). [Online]. Available: https://www.xilinx.com/support/
documentation/sw_manuals/mb_ref_guide.pdf

[35] K. Compton and S. Hauck, ‘‘Reconfigurable computing: A survey of
systems and software,’’ ACM Comput. Surv., vol. 34, no. 2, pp. 171–210,
Jun. 2002.

[36] S. Hauck and A. Dehon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computing. San Mateo, CA, USA: Morgan
Kaufmann, 2008.

[37] K. F. Li and D. G. Perera, ‘‘A design methodology for mobile and embed-
ded applications on FPGA-based dynamic reconfigurable hardware,’’ Int.
J. Embedded Syst., vol. 1, no. 1, p. 1, 2019.

[38] D. G. Perera, ‘‘Analysis of FPGA-based reconfiguration methods for
mobile and embedded applications,’’ in Proc. 12th FPGAworld Conf. -
FPGAworld, Sep. 2015, pp. 15–20.

[39] D. G. Perera and K. F. Li, ‘‘Analysis of computational models and applica-
tion characteristics suitable for reconfigurable FPGAs,’’ in Proc. 10th Int.
Conf. P2P, Parallel, Grid, Cloud Internet Comput. (3PGCIC), Nov. 2015,
pp. 244–247.

[40] D. G. Perera, ‘‘Chip-level and reconfigurable hardware for data mining
applications,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Victo-
ria, Victoria, BC, Canada, Apr. 2012.

[41] J. Hussein and R. Patel, MultiBoot With Virtex-5 FPGAs and Platform
Flash XL, document XAPP1100 (v1.0), Nov. 2008.

[42] Xilinx, Inc. (2010). Partial Reconfiguration User Guide UG702 (v12.3).
[Online]. Available: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx12_3/ug702.pdf

[43] D. Dye, Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite,
document WP374 (v1.1), Jul. 2011.

[44] Xilinx, Inc. (2010). Virtex-6 FPGA Configuration User Guide
UG360 (v3.2). [Online]. Available: http://www.xilinx.com/support/
documentation/user_guides/ug360.pdf

[45] Xilinx, Inc. (2012). LogiCORE IP AXI HWICAP, DS817 (v2.03.a).
[Online]. Available: http://www.xilinx.com/support/documentation/ip_
documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf

[46] Xilinx, Inc. (2009). PlanAhead User Guide, UG632 (v 11.4). [Online].
Available: http://www.xilinx.com/support/documentation/sw_manuals/
xilinx11/PlanAhead_UserGuide.pdf

[47] V. Eck, P. Kalra, R. LeBlanc, and J. McManus, In-Circuit Partial Recon-
figuration of RocketIO Attributes, document XAPP662 (v2.4), May 2004.

[48] Xilinx, Inc. (2011). LogiCORE IP AXI SystemACE Interface Controller,
DS789 (v1.01.a). [Online]. Available: http://www.xilinx.com/support/
documentation/ip_documentation/ds789_axi_sysace.pdf

[49] S. N. Shahrouzi, ‘‘Optimized embedded and reconfigurable hardware
architectures and techniques for data mining applications on
mobile devices,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Univ. Colorado at Colorado Springs, Colorado Springs, CO, USA,
Dec. 2018.

[50] M. Hubner, D. Gohringer, J. Noguera, and J. Becker, ‘‘Fast dynamic and
partial reconfiguration data path with low hardware overhead on xilinx
FPGAs,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process., Workshops
Phd Forum (IPDPSW), Apr. 2010, pp. 1–8.

[51] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, ‘‘Run-time partial reconfigu-
ration speed investigation and architectural design space exploration,’’ in
Proc. Int. Conf. Field Program. Log. Appl., Aug. 2009, pp. 498–502.

[52] R. Ashruf and G. S. G. Vassiliadis, ‘‘Reconfigurable implementation forT-
the AES algorithm,’’ in Proc. ProRISC, 2002, pp. 169–172.

[53] Z. E. Abidine and A. A. I. Moussa, ‘‘Self-partial and dynamic reconfigu-
ration implementation for AES using FPGA,’’ IJCSI Int. J. Comput. Sci.
Issues, vol. 2, p. 33, Aug. 2009.

[54] S. Wankhade and R. Mahajan, ‘‘Dynamic partial reconfiguration imple-
mentation of AES algorithm,’’ Int. J. Comput. Appl., vol. 97, no. 3,
pp. 15–18, Jul. 2014.

[55] S. Burman, P. Rangababu, and K. Datta, ‘‘Development of dynamic recon-
figuration implementation of AES on FPGA platform,’’ in Proc. Devices
Integr. Circuit (DevIC), Mar. 2017, pp. 247–251.

[56] D. G. Perera and K. F. Li, ‘‘Similarity computation using reconfigurable
embedded hardware,’’ inProc. 8th IEEE Int. Conf. Dependable, Autonomic
Secure Comput., Dec. 2009, pp. 323–329.

[57] D. Perera and K. Li, ‘‘Hardware acceleration for similarity computations
of feature vectors,’’ Can. J. Electr. Comput. Eng., vol. 33, no. 1, pp. 21–30,
2008.

[58] R. Wisniewski, ‘‘Dynamic partial reconfiguration of concurrent control
systems specified by Petri nets and implemented in Xilinx FPGA devices,’’
IEEE Access, vol. 6, pp. 32372–32391, 2018.

[59] Dynamic Function Exchange, document UG947 (v2019.2), Xilinx, Inc,
Mar. 2020.

[60] Vivado Design Suite User Guide, Partial Reconfiguration, docu-
ment UG909 (v2018.1), Xilinx Inc., Apr. 2018.

[61] S. Liu, R. N. Pittman, A. Forin, and J.-L. Gaudiot, ‘‘Achieving energy effi-
ciency through runtime partial reconfiguration on reconfigurable systems,’’
ACM Trans. Embedded Comput. Syst., vol. 12, no. 3, p. 72, 2013.

[62] ‘‘FPGA run-time reconfiguration two approaches, version 1.0,’’ Altera
Corp., San Jose, CA, USA, White Paper, Mar. 2008. [Online]. Available:
file:///C:\UsersC:\pdarsC:\DownloadsC:\38-21671%20(1).pdf

[63] K. Vipin and S. A. Fahmy, ‘‘FPGA dynamic and partial reconfiguration: A
survey of architectures, methods, and applications,’’ ACM Comput. Surv.,
vol. 51, no. 4, pp. 1–39, Sep. 2018.

[64] J. Noguera and I. O. Kennedy, ‘‘Power reduction in network equipment
through adaptive partial reconfiguration,’’ in Proc. Int. Conf. Field Pro-
gram. Log. Appl., Aug. 2007, pp. 240–245.

[65] T. J. Todman, G. A. Constantinides, S. J. E.Wilton, O.Mencer,W. Luk, and
P. Y. K. Cheung, ‘‘Reconfigurable computing: Architectures and design
methods,’’ IEE Proc.-Comput. Digit. Techn., vol. 152, no. 2, pp. 193–207,
Mar. 2005.

[66] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
‘‘Comparing energy efficiency of CPU, GPU and FPGA implementa-
tions for vision kernels,’’ in Proc. IEEE Int. Conf. Embedded Softw. Syst.
(ICESS), Jun. 2019, pp. 1–8.

[67] A. Aysu, E. Gulcan, and P. Schaumont, ‘‘SIMON says: Break area records
of block ciphers on FPGAs,’’ IEEE Embedded Syst. Lett., vol. 6, no. 2,
pp. 37–40, Jun. 2014.

[68] R. Beaulieu, ‘‘SIMON and SPECK: Block ciphers for The Internet of
Things,’’ in Proc. Lightweight Cryptogr. (NIST) Workshop, Jul. 2015,
p. 585.

[69] S. Feizi, A. Ahmadi, andA.Nemati, ‘‘A hardware implementation of simon
cryptography algorithm,’’ in Proc. 4th Int. Conf. Comput. Knowl. Eng.
(ICCKE), Oct. 2014, pp. 245–250.

[70] A. Nemati, S. Feizi, A. Ahmadi, and V. A.-D. Makki, ‘‘A low-cost and
flexible FPGA implementation for SPECK block cipher,’’ in Proc. 12th
Int. Iranian Soc. Cryptol. Conf. Inf. Secur. Cryptol. (ISCISC), Sep. 2015,
pp. 42–47.

VOLUME 8, 2020 221741



A. Alkamil, D. G. Perera: Towards Dynamic and Partial Reconfigurable Hardware Architectures for Cryptographic Algorithms

ARKAN ALKAMIL received the B.Sc. and M.Sc.
degrees in electronics and electrical engineering
from Al-Nahrain University, Iraq, in 2004 and
2008, respectively. He is currently pursuing
the Ph.D. degree. He is currently working as
a Research Assistant under the guidance of
Dr. Darshika G. Perera. He is also working as a
Lecturer with the Department of Electrical and
Computer Engineering, University of Colorado at
Colorado Springs. His research interests include
hardware accelerators and hardware security.

DARSHIKA G. PERERA (Senior Member, IEEE)
received the B.Sc. degree in electrical engineer-
ing from the University of Peradeniya, Sri Lanka,
the M.Sc. degree in electrical engineering from
the Royal Institute of Technology, Sweden, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Victoria, Canada.
She is currently an Assistant Professor with the
Department of Electrical and Computer Engineer-
ing, University of Colorado at Colorado Springs

(UCCS), USA. Prior to joining UCCS, she has worked as a Senior Engineer
and the Group Leader of embedded systems with CMC Microsystems,
Canada. Her research interests include reconfigurable computing, mobile
and embedded systems, data mining, and digital systems. She is a Senior
Member of the IEEE CAS VLSI and Computer Societies and the IEEE
Women in Engineering. She received the ‘‘Teacher of the Year–Tenure
Track Award’’ from the Engineering and Applied Science College, UCCS,
in April 2019. She also received the Best Paper Award at the IEEE 3PGCIC
2011 Conference in 2011 and the Best Poster Paper Award at the ACM
HEART 2018 Symposium in 2018. She serves on organizing and pro-
gram committees for several IEEE/ACM conferences and workshops, and
a reviewer for several IEEE, Springer, and Elsevier journals. She also serves
on theVLSI Systems andApplications Technical Committee (VSATC) of the
IEEE Circuits and Systems Society. She also serves as an Associate Editor
for the Microelectronics Journal (MEJ) (Elsevier).

221742 VOLUME 8, 2020


