IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON TOWARDS SMART CITIES WITH IOT BASED ON CROWDSENSING

Received November 18, 2020, accepted December 7, 2020, date of publication December 10, 2020,
date of current version December 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3043765

An Ensemble Learning-Based Prediction Model
for Image Forensics From loT Camera
in Smart Cities

GE XU"“'13, YONGQIANG XIAO “2, TAO WANG 134, (Member, IEEE), YIN GUAN 1,
JINHUA XIAO"“2, ZHIXIONG ZHONG"!, (Member, IEEE), DONGYI YE “3, AND JIA LYU 5

!Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University,
Fuzhou 350108, China

2Fuzhou Kaopuyun Technology Company Ltd., Fuzhou 350001, China

3College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

4Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi University, Wuyishan 354300, China
SCollege of Clothing and Artistic Engineering, Minjiang University, Fuzhou 350108, China

Corresponding author: Tao Wang (taowang2600 @ gmail.com)

This work was supported in part by the Chinese Central Government Guided Local Science and Technology Development Project under
Grant 2020L3024; in part by the NSFC under Grant 61703195; in part by the Fujian NSF under Grant 2019H0026, Grant 2019J01756,
Grant 2020J01826, and Grant 2020J01828; in part by the Minjiang University under Grant MJY 19021 and Grant MJY 19022; in part by the
Open Program of Big Data Analysis System National Engineering Laboratory under Grant CASNDST202006; and in part by the Open

Program of The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi
University, under Grant KLCCIIP2020202 and Grant KLCCIIP2019202.

ABSTRACT Recent years witnessed a surge in the number of IoT cameras in smart cities. In this article,
an ensemble learning-based prediction model for image forensics from [oT camera is proposed. In particular,
our goal is to obtain human body measurements from 2D images taken from two views. Firstly, 24 body
part features are extracted by the DensePose algorithm from the two views. Secondly, the features of the
upper body part are integrated with height and body weight features. Ensemble learning is then performed
with the LightGBM algorithm and a regression prediction model is constructed. The proposed noncontact
image prediction method is simple and workable. Its feasibility and validity are verified on an experimental
dataset. Experimental results demonstrate that the proposed method is highly reliable in the size prediction
of different body parts. Specifically, the mean absolute errors of chest circumference, waistline and hip

circumference are about 2.5 cm, while the mean absolute errors of other predictions are about 1 cm.

INDEX TERMS Human body part measurements, ensemble learning, regression prediction.

I. INTRODUCTION

In recent years, IoT cameras have become ubiquitous in
smart cities, and these sensors are widely adopted for foren-
sic applications [1], [2]. One of the important application
areas is the measurements of the human body for places
where strong security is needed. In particular, the ability
to acquire human body measurements, i.e., anthropometry,
in a noncontact manner is highly desired. In this article,
we propose an ensemble learning-based prediction model
that allows forensic evidence to be extracted from images
both efficiently and effectively. Noncontact human body size
measurement of different body parts based on the static
images which are taken by cameras not only can improve
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user experiences, but also can save material and financial
costs. With the informatization development in the clothing
industry, intelligent anthropometry will lay a solid foundation
for the next generation of intelligent dressing recommenda-
tion [3]. Nowadays, offline flow still owns a great space with
the development of AloT [4]-[6]. For example, users can try
more clothes in a short period through the emerging virtual
fit [7]. As one of the key technologies in virtual fit, anthro-
pometry acquires measurement data of main body parts accu-
rately in a relatively simple way. Virtual fit products on the
market include Fitiquette (USA), Fits.me (UK) and Pulshion
(China). All of these products generally require users to fill
in relevant body sizes firstly, then generate the corresponding
3D anthropometric dummy, and finally render the dressing
effect onto the 3D anthropometric dummy [8]-[10]. For these
products, precision of body size data which is input by users

222117


https://orcid.org/0000-0001-6046-7911
https://orcid.org/0000-0002-3827-7887
https://orcid.org/0000-0001-9619-8717
https://orcid.org/0000-0001-5981-6723
https://orcid.org/0000-0001-5022-668X
https://orcid.org/0000-0003-3880-2714
https://orcid.org/0000-0001-5024-5442
https://orcid.org/0000-0003-0459-2106
https://orcid.org/0000-0002-9099-2781

IEEE Access

G. Xu et al.: Ensemble Learning-Based Prediction Model for Image Forensics From loT Camera in Smart Cities

can affect the reliability of online fitting directly. Neverthe-
less, users often are not sure about their accurate body sizes.
Obviously, contact manual measurement of body sizes will
affect user experiences. Therefore, the precision of noncon-
tact anthropometry is vital to the practicability of clothing-
related applications [11].

Although many high-precision anthropometric 3D scan-
ners based on depth transducers like structural lights have
been applied successfully in intelligent noncontact anthro-
pometry, the device still faces with a great challenge to
large-scale applications in the clothing industry, especially in
small-sized clothing enterprises, due to its low popularizing
rate [12]. Hence, it is urgent to propose an economic and
convenient intelligent noncontact anthropometry. To meet the
above demands, a simple and feasible intelligent anthropom-
etry method was proposed in this study. The proposed method
establishes a regression model based on DensePose [13] algo-
rithm by combining real body detection results in images,
image features of the human body and features of height and
body weight. It can predict different body sizes accurately
from end to end under casual shooting requirements and
decrease accumulative errors brought by intermediate links,
such as extraction of key points.

Il. RELATED WORK

Artificial intelligence plays an important role in smart
cities [14], [15]. Particularly, studies on noncontact anthro-
pometry have begun in foreign countries since the late
1970s [16]. In the beginning, noncontact anthropometry was
performed in USA and UK by using some large computing
devices, which incurs relatively high costs [7]. One of the
main benefits for anthropometry is that it would facilitate
biomechanical analysis and human motion (e.g., [17]-[19]).
In particular, the emerging IoT cameras allow for large-
scale imagery data to be collected with low cost and
used as forensic evidence when needed. Typically and con-
ventionally, computer vision-based anthropometry use 3D
scanners [20]-[26]. This is, however, in contrast to our goal
in this article. We propose to collect image data with low-
cost IoT cameras and therefore an algorithm that can make
use of 2D images only and then produce reliable human body
measurements is desired.

Without using large-sized 3D human body scanners, two-
dimensional images of human body were collected firstly
based on digital image processing and then processed gener-
ally through corrosion, expansion, smoothing, edge sharpen-
ing, etc. These operations are to extract the accurate profiles
of human body for the convenience of next point extraction,
measurement and computation. There’s a difficulty in mea-
surement and computation: how to calculate the nonlinear cir-
cumferences of human body. At present, calculation methods
of circumferences mainly include curve fitting, regression
analysis [27]-[30] and minimizing appropriate cost func-
tions [31]-[33]. One of the limitation of purely 2D-based
methods is that, it could only estimate a human’s anthropo-
metric measurements up to a scale parameter. In our work,
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we circumvent this problem by asking the user to provide
their body height and weight as prior information.

Tan [34] and Ji et al. [35] extracted characteristic points
of body parts by taking pictures of human body and then
calculated circumferences through curve fitting. This method
had certain research values. Yu et al. [36] also took pictures
and then processed them accordingly. They mainly acquire
the profiles of human body through greyscale inversion. Cir-
cumference values also could be calculated by demonstrating
the calculation formula, which further solves the difficulties
in circumference calculation.

Recently, many studies adopt fitting binary regression
equation to calculate circumferences [12], [37], [38]. This
method firstly sets up the linear relationship between the
width and thickness of body parts and circumferences.
Secondly, it divides the human body into different levels
according to the thickness-width ratio to be corresponding to
parameters of the linear equation. Finally, it makes a statistics
on fitting linear equation based on mass data. Although this
method is simple, the generalized anthropometric precision
is generally low. Another modeling theory is to cite the
double elliptic curve fitting or hyperelliptic curve fitting [39].
Although this method is well supported by a good funda-
mental theory and offers a relatively controllable precision,
it requires mass statistical data since it is difficult to determine
the model coefficients. Hence, this method is impractical.

Currently, researches on anthropometry have to search
the corresponding characteristic points. However, it always
cannot search characteristic points accurately, especially in
casual shooting scenes where dressing can influence mea-
surement precision. The main contribution of this study,
therefore, is to propose a deep learning based method for
anthropometry. Considering common features of human body
and understandability of human body, deep learning can
extract information of different body parts effectively and
it can establish an end-to-end regression model to predict
body sizes by combining the integrity of human body. Com-
pared with the conventional method, the proposed anthro-
pometry method is simpler and more feasible and has lower
requirements on shooting. It only requires the positive and
side views. Therefore, the proposed anthropometry method
is highly practical.

ill. THE PROPOSED METHOD

A. INTELLIGENT NONCONTACT ANTHROPOMETRY

A flowchart of the proposed noncontact anthropometry based
on two views is shown in Fig.1. One front picture and one side
picture of the human body are taken firstly by using the ordi-
nary color camera lens. Secondly, 24 features of body parts
were extracted by the trunk network division model which
is pretrained by Dense Pose algorithm. Meanwhile, features
of height and body weight are integrated as the feature input
of the ensemble learning framework LightGBM. The Boost-
ing algorithm of LightGBM predicts the circumferences of
human body by using the GBDT [40] learning regression, and
learns the importance of statistical features automatically in
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FIGURE 1. The proposed prediction model for intelligent noncontact anthropometry for image forensics. Images from frontal and side
views are provided as input to the DensePose algorithm. The output features, together with body height and weight, are fed into LightGBM

for ensemble learning based prediction.

ResNet50

FIGURE 2. Model structure in DensePose-RCNN. Features are extracted from region CNNs to produce body parts (Patch)

and texture (UV) maps.

the training stage. It has characteristics of high speed, small
hardware resource consumption, light model in the prediction
stage, and easy migration, deployment and recalling.

The proposed method requires neither extraction of profile
information of human body through various fundamental
image processing operations nor extraction of key points of
body parts to calculate circumference values. These have
advantages of reducing artificial engineering design during
the algorithm process as well as the accumulation of possible
errors. The proposed anthropometry method can be promoted
to various practical applications due to its simplicity.

B. HUMAN BODY INFORMATION EXTRACTION

BASED ON DensePose

DensePose algorithm is an intensive body posture estimation
by Facebook and INRIA together to realize an understanding
of human body in images. Generally speaking, this frame-
work can understand the human body in casual dressing
accurately and accurate different body parts.

It can be seen from Fig.2 that DensePose makes inten-
sive prediction of body parts (Patch) and UV texture maps
after body examination by using the full convolutional net-
work [41]. Heat mapping features of Patch, U and V are
56 x 56. The value range of Patch is [0,24], while the value
range of U and V is [0,1]. It can be seen from Fig.3 that the
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DensePose

FIGURE 3. 56 x 56 heat map features of Patch channel.

number of features which are extracted by DensePose from
the positive and side views of Patch is (56 x 56+6) x2 = 628,
where 6 represents the positional information of human body
in the original image as well as width and height of the frame.

In this experiment, it compares the effects of using features
of Patch channel only and the effects of adding features of UV
channels. It is found that the predicted values of each circum-
ference indexes were basically the same no matter whether
the features of UV channels were added in or not. Therefore,
this study used the features of Patch channel only to prevent
increasing hardware resource consumption because of the
excessive dimensions of features. Moreover, DensePose was
proved to be poor in predicting the data of head, palms and
soles of human body. Hence the influences of these three
body parts on the prediction precision of circumferences were
compared. Results demonstrated that these three body parts
hardly influenced the prediction precision of circumference
indexes.
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FIGURE 4. Top 60 points after sequencing of features and importance.

C. ESTABLISHING A REGRESSION PREDICTION MODEL
BY INTEGRATING IMAGE AND ATTRIBUTE FEATURES
LightGBM was launched by Microsoft in 2017. As an
improved version of XGBoost [42], LightGBM decreases
the time complexity of sample processing and improves the
expandability of the algorithm. In this study, the LightGBM
algorithm was applied mainly for effectively selecting the
high-dimensional features extracted by DensePose algorithm,
thus resulting in reducing the feature complexity and assuring
precision of body size prediction.

Through a comparative experiment, this study combined
eigenvectors of images, height and body weight as the fea-
ture input of LightGBM. Besides, GBDT used boosting and
the target loss function applied the root-mean-square error
(RMSE) and mean absolute error (MAE):

1 N

RMSE = | > (i =) M
i=1
1 N

MAE = \E; ; Ipi — il )

where p; refers to the predicted value, y; refers to real manu-
ally measured value and N is the number of samples.

The top 60 points obtained in the hipline prediction model
of adult males are shown in Fig.4. In the experimental results,
the importance of 6286 input features was examined and the
body weight was proved to be the most important index (often
occupied the top position) during the construction of each
body part prediction model. Differently, the height takes the
front ranks according to the importance, but its rank was
unstable. For example, the 6285 and 6284 features in Fig.4
represent height and body features. Attentions shall be paid
to that the subscripts of features were counted from 0.

IV. EXPERIMENTS

A. EXPERIMENTAL PLATFORM AND DATASET

The experimental platform includes the mobile end and
service end. The mobile end in Fig.5 mainly shoots front
and back images of human body. It is equipped with an
Android or iOS system. Image resolution was unified to

222120

‘Plazse keap upright and avoid tilting left and right

FIGURE 5. The image collection mobile app used in this work.

1080 x 1920. Moreover, input information covers gender,
height and body weight. The backstage service end is used
for data training and prediction. It is equipped with a Ubuntu
64-bit system, GeForce RTX 2070 8G display card and 24G
memory.

In casual scenes, respondents shall be covered completely
in lens and no unrelated person is allowed in the back-
ground. Respondents are not required to wear tights and they
are only required to expose hands, foots and some body
weights, without jewelries like watch as much as possible.
Front standing posture has a basic requirement of making
fists to be slightly away from the body, making two feet
slightly away from each other, and eyes looking front. The
side standing posture requires respondents to making fists and
close to the middle of hips, feet together and eyes looking
front.

Collected data were divided into adult males and adult
females aged between 20 45. In the measurement, 46 adult
males and 59 adult females were invited. Measurement
indexes included height, body weight, neck circumference,
shoulder width, chest circumference, waistline, hipline, arm
circumference, elbow circumference, forearm circumfer-
ence, wrist circumference, thigh circumference, knee width,
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TABLE 1. Indexes and Statistical Data of Adult Males (unit: cm, Body weight: 500g).

Statistical . Body Neck Shoulder Chest o -
indexes Height weight  circumference width circumference Waistline Hipline
Min 156 90 40 40 75 60 79
Max 190 212 49 48 118 111.5 116
Mean 174.1 133.7 43.4 439 90 80 95.5
SD 6.8 26.5 2.2 22 9.7 10.9 7.9a
Arm Elbow Forearm Wrist Thigh Knee Calf Ankle
circumference circumference circumference circumference circumference width circumference circumference
23 22 15.5 15 41 32 31 22
38 29 29 19 61 44 45.5 28.5
28.6 24.7 24.7 16.4 52.5 37.2 36.5 24.4
33 1.7 24 0.9 4.7 2.7 33 1.3

Chest circumference of adult males

Waistline of adult males

FIGURE 6. Comparison between predicted results and manual
measurements of chest circumference of adult males.

calf circumference and ankle circumference. Among them,
the height and body weight were used as input data, while
the other 13 indexes were used as the prediction tag values.
Manual measurement was adopted and the mean of three
measurements was taken. Measuring tools included 2 flexible
rules, 2 doctor’s type scale, height chart and 3 cell phones.
It can be seen from Table 1 and Table 2 that the minimum,
maximum, mean and standard deviation of each index mea-
sured by 3 cell phones are listed. Body weight used the unit
of 500g, and the rest indexes all used the unit of cm. Image
data were collected from casual scenes. The total number of
male respondents was 46 x 3 = 138 and the total number of
female respondents was 59 x 3 = 177.

B. PREDICTION EXPERIMENTS OF CIRCUMFERENCE
INDEXES OF ADULT MALES

The final training strategy was applied: 6-fold cross vali-
dation was performed to data of 46 respondents, and then
divided into {8, 8, 8, 8, 7, 7}. Attentions shall be paid that
138 samples were not divided randomly under an uncon-
ditional state. Comparisons between the predicted results
and manual measurements of chest circumference, waist-
line and hipline of adult males are shown in Fig.6-Fig.8.
The x-coordinate represents the specific sample and the
y-coordinate expresses the circumference value. RMSE,
MAE, maximum error, minimum error and mean error rate
of predicted results and manual measurements of 13 indexes
are shown in Table 3.
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FIGURE 7. Comparison between predicted results and manual
measurement of waistline of adult males.

Hipline of adult males
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FIGURE 8. Comparison between predicted results and manual
measurement of hipline of adult males.

C. PREDICTION EXPERIMENTS OF CIRCUMFERENCE
INDEXES OF ADULT FEMALES

The final training strategy was the same with that of the
scenario of adult males: 6-fold cross validation was per-
formed to data of 59 respondents, and then divided into
{10,10,10,10,10,9}. Attentions shall be paid that 177 samples
were not divided randomly under an unconditional state.
Comparisons between the predicted results and manual mea-
surements of chest circumference, waistline and hipline of
adult females are shown in Figs.9-11. The x-coordinate rep-
resents the specific sample and the y-coordinate expresses
the circumference value. RMSE, MAE, maximum error,
minimum error and mean error rate of predicted results
and manual measurement of 13 indexes are shown in
Table 4.
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TABLE 2. Indexes and Statistical Data of Adult Males (unit: cm, Body weight: 500g).

Statistical . Body Neck Shoulder Chest o o e
indexes Height weight  circumference width circumference Waistline Hipline
Min 148 75 32.5 30 74 57.5 80
Max 167 166 42 41 101 86 115
Mean 158.7 107.7 36.2 36.1 85.6 70.3 92.2
SD 4.5 16.8 2 2.2 6.8 6.5 6.2
Arm Elbow Forearm Wrist Thigh Knee Calf Ankle
circumference circumference circumference circumference circumference width circumference circumference
21 18.5 19 12.5 44 31 27 17.5
32 26.5 26 18 70 54 44 24
25.2 21.6 21.5 14.4 52.2 35.9 33.8 20.3
2.5 1.5 1.5 1 4.4 3.8 3 1.4
TABLE 3. Indexes and Errors of Adult Males.
Error Neck Shoulder Chest - _— Arm
. . . . Waistline Hipline .
indexes circumference width circumference circumference
RMSE 14 1.5 4.2 4.3 2.5 1.9
MAE 1.1 1.2 33 34 1.8 1.3
Max error 4.8 34 10.2 10.8 6.7 7
Min error 0 0 0.02 0.02 0.01 0
Mean error rate 2.50% 2.70% 3.70% 4.20% 1.90% 4.50%
Elbow Forearm Wrist Thigh Knee Calf Ankle
circumference circumference circumference circumference width  circumference circumference
0.6 1.7 0.5 24 1.8 1.6 0.8
0.5 1 04 1.9 1.4 1.3 0.6
1.6 8.9 14 49 4.8 34 2.6
0 0 0 0 0 0 0
2.00% 4.00% 2.40% 3.60% 3.70% 3.50% 2.40%

Chest circumference of adult females

Waistline of adult females

90

FIGURE 9. Comparison between predicted results and manual
measurements of chest circumference of adult females.

D. RESULTS ANALYSIS

Experimental results about the errors of different indexes of
adult males are shown in Table 3. For MAE, the minimum is
observed at wrist circumference (0.4cm) and the maximum is
achieved by the waistline (3.4cm). Hipline presents the min-
imum mean error rate (1.9%), while the arm circumference
presents the maximum mean error rate (4.5%). The index
with high MAE might not have a high mean error rate and
vice versa. This is caused by the relatively long length of
indexes. Table 1 and Table 3 show that among 13 indexes for
prediction, the minimum and maximum chest circumference,
waistline and hipline fluctuate greatly, but MAE may not be
the highest. The thigh circumference is 1.9cm and hipline is
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FIGURE 10. Comparison between predicted results and manual
measurements of waistline of adult females.

1.8cm. This indicates to some extent that prediction precision
of indexes is not fully controlled by fluctuation amplitude of
the data length.

Experimental results about errors of different indexes of
adult females are shown in Table 4. or MAE, the minimum
is observed at wrist circumference and elbow circumfer-
ence (0.5cm), and the maximum is achieved by the chest
circumference (2.8cm). Elbow circumference presents the
minimum mean error rate (2.3%), while the knee circum-
ference shows the maximum mean error rate (5.0%). Knee
circumference shows the maximum mean error rate and the
maximum error. According to the observation of maximum
error samples of the adult female dataset, it finds that samples
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TABLE 4. Indexes and Errors of Adult Females.

Error Neck Shoulder Chest . - Arm
. . . . Waistline Hipline .
indexes circumference width circumference circumference
RMSE 1.6 1.9 3.5 2.7 3 1.2
MAE 1.2 1.6 2.8 2.1 2.3 1
Max error 5.9 4.8 10 8.8 12.8 34
Min error 0 0 0.02 0 0 0
Mean error rate 3.30% 4.40% 3.20% 2.90% 2.40% 3.90%
Elbow Forearm Wrist Thigh Knee Calf Ankle
circumference circumference circumference circumference width  circumference circumference
0.8 0.9 0.7 2.5 33 1.6 1
0.5 0.7 0.5 1.8 1.8 1.2 0.7
2.2 2.3 2.8 10.5 18.9 4.9 2.7
0 0 0 0 0.01 0 0
2.30% 3.20% 3.40% 3.40% 5.00% 3.50% 3.40%

Hipline of adult females

FIGURE 11. Comparison between predicted results and manual
measurements of waistline of adult females.

with the maximum error differ significantly from samples
with the secondary high error. Hence, the possibility of rel-
ative data anomaly caused by manual measurement error is
not eliminated.

It can be seen from Table 3 and Table 4 that the total MAE
of chest circumference, waistline and hipline is higher than
those of the rest indexes, but the mean error rate may not be
high. In addition, the comparison of the MAE of waistline of
males and females reveals that the MAE of waistline of males
is the highest, while the MAE of waistline of females is the
smallest. This could be interpreted that the waist of males is
more difficult to be identified than females and it is easy to
cause mistakes during manual measurement.

It can be seen from broken line graphs of chest cir-
cumference, waistline and hipline in Figs.6-10 that manual
measurement and predicted results generally keep a consis-
tency. Generally, the consistence between broken line trends
of manual measurement and predicted results is negatively
correlated with MAE, which is proved by hipline of adult
males in Fig.8.

V. CONCLUSION

In this article, we propose a noncontact, image-based method
for measuring the human body parts for forensic applications
in smart cities. We design our method to be noncontact and
purely image-based so that the forensic evidence can be
collected in an efficient manner. To address difficulties in size
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measurement, low universality and poor convenience of exist-
ing noncontact anthropometry methods, a new end-to-end
anthropometry method based on two views is proposed.
The proposed method decreases error accumulation during
the intermediate processes and it is easy for promotion. In the
experiments, 15 indexes of body size are collected. Among
them, the height and body weight are used as inputs and the
rest 13 indexes are used as predictions. The error between the
predicted results and manual measurement is calculated by
an end-to-end method. According to our experimental results,
there are some errors, but they can basically be kept within the
mean error rate of 5%. This demonstrates that the proposed
method can be used in practical noncontact anthropometry
scenarios.
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