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ABSTRACT Speech emotion recognition (SER) plays an indispensable role in human-computer interaction
tasks, where the ultimate performance is determined by features, such as empirically learned features (ELFs)
and automatically learned features (ALFs). Although the fusion of both ELFs and ALFs can complement
some new features for SER, the fused training within one softmax layer is inappropriate due to the different
performance of using either ELFs or ALFs for emotion recognition. Based on this consideration, this
paper proposes an independent training framework that can fully enjoy the complementary advantages of
human knowledge and powerful learning ability of deep learning models. Specifically, we first feed Mel
frequency cepstral coefficient and openSMILE features respectively into a pair of independent models,
which are composed of an attention-based convolution long short-term memory neural network and a fully
connected neural network. We then design a feedback mechanism for each model to extract ALFs and
ELFs independently, where hard example mining and re-training with a hard example loss are applied to
focus the feature extraction on hard examples during training. Finally, a classifier is adopted to distinguish
emotion by using both the independent features of ALFs and ELFs. Based on extensive experiments on three
public speech emotion datasets (IEMOCAP, EMODB, and CASIA), we show that the proposed independent
training framework outperforms the conventional feature fusion methods.

INDEX TERMS Data imbalance, hard example, feature fusion, independent training, speech emotion
recognition.

I. INTRODUCTION
Speech is the most common and natural communication
medium for human beings. In addition to the linguistic infor-
mation, speech signals also contain some useful paralinguis-
tic information, such as gender, age and emotion [1], [2].
In recent ten years, speech emotion recognition (SER), as one
of the most challenging techniques in the field of human
machine interaction (HMI) [1], [3], has been widely applied
to education, health, smart home and many other artificial
intelligence scenarios [4].

With the development of deep learning technology, the raw
signals and their spectrum can be directly used as the input
of models for many classification tasks, including the field
of SER [5]–[7]. Such model is referred to as ‘‘end-to-end’’
system since it requires no pre-process on the raw sig-
nals, and can yield satisfactory classification performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidónia Lefkovits .

thanks to the power ability of the specifically designed deep
model.

In order to alleviate the computational cost of feature
extraction using raw signals, some pre-process is considered
by the authors in [8], where specific human-empowered fea-
tures are generated from the raw signals and then fed into
classifiers for emotion recognition. In general, discrimina-
tive feature generation is the most important step for SER
task, since the features extracted from speech signals contain
effective information of emotional states [9]–[11]. Previous
works demonstrated that empirically learned features (ELFs),
such as prosodic, vocal tract, pitch, and voice quality feature
et. al. can characterize emotion states clearly [12]–[14], and
accordingly, a variety of emotion feature sets have been
used for SER task, e.g., INTERSPEECH 2013 [15], AVEC-
2013 [16] and GeMAPs [17]. However, the performance of
such features might be limited by the fact that they are hand-
crafted, that is, designed by human experimenters, and might
therefore not be optimal to characterize vocal emotions.
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As an alternative, automatically learned features (ALFs)
provides a promising and an outstanding solution for SER
thanks to the development of deep learning techniques [18].
In comparison with ELFs, ALFs extracted based on MFCC
are more effective to capture high-level features by taking
temporal-spatial relation of feature map into considera-
tion [19]–[21]. Typically, the convolutional neural net-
work (CNN) model or the long short-term memory (LSTM)
model is used in ALF-aided emotion recognition [22]–[24].
To capture more useful emotional feature representations,
Mao et al. [25], proposed a two-stage CNN, which con-
sists of sparse auto-encoder and salient discriminative fea-
ture analysis, to learn affect-salient discriminative features.
Zhao et al. [26] designed a merged deep model, where
both 1D and 2D CNN were applied to learn high-level
features from raw audio clips and Log-Mel spectrograms,
respectively. In order to characterize the dynamic character-
istic of speech signal, 3D-based model is considered, where
Chen et al. [27] introduced 3D-based attention convolu-
tional recurrent neural networks (CRNN). Meng et al. [19]
developed a dilated CNN, which selected 3D Log-Mel spec-
trograms as input. Peng et al. [28] proposed 3D convo-
lutions and attention-based sliding recurrent networks to
fully utilize the auditory and attention mechanism of human.
In addition, some parallel deep model works have also been
explored. Jiang et al. [29] employed Log-Mel spectrograms
for CNN and frame-level feature for LSTM. Zhao et al. [30]
applied spectrogram as the input of Bi-LSTM and CNN
separately to yield different highly-abstract feature represen-
tations. Although ALFs of deep models can generally capture
effective emotional information, the performance of feature
fusion between ALFs and ELFs is not clearly demonstrated
by the above mentioned works, but could have the potential
of improving the accuracy of SER.

In recent two years, some pioneer works focused on the
fusion of ELFs and ALFs for SER. The idea behind the
fusion process is to utilize the complementary advantages
between ALFs and ELFs. In [31]–[34], the authors intro-
duced the fusion of features with both ALFs and ELFs, and
then extended the idea of fusion by taking the advantage of
spectrogram and openSMILE features with CNN and deep
neural network (DNN), respectively. In comparison with SER
tasks using one kind of feature, the aforementioned methods
employing both ELFs and ALFs can improve SER perfor-
mance. However, the effect of fusion at the feature level
is neglected by the existing contributions. To elaborate a
little further, the system employing ELFs and ALFs performs
differently when tracking identical tasks, and thus requires
different feedback of loss functions to optimize the corre-
spondingmodel. In other words, the fusion of ELFs andALFs
requires independent models of different feedback to achieve
the global optimization, which is ignored by the existing
contributions.

In order to take full advantages of both ELFs and ALFs,
this paper proposes an independent training framework.
Unlike the conventional fusion works [32], [33], the training

process of both ELFs and ALFs are completely indepen-
dent prior to the fusion of features. To be specific, with
the independent feedback of loss functions, attention-based
convolution long short-term memory network (ACLN) is
considered to extract high-level ALFs with spatial-temporal
characteristics of emotions, while the fully connected neural
network (FCN) is employed to characterize ELFs of gran-
ularity characteristics. Finally, we integrate the output of
independent model (ALFs and ELFs) into support vector
machine (SVM) for emotion recognition directly, when the
loss of independent model tends to steady.

With respect to the independent feedback propagation of
both ACLN and FCN, we develop a hard example innovated
error feedback mechanism. Specifically, we focus on the hard
examples during the error feedback process, and develop a
hard example (HE) loss to increase the impact of the hard
examples on discriminating emotion features. Basically, hard
examples belong to the samples of the emotional state that
are of a relative high misclassification rate. Typically, in a
known emotion dataset, such as the IEMOCAPdatabase, hard
examples are concentrated between samples of neutral state
and those of happy. In comparison with the problem of data-
imbalance, the effect of hard example on SER is ignored by
the pioneer works [35], [36]. In [37], Tripathi et al. first con-
sidered the effect of hard examples in the training process, and
developed focal loss based error feedback according to the
classification error rate in a residual CRNN model. Although
the focal loss takes hard examples into consideration during
the error feedback, it is unable to increase the ratio of hard
examples over the whole training dataset, leading to lim-
ited performance improvement to the effectiveness of feature
extraction and emotion discrimination. Moreover, the mod-
ification of hyper-parameters in focal loss is necessitated in
the training process [37].

In order to address the above issue, this paper presents an
independent error feedback mechanism for both ACLN and
FCN, where we specially emphasize the impact of hard exam-
ples on the feature extraction, and propose a hard example
innovated loss in the error feedback propagation. To be spe-
cific, we define the hard-index by taking classification error
rate into consideration, and then apply hard example mining
process to identify hard examples in the whole training set.
Based on the so designed hard-index, we develop a HE loss
and re-training operation to address the class imbalance prob-
lem while emphasizing the contribution of hard examples to
the total loss.

To sum up, the contributions of this paper can be summa-
rized as two-folds.
1) We demonstrate through numerical results that the inde-

pendent training prior to the fusion of features is able
to circumvent the limitation of the conventional feature
fusion at the feature level. To be specific, we propose
to design an independent framework for feature extrac-
tion prior to the fusion of features. With independent
training and error feedback, the extracted features can
better represent the emotions with different levels of
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loss, and thus, have the potential of improving the SER
performance.

2) We propose a hard example aided re-training method in
the process of independent feature extraction. Specifi-
cally, we develop the hard-index for hard example min-
ing, and proposed a HE loss by taking advantages of the
hard-index and the distributions of emotion classes into
consideration.With the designed HE loss and re-training
method, the problems of insufficient learning on hard
examples and the imbalanced data distribution can be
well tackled.

The rest of this paper is organized as follows. Section II
describes the background theory and limitations to the con-
ventional training and feedback propagation for SER.We pro-
pose the independent training framework in Section III,
including the independent feature extraction and feedback
mechanism. The experimental results and analysis are pre-
sented in Section IV, and Section V concludes this paper.

II. THEORETICAL BACKGROUND
In comparison with tremendous works of handcrafted feature
generation, deep learning model has the ability of extracting
features automatically. As the benchmark in the field of SER,
the authors in [29], [30] considered CNN and LSTM directly
on spectrograms to extract deep acoustic features for emotion
recognition. Although these deep models yield good results
for many speech processing tasks, ALFs extracted by a spe-
cific model like CNN is generally not sufficient due to the
lack of human knowledge. It has been pointed out by [32]
that ALFs and ELFs can characterize the emotions from
different aspects, and some handcrafted empirical features
(e.g., F0, MFCC features, energy, and voice probability) are
also key issues for distinguishing emotion states. Owing to
the distinct merits of both ALFs and ELFs to SER tasks,
the authors in [31] demonstrated that the fusion of ALFs and
ELFs at the feature level can complementary each other, and
thereby, improve the SER performance in comparison with
either of them [38], [39]. As an extension work, the authors
in [33] presented a CNN-DNN model for feature extraction
of both spectrogram and auditory based features, and incor-
porate both ALFs and ELFs into one feature vector for SER.
Unfortunately, the aforementioned fusion works ignored the
different performance of both ALFs and ELFs when tracking
identical tasks. To be specific, the training of either ALFs or
ELFs has the different level of loss, and the fusion of two
types of feature prior to the same softmax layer is unable
to optimize the corresponding model with different loss.
To elaborate a little further, the feature fusion scheme in [31],
[33] may fail to fully explore the complementary advantages
of both ALFs and ELFs, but has not been addressed by the
existing literatures.

As an another key issue in SER, hard examples within the
training database remarkably limits the ultimate performance.
Basically, hard examples are mainly from the misclassifica-
tion between the neutral state and the other ones (i.e., happy,

angry, etc.). The potential reason is that emotions contained
in most of our daily speech is a combination of both verbal
and non-verbal channels, i.e., tones and energy of the speech,
facial expressions, torso postures, etc. [40]. That means, use-
ful emotion information in some specific spoken utterance
are insufficient. These cases are recognized as hard examples,
and lead to a high misclassification rate, especially between
two adjacent emotional categories. To address the above
issue, the authors in [37] applied a feedbackmechanism using
a specific loss function, namely, focal loss, which is dynami-
cally scaled by cross-entropy (CE) loss. In fact, the principle
behind the mechanism of focal loss is to down-weight the
contribution of easy examples during training, and focus the
model on hard examples. In practice, however, the proportion
of hard examples is much smaller than that of easy examples
in most training sets, which may easily result in loss gradient
dominant of easy examples [41]. It is thus difficult for any
deep model to fully characterize the emotional features based
on a limited number of hard examples. In other word, it is
expected that increasing the proportion of hard examples
(reducing the amount of easy examples).

III. PROPOSED INDEPENDENT TRAINING FRAMEWORK
In this section, we present an independent training frame-
work. As shown in Fig. 1, we feed both MFCC and
384-dimension openSMILE features into ACLN and FCN,
respectively. Unlike the pioneer work of fusion at the feature
level [33], the two models have independent feedbacks with
specifically designed loss functions prior to the fusion of fea-
tures. The motivation behind the independent design of fea-
ture extraction is that MFCC and openSMILE features have
different discriminative capabilities for emotion recognition.
In other words, the fusion of features with independent mod-
els (of independent feedback) enables a better representation
of emotion features in comparison with the conventional
feature fusion methods. As regards the independent feedback
procedure, we develop a new feedback mechanism by taking
advantage of hard examples as well as the so designed loss
function. The motivation behind the proposed independent
feedback mechanism is to emphasize the impact of hard
examples during the training procedure. Accordingly, the loss
function is modified to enable an effective way to focus
the independent model on hard examples while reducing the
contribution of easy examples.

A. DATA PREPROCESSING
For preprocessing of MFCC, we first apply pre-emphasis
to improve the high frequency of speech signals, and then
use a 24-ms sliding Hamming window with 12-ms over-
lapping for speech segmentation. Next, we apply short-time
Fourier transform of 256 points to obtain the power spectrum
w.r.t. the spectrogram of each segments, which is then fed
into Mel-scale triangular filter bank to attain Mel energy.
Finally, logarithmic function and discrete cosine transform
are employed to obtain cepstral coefficient, by which MFCC
is generated accordingly.
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FIGURE 1. The framework of the proposed independent training mechanism with hard example loss.

As an alternative, we use openSMILE toolkit [42] to extract
openSMILE features of 384 dimensions proposed in [43].
To be specific, features include F0, voice probability, zero
crossing rate, energy,MFCC features, etc, totally 32 low-level
descriptors. Then, 12 statistical functions are used to gen-
erate high-level features, i.e., max, min, mean, range, max-
position, min-position, standard deviation, skewness, etc.

B. INDEPENDENT FEATURE EXTRACTION
The process of independent feature extraction consists of two
independent channels of MFCC and openSMILE features,
where each channel has its own softmax layer followed by
an independent error feedback mechanism.

Since MFCC is efficient to characterize the properties
of human auditory perception, we adopt a deep model of
ACLN to generate more comprehensive ALFs. As regards

the design of ACLN, CNN is first adopted to extract deep
acoustic features from MFCC. Then, a LSTM cell is used
to capture the characteristics of speech signals from both
long-term sequence-dependence relationships and short-term
correlations. Followed by the LSTM cell, an attention layer is
used to find out the salient emotional regions in a utterance.
We refer to the output of ACLN as ALFs.

Meanwhile, we feed the openSMILE features with
384 dimensions into another independent channel of FCN.
The designed FCN consists of three fully connected layers
and batch normalization layers, where the former is efficient
to force correlated human features into low-dimensional rep-
resentation of speech emotion, while the latter can reduce
the internal covariate shift, and speed up the training pro-
cess [44], [45]. By analogy, we refer to the output of FCN as
ELFs.
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Unlike the conventional fusion methods [33], where ALFs
and ELFs are fused directly and fed into one softmax layer
for classification, the extracted ALFs and ELFs by ACLN
and FCN are fed into independent softmax layer, followed
by specifically designed error feedback propagation of each
channel. Until the feature extraction process of each inde-
pendent channel (ACLN and FCN) converges to a steady
state, ALFs and ELFs are then fused in a concatenate layer
to complement with each other. With independent feature
extraction and error feedback, both ALFs and ELFs, prior to
the fusion with each other, can capture the speech emotional
state more preciously from the dimensions of their own in
comparison with those in [32], [33]. It is thus expected that
the fusion of ALFs and ELFs with independent extraction and
feedback modification can fully enjoy the complementary
advantages of both deep features and empirical features.

C. INDEPENDENT FEEDBACK MECHANISM
As described above, the design of independent feedback of
ACLN and FCN enables a better representation of emotions
prior to the fusion of ALFs and ELFs. Basically, the feedback
procedure is based on hard example mining and re-training
with a specifically designed loss function, as described below.

1) STEP 1: HARD EXAMPLE MINING
We consider hard example mining to classify the samples of a
higher classification error rates. The detailed procedures are
as follows. First, we consider independent feedback of both
ACLN and FCN with CE loss. Until both models converge to
steady state, we define the hard-index to distinguish the hard
examples within the training database as follows,

hi =
Ri − min(R)

max(R)− min(R)
, (1)

where R = [R1,R2, · · · ,RN ] with N denoting the number of
training sample, and

Ri = − log2
(
1−

mi
ci

)
, (2)

is the misclassification ratio information entropy, mi and ci
in (2) stand for the numbers of misclassification and training
epoch of i-th sample, respectively. It is noted that the hard
index in (2) is normalized by using a max-min function
to balance the distributions of samples in training. Clearly,
the samples of higher classification error rates can be reason-
ably viewed as hard examples, i.e., hi ≥ β, where β ∈ [0, 1)
is a non negative number.1

The motivation of hard example mining is to enable the
re-training of ACLN and FCN by concentrating on the
samples of a higher classification error rate (hard exam-
ples). In this way, the feature extraction, i.e., ALFs and
ELFs, with hard example re-training can better represents
the corresponding emotions of hard examples, and thus, can

1The optimal threshold β depends crucially on the content of database,
and can be obtained directly based on extensive simulations. Specially, we set
hi = 1 for the special case of mi = ci.

potentially achieve a better performance in comparison with
the features without hard example mining.

2) STEP 2: RE-TRAINING WITH HARD EXAMPLE LOSS
In order to emphasize the impact of hard samples, we remove
all easy examples from the training database, and re-train
the resulting hard examples with a specifically designed loss
function, which is referred to as HE loss, given by

Lossi = −hi(1− αi)log(pi), (3)

where hi and αi denote the hard-index of sample and ratio of
emotion class, respectively, and pi is the classification error
probability. Compared with the conventional loss functions
in [41], [46], the proposed HE loss in (3) takes both the
distribution of emotion classes and the hard index of samples
into account.

To sum up, the independent feedbackmechanismwith hard
example mining and re-training can effectively balance the
distribution of utterance label of different emotions, while
focusing the contributions of hard examples in the re-training
process. It is thus expected that the proposed independent
feedback with HE loss yields a superior solution to the exist-
ing error back propagation methods [37].

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL DATABASE
To evaluate the effectiveness of the proposed independent
model, we consider three popular databases of both imbal-
anced and balanced samples, i.e., Interactive Emotional
Dyadic Motion Capture (IEMOCAP) [40], Berlin German
Emotional Voice Library (EMODB) [47], and Institute of
Automation Chinese Academy of Sciences emotion dataset
(CASIA) [48].

The IEMOCAP is one of the most widely used databases
for SER task that contains extremely imbalanced samples
of 10 emotion categories. This corpus is played by 10 skilled
speakers in five sessions, and each session is acted by two
speakers (1 female and 1 male). In our experiment, we only
choose the improvisations version, and select 4 emotion cat-
egories that totally contain 2280 utterances (angry (289),
neutral (1099), happy (284), sad (608)). The duration of all
utterances ranges from 3 to 15 seconds sampled at 16kHz.

The EMODB database contains slightly imbalanced
samples of 7 emotion categories. The database utter-
ances were produced by 10 professional actors, consisting
5 short-sentences and 5 long-sentences of daily words. All
the utterances are saved using the WAV format with a sam-
pling rate and an average time of 16kHz and 2.7 seconds,
respectively.

The CASIA contains balanced samples of 6 emotion cat-
egories developed by the Institute of Automation, Chinese
Academy of Sciences. In our experiment, we choose the
text-dependent version of CASIA, where speakers read sen-
tences by using specified emotion. This corpus is acted by
4 professional speakers (2 males and 2 females), and includes
2400 different pronunciations. Basically, all the utterances
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TABLE 1. Parameters of ACLN.

TABLE 2. Parameters of FCN.

in CASIA are also sampled at 16kHz with a duration of
2 seconds.

B. EXPERIMENTAL SETUP
The parameters of the independent ACLN and FCN, are listed
in Table 1 and Table 2, respectively. As regards the design
of ACLN, it contains four convolution blocks, a LSTM cell
followed by an attention layer. The FCN consists of three
fully connected and batch normalization layers. To avoid
over-fitting, a dropout layer with a factor of 0.25 is used
before the output layer. We employ SVM as final classifier
due to its powerful ability to maximize category interval.2

The generated discriminative feature representation will be
fed into the linear SVM for emotion recognition. In simula-
tions, we adopt random 10-fold cross-validation to conduct
the experiments. In EMODB and CASIA, the proportions of
training and testing over the database are set to be 80% and
20%, respectively. In IEMOCAP, similar to [19], we conduct
speaker-independent experiments, where the sentences from
8 speakers are used for training, and the sentences from
remaining 2 speakers are used for testing. We used Adam
optimizer in our experiments, and set the initial learning rate
as 10−3. The training epoch and batch size of deepmodels are
set to 1400 and 128. As regards the re-training step of ALFs
and ELFs, the stop epochs are set to 300, 50, 80 of IEMOCAP,
EMODB and CASIA, respectively, and the re-training epoch
set to 800. To be specific, we excluded easy examples at

2From extensive experiments, which are not included in this study due
to space constraint, we validate that SVM can offer the best performance
among different classifiers we have tried, namely ELM and MLP. Similar
application of SVM for SER is also reported in [49].

the epoch of 800, and perform re-training with only hard
examples and HE loss until the training process converges.

C. COMPARISON: INDEPENDENT TRAINING VS. FUSED
TRAINING
In order to validate the superiority of the proposed indepen-
dent training framework, we compare the designed indepen-
dent training with the fused training method [33], where the
latter has been considered as a benchmark in related works
of feature-fusion. To make the comparisons more convincing,
we consider the same experimental setup and list the methods
as follows.
• Independent training: The structure of the independent
training model is shown in Fig. 1. We feed MFCC and
openSMILE features into ACLN and FCN, respectively,
enabling the independent training of both ACLN and
FCN with different error feedbacks. Until the indepen-
dent channels converge to steady state, the generated
ALFs and ELFs are merged into a vector, and then fed
into the SVM for SER.

• Fused training: This is the baseline model of this paper.
For fairness of comparison, we feed the same speech sig-
nals (MFCC and openSMILE features) into ACLN and
FCN to generate ALFs and ELFs, respectively. Unlike
the independent training, the ALFs and ELFs are fused
through a fully connected layer. With the fused features,
the whole network is trained by using the same error
feedback propagation [33]. Finally, the fused features
are fed into the SVM to distinguish emotions.

We first evaluate the training loss by using ACLN and FCN
on three database, i.e., IEMOCAP, EMODB and CASIA.
The averaged training loss of both ACLN and FCN in each
epoch is shown in Fig. 3. Clearly, we observe that although
the loss of ACLN and FCN all converge to the steady state
as the increase of iterative epoch training for all databases,
the convergence speed of FCN is faster than ACLN for all the
emotion databases. More importantly, for tracking an identi-
cal task of emotion recognition, the loss of ACLN and FCN of
IEMOCAP, EMODB and CASIA in steady state are remark-
ably different, i.e., the steady-state loss of ACLN and FCN
on IEMOCAP are approximately 0.054 and 0.014, respec-
tively. Even for balanced database, i.e., EMODB and CASIA,
the steady-state loss of ACLN is approximately 2 times higher
than that of FCN. The results shown in Fig. 2 demonstrate that
the performance of ALFs and ELFs (extracted by different
models, e.g., ACLN and FCN) are different for discriminating
emotions. That is, the fusion at the feature-level with one
error feedback is unfair, which is neglected by the existing
contributions [33].

Comparatively, with independent feature extraction,
the proposed training mechanism takes the performance
difference w.r.t. ALFs and ELFs into consideration, and thus,
can fully enjoy the complementary advantages of different
features for emotion discrimination.

To gain an insight into the design of independent training,
we then conduct an experiment on the comparison between
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FIGURE 2. Loss comparison of ACLN and FCN for different databases.

FIGURE 3. Confusion matrix of independent training model without hard example mining and re-training (%).

TABLE 3. Performance comparison between independent training and
fused training.

the independent training and the fused training. As a rule
of thumb, we use weighted accuracy (WA) and unweighted
accuracy (UA) as evaluation criteria validate the superiority
of the proposed independent training design, as follows.
• WA - the classification accuracy for the whole test set.
• UA - the averaged classification accuracy of each emo-
tions.

The evaluation results for IEMOCAP, EMODB and
CASIA databases are illustrated in Table 3. From the exper-
iment of imbalanced database, i.e., IEMOCAP, it is seen
that the independent training, in comparison with the fused
training, achieves notable performance gains in WA and
UA of 5.69% and 6.02%, respectively. Even for balanced

database, i.e., CASIA, the independent training outperforms
the fused training with recognition accuracy gains of approx-
imately 2% in terms of both WA and UA, which validates the
advantages of the independent training design. The numerical
results are expected since different models (i.e., ACLN and
FCN) with independent error feedback make full use of the
advantages of extracted features (both ALFs and ELFs), and
thus, can generate more discriminative emotion related infor-
mation in comparison with that of the fused features with the
same error feedback.

D. HARD EXAMPLE MINING, RE-TRAINING AND LOSS
FUNCTION
To illustrate the effectiveness of the proposed independent
error feedback mechanism, we carry out the comparisons
between the proposed independent model with/without hard
example mining and re-training.

The confusion matrices of classification on IEMOCAP,
EMODB and CASIA with and without hard example min-
ing and re-training are shown in Fig. 3 and Fig. 4, respec-
tively. Comparably, it is shown from Fig. 3 that the pro-
posed independent training without hard example mining and
re-training achieves an classification accuracy of approxi-
mately 98.12% for CASIA database of balanced emotion
class. For EMODB database, we acquire the classification
accuracy of higher than 80% for most of emotion classes. For
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FIGURE 4. Confusion matrix of independent training model with hard example mining and re-training (%).

imbalanced database, i.e., IEMOCAP, however, we observe
that the ‘happy’ emotional state is remarkably confused with
the ‘neutral’ one, and engenders the lowest recognition accu-
racy of 39.25%. That is, most of the hard examples are con-
centrated in the ‘happy’ emotion class. The potential reason
lies in the fact of imbalanced distribution across different
emotion classes.

For comparison, we evaluate the performance by using
the independent training with hard example mining and re-
training. As can be observed from Fig. 4, we acquire 2.91%
and 4.48% notable improvement in the ‘happy’ emotion class
of IEMOCAP and EMODB, respectively. The results are
expected since the hard example re-training could extract
more valuable features from the samples of higher classifica-
tion error rate so that we can identify them better. In addition,
we gain a slight improvement of 1.98% in terms of recogni-
tion accuracy for the balanced database of CASIA.

From the result of the above contrast experiment,
we observe that the proposed hard example mining and
re-training is capable of improving the recognition accuracy
for imbalanced database, i.e., IEMOCAP. Therefore, we con-
duct an experiment on IEMOCAP to evaluate the impact
that the hard example mining and re-training has on the
distribution of emotion classes. Fig. 5 plots the numbers of
hard examples and easy examples in IEMOCAP. As can be
observed from Fig. 5, the ratios of easy example and hard
example are 49.4% and 50.6%, respectively. Without hard
example mining, the ‘neutral’ emotion class in IEMOCAP
contains the largest number of samples, which is almost
4 times higher than that of ‘happy’ emotion class. Using
the proposed hard example mining, the ratio of samples
between the above two emotion class is reduced to 2.17,
demonstrating that the distributions of emotion classes is
balanced. We further list the ratios of emotion class distri-
bution with and without hard example mining and re-training
in Table 4. As shown in Table 4, we can see that by removing
all easy examples using hard example mining, the proportion
of ‘happy’ emotion class (the lowest ratio of IEMOCAP
emotion classes) is remarkably increased by 7.28%, i.e., from
12.55% to 19.83%, while the proportion of ‘neutral’ emo-
tion class reduces from 47.53% to 43.01%. We plot the

TABLE 4. Emotion class distribution of IEMOCAP - with/without hard
example mining and re-training.

FIGURE 5. Numbers of hard example and easy example in IEMOCAP.

SER accuracy with and without hard example re-training in
IEMOCAP. It is seen fromFig. 6 that the SER performance by
using hard example re-training in terms of both UA and WA
in IEMOCAP is more robust to that without re-training. The
results are consistent with that shown in Fig. 5 and Table 4,
demonstrating that the proposed HE-aided re-training is able
to balance the emotion class for unbalanced database, and
thus, has the potential of improving the recognition perfor-
mance in practice. More importantly, the re-training process
is based on the resulting hard examples of all emotion classes.
In this way, the re-training with the generated ALFs and
ELFs can effectively characterize the expressions of hard
examples, and thereby, has the potential of achieving a higher
classification accuracy in comparison with the conventional
training scheme [41].

Next, we evaluate the performance of the proposed HE
loss, and consider both CE loss and focal loss as the baselines
in simulation. For fairness of comparison, three loss func-
tions are applied in the proposed independent training model
for IEMOCAP, EMODB and CASIA databases. As shown
in Table 5, the proposed HE loss, in comparison with CE
loss and focal loss, yields a superior solution to all databases
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FIGURE 6. Recognition curves of IEMOCAP across 5 experimental runs. (a) WA with hard example re-training. (b) UA with hard example re-training.
(c) WA without hard example re-training. (d) UA without hard example re-training.

TABLE 5. Comparison of different loss functions.

in terms of both WA and UA. Since UA has take the data
distribution into account, the significance is even more pro-
nounced by improving UA in SER with data imbalance [30].
It is seen from Table 5 that the proposed HE loss achieves
absolute improvement of 1.09% (from 67.74% to 68.83%)
and 1.76% (from 67.07% to 68.83%) compared with focal
loss and CE loss, in terms of UA for IEMOCAP, and remark-
ably outperforms both CE loss and focal loss for EMODB by
an absolute improvement of 2.56% and 3.24%, respectively.
Even for balanced database CASIA, the proposed HE loss
still performs better than the conventional baselines in terms
of both WA and UA. The promising result of the proposed
method reflects the effectiveness of the hard example mining
and re-training mechanism with HE loss.

To further evaluate the performance of the hard-example
loss w.r.t. the emotion recognition for imbalanced database,
we list the comparison of loss functions in terms of recogni-
tion accuracy of each emotion class for IEMOCAP database.
As shown in Table 6, we can see that the ‘neutral’ and
‘happy’ emotion classes have the highest and the lowest
recognition accuracy, respectively, for all loss functions. The
result is expected since the proportions of such two emotion
classes are of the largest and the smallest ones in IEMOCAP
database, respectively. By using the proposed HE loss as
the feedback of training, we observe that the recognition
accuracy of ‘angry’, ‘happy’ and ‘sad’ emotion classes are
increased by 0.19%, 1.02% and 3.29% in comparison with
that using focal loss. The result is consistent with that of
Table 4, where the emotion classes are balanced by removing
easy examples during the re-training process. Although the

TABLE 6. Detail performance of IEMOCAP training under different loss
functions.

recognition accuracy of utterances with labels of ‘neutral’ is
slightly reduced by 0.13%, the performance of the proposed
HE loss, as demonstrated by Table 5, is still remarkably
better than those of the baselines, i.e., CE loss and focal loss
functions.

E. COMPARISON WITH THE STATE-OF-THE-ART METHODS
To verify the superiority of the proposed independent
feedback mechanism, we provide the contrast experiment
between the proposed independent training framework (with
independent feedback mechanism) and several state-of-
the-art contributions for IEMOCAP, EMODB and CASIA
databases. As shown in Table 7, for IEMOCAP database,
the proposed independent training framework outperforms
the conventional feature fusion methods [32], [33], demon-
strating the superiority of the independent design of feature
extraction and feedbackmechanism. Furthermore, in compar-
ison with the latest contribution that aims at addressing the
problem of data imbalance [37], our method can provide a
higher classification accuracy in terms of both WA and UA.
The results are expected. On one hand, the feature extractions
of ALFs and ELFs are independent, and thus, enable ALFs
and ELFs to characterize effective emotions from different
perspective without suffering from the penalty of loss differ-
ence in the conventional feature-fusion works. On the other
hand, taking hard examples into consideration, the proposed
independent feedback mechanism not only enables a suf-
ficient training on hard examples, but also is beneficial to
balance emotion classes.

For EMODB database, although the proposed independent
training framework performs slightly inferior to that of [33],
our work achieves a superior performance to those of other
methods in terms of both WA and UA in IEMOCA and
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TABLE 7. Comparison with state-of-the-art methods.

CASIA.3 For example, the proposed independent framework
outperforms the state-of-the-art model of 3D CRNN with
attention [27], by an absolute improvement of 2.94% (from
82.82% to 85.76%) and 3.98% (from 82.14% to 86.12%)
in terms of both WA and UA. In addition, as a comparison
with balanced database, i.e., CASIA, our method achieves an
obvious recognition accuracy gain of 2.35% in terms of WA
and UA, respectively. The above results demonstrate that the
proposed independent training framework outperforms the
conventional state-of-the-art solutions for both balanced and
imbalanced databases.

V. CONCLUSION AND PERSPECTIVE
This paper proposed an independent training framework
for SER. Specifically, in order to take full advantages of
both deep features and empirical features, we designed an
independent feature extraction for both ALFs and ELFs by
feeding MFCC and openSMILE features into ACLN and
FCN. In addition, we proposed hard example mining-based
re-training mechanism with HE loss in the feedback process,
which focus learning of each independent model mainly on
hard negative examples. With the independently extracted
features of both ALFs and ELFs, a SVM classifier is adopted
to distinguish emotions. Experimental results on three pub-
lic databases show that the proposed independent train-
ing outperforms the state-of-the-art feature-fusion methods.
The results also demonstrated that the independent feature
extraction of ALFs and ELF can better represent the emo-
tions from different perspective in comparison with that of
the fused training. Furthermore the independent feedback
using hard example mining-based re-training mechanism
remarkably improves the feature learning ability of each
independent model, which can generate more discriminating
emotion related feature representations than the conventional
error feedback methods.

3The potential reason of the performance inferiority to [33] is due to the
different inputs of deepmodel, i.e. the input employed by [33] is spectrogram
while the proposed scheme used MFCC from the aspect of computational
efficiency.
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