IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 24, 2020, accepted November 30, 2020, date of publication December 10, 2020,

date of current version December 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3043887

Mapping TSN Traffic Scheduling and Shaping

to FPGA-Based Architecture

ZIFAN ZHOU ', MICHAEL STUBERT BERGER, (Member, IEEE), AND YING YAN

Department of Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Corresponding author: Michael Stiibert Berger (msbe @fotonik.dtu.dk)

This work was supported by the HI20T-NordForsk’s Nordic University Hubs Programme under Grant 86220.

ABSTRACT Time-Sensitive Networking (TSN), which evolves from the Ethernet standards, has been
developed to ensure deterministic transmission in data networks. Asynchronous Traffic Shaping (ATS)
extends the conventional synchronized TSN with an asynchronous scheduler to guarantee a bounded
transmitting delay. In this work, we present a Field Programmable Gate Arrays (FPGA) implementation of a
TSN scheduling entity, which leverages ATS for the frame forwarding process. We explore the ATS design
by function blocks and compare it with a benchmark design utilizing strict-priority scheduling. In terms
of operating frequency, our results indicate that strict-priority scheduling performs 1.05% to 9.56% higher
maximum frequency than ATS with the same configurations. Regarding resource utilization, ATS consumes
51% to 119% more logic blocks and 51% to 101% more registers than strict-priority scheduling. Based on
the synthesis and fitting results from Register-Transfer Level (RTL) simulations, we provide a general vision
of designing and implementing considerations of the ATS function. Specifically, we show the influences of

the buffer and bus width configuration on the FPGA implementation scale and data rate.

INDEX TERMS Ethernet networks, real-time systems, hardware, scheduling algorithm, FPGA.

I. INTRODUCTION

The amount of data to be shared/exchanged has increased
exponentially in recent embedded systems, such as automo-
tive, industrial control, and avionic networks [1]-[3]. Since
real-time applications sensitive to latency are common in
most systems, it raises a requirement for data transmission
in the network. In order to build real-time communication
capability over the data link layer, it is crucial to guaran-
tee a deterministic low End-to-End (E2E) latency and jitter
in technology such as Ethernet. TSN standards provide an
improvement to the IEEE 802.3 Ethernet network regard-
ing the deterministic services. One of the main contribu-
tions of TSN is to guarantee bounded low latency for frame
transmission. Relying on the time synchronization mech-
anism in TSN, IEEE 802.1 Qbv standard [4] defines the
Enhancements for Scheduled Traffic, i.e., Time-Aware Shap-
ing (TAS). With the precise time alignment of all nodes in
the network, the TAS-enabled domain assigns dedicated time
slots for the time-critical flows to avoid interference from
other non-critical traffics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen

However, since the gate operations have to comply with
constant time intervals in the scheduler, the Scheduled Traf-
fic (ST) classes in TAS are limited to the flows with a periodic
transmission feature. A sporadic flow is not supported as an
ST class. From the perspective of hardware implementation,
the device needs to allocate hardware resources (i.e., compu-
tation and memory) for synchronization maintenance and the
execution of the time-triggered gate actions, accordingly.

In order to achieve a real-time guarantee without global
time synchronization, the ATS is introduced to the TSN
standards [5]. ATS utilizes a token-bucket-based scheduling
approach to achieve bounded low latency, and jitter [6]. The
ongoing ATS standardization is led by the IEEE 802.1 Qcr
working group [7]. It has been proved in [8] that ATS has
better performance than TAS for sporadic flows. Neverthe-
less, the transmissions of periodic critical flows are less
predictable in ATS than in TAS. The reason is that ATS
offers certain fairness to all traffic classes. Overall, ATS can
still provide critical flows with bounded low latency and
requires no prerequisite on the traffic pattern (i.e., periodic
or sporadic). It makes ATS a promising solution to be part
of a deterministic transmission network used for distributed
real-time systems.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 8, 2020

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

221503

https://orcid.org/0000-0003-4251-4889
https://orcid.org/0000-0003-3181-4480

IEEE Access

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

To ensure the Quality-of-Service (QoS) in networks,
ATS implements the flow classification based on the incom-
ing frames’ priority level. It supports a flexible classifying
mechanism with multiple classes and per-stream scheduling.
Hence, the assignment of queuing and priority levels becomes
a critical synthesis issue at design time as it determines the
latency of each stream. Depending on the network size and
QoS requirements, the maximum number of traffic classes
supported in the entity also needs to be decided at design
time. Nevertheless, the influence of classification on the scale
of needed Input or Output (I/O) pins and other hardware
resources, such as logic blocks and memory blocks, are still
unknown. For hardware platforms, the available resources
and performance vary significantly among products. To tai-
lor the devices used for specific cases at justifiable costs,
the capability and scalability of the specific type of device
are some of the necessary issues that the network equip-
ment providers have to address based on the implementing
consideration.

Various hardware is available in the market, such as Appli-
cation Specific Integrated Circuit (ASIC) and FPGA. FPGA
is highly customized and can be quickly reconfigured to
support different configurations, so we implement ATS on
an FPGA platform to test various configurations. Since the
main objective is to investigate the hardware’s resource con-
sumption and throughput, we leverage the Intel Quartus and
Modelsim software to implement ATS in RTL simulation and
validate the implementation with multiple testbenches.

A. CONTRIBUTIONS

ATS has been verified to meet tight real-time constraints
with an effective synthesis solution in [9]. The novelty and
objective of this paper are to explore the influence of ATS
classification policy on the hardware resource consumption
and compare the scale and throughput performance of ATS
to strict-priority scheduling with the same configurations.
Specifically, the contributions of this paper are:

o We present a generic FPGA implementation of ATS
that can be configured with different bus widths and
maximum numbers of traffic classes, and we give a
sophisticated demonstration by function blocks.

+ We implement the RTL simulations of a strict-priority
component as well as the ATS component on an Intel
Stratix V series FPGA device, respectively. Then we
compare the hardware frequency, resource utilization,
and throughput results between ATS and strict-priority
regarding the entire design and individual blocks.

o We evaluate the ATS and strict-priority designs by set-
ting up 32 different configurations for each scheme.
We investigate the influences of the number of traffic
classes and bus width on the design.

Strict-priority is a basic method for traffic scheduling in

a switched network, which uses simple scheme to priori-
tize the high-priority class. ATS also combines prioritization
to execute transmission selection. Furthermore, ATS needs
function blocks to record timing information and calculate

221504

eligibility time on a per-stream basis to regulate the outbound
flows. Therefore, it is interesting to compare ATS with the
traditional strict-priority policy in a hardware form.

B. RELATED WORK

In order to accelerate system speed, FPGA hardware is widely
used to distribute workloads from the software. A number
of works existing in the literature have investigated vari-
ous FPGA-based Ethernet applications. An FPGA imple-
mentation of real-time Ethernet functions is introduced in
[10], the FPGA is embedded in a Commercial Off The
Shelf (COTS) switch and is used to accelerate the forwarding
of real-time frames in the switch. The work in [11] presents an
Ethernet switch structure that uses an FPGA for cut-through
forwarding, which also supports the IEEE 1588 Precision
Time Protocol (PTP). Moreover, specialized FPGA compo-
nents are often used for dedicated functionalities. In [12],
[13], FPGA implementations are used to generate highly
accurate timestamp on the frames. The works in [14], [15]
propose an FPGA-based implementation performing TSN
frame preemption. A hardware/Software co-design of an Eth-
ernet controller is proposed in [16], where the FPGA is used
in the Ethernet MAC to achieve time-triggered transmission.
The paper includes a hardware consumption of the internal
modules in the FPGA device, indicating the task partition-
ing of hardware and software stack. Memory space is an
essential resource for the TSN hardware switch, especially
when the on-chip memory is preferable for a faster processing
duration. In [17], the author proposed a switch architec-
ture for time-triggered TSN switches with a memory usage
optimization. The paper investigated the hardware resource
utilization of the proposed TSN switch architecture on an
FPGA device. A TSN switch is required to deal with a high
data throughput in the network. The switch architecture needs
to be faster enough for line-rate operations. In [18], a TSN
switch architecture supporting TAS, frame preemption, and
Credit-Based Shaper at high throughput is proposed. The
architecture utilizes a Virtual Output Queuing (VOQ) frame-
work to save hardware memory utilization. An experimental
setup of TSN TAS scheduling is introduced in [19], which
was implemented in a hardware platform with prototypical
FPGA-based ports that support synchronization and TAS
scheduling. The platform achieved guaranteed worst-case
latency for time-triggered frames.

ATS has drawn much attention since it offers an alternative
to TSN synchronous scheduling methods. The asynchronous
feature enables all types of flows with potential deterministic
transmissions. Several works have documented the perfor-
mance analysis of ATS [8], [20]-[23]. However, to the best of
the author’s knowledge, no one has investigated the hardware
implementation of ATS as we introduce in this work.

C. PAPER OUTLINE

The rest of the paper is organized as follows. In Section II,
we introduce the basic function blocks of the ATS and the
mappings of these function blocks to FPGA. In Section III,

VOLUME 8, 2020

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

IEEE Access

Transmission Port

|
__ |
PHYMAC™ ™7} ; ; !
‘—L Switch Fabric 2 ‘ : ATS Entity
fffffffffff Switch Fabric 1
PHVIVAG 1 1> Switch Fabric ! Embedded Memory
|
77777777777 ‘__’|—-> : Stream s s i Transmission Ethernet MAC &
PHYIMAG ~ I o o Selector PHY
— | o e e s
R —— : data buffer info buffer .
PHY/MAC | I !
> | : ————— Scheduler |F-—---- 4
|
|

e

FIGURE 1. An abstraction of the ATS entity (highlighted) in a switching port, the figure demonstrates the location of the ATS entity inside an

example switch system.

the primary hardware implementation metrics relevant to the
scheduling entity are described. The experimental setup and
evaluation of our design are given in Section IV. Addition-
ally, the comparison between the ATS and the strict-priority
components are shown in Section I'V. The paper is concluded
in Section V.

Il. MAPPING ATS FUNCTION BLOCKS TO HARDWARE
Switched Ethernet provides effective data transmission in
terms of bandwidth utilization. Strict priority is widely
adopted in the switched network to provide classified
QoS services. The time-critical frames are offered with a
high-priority traffic class, eliminating part of the latency
caused by low-priority traffic classes. However, a low-priority
frame may start ahead of high-priority frame transmission.
This condition leads to excessive latency for the high-priority
frame.

By creating dedicated transmitting time slots for sched-
uled flows, TAS scheduling prevents the contention of trans-
mission within the same port. In contrast, ATS utilizes a
local system clock for scheduling operations, such as assign-
ing per-stream eligibility times for transmission selection.
According to their priority values and the classification
rules in ATS, frames are classified into different classes.
Later, the frames are buffered in a per-class queuing manner.
This section briefly describes the mapping of ATS func-
tional modules to FPGA and demonstrates the hardware
implementation.

Figure 1 demonstrates the ATS entity and several relevant
parts in a switching device. The ATS entity is deployed
at the egress path in each port. Frames from the reception
ports are forwarded through the switch fabrics and arrive
at the corresponding transmission port’s scheduling entity.
We implement the ATS entity (highlighted in the figure) and
test it in a simulated surrounding. The entity uses the Avalon
interface [24] to communicate with other parts.

A. STREAM GATE

In ATS, flows are classified and filtered once arriving at the
egress port. At the stream gate, the original priority of the
frame can be mapped to an Internal Priority Value (IPV)
so that a per-hop implementation of QoS can be achieved.
If Per-Stream Filtering and Policing (PSFP) is supported,

VOLUME 8, 2020

the stream gate also carries out functions such as gate control
operations and flow metering. It is beyond the scope of the
paper to explore PSFP in more detail, an overview can be
found in [25]. During the frames are parsed in the stream gate,
the frame length and arrival time will be transferred to the
ATS scheduler module to calculate eligibility time (described
in Section I1-C).

In this work, all frames follow the Ethernet 802.3 tagged
frame format. The format includes a four-byte field for the
VLAN tag, as well as a two-byte field indicating the length
of the Ethernet frame. To reduce the complexity of the clas-
sifying process, we use the VLAN tag for the proprietary
classification scheme in our design. Depending on the bus
width of the FPGA design, the VLAN tag field comes at a
different round of input. Therefore, before the tag field is
read, the data must be stored temporally until the traffic class
decides the output direction.

B. DATA BUFFER

In the case of ATS, frames are queued separately based on
the assigned IPV at every egress port. Therefore, buffering
memory needs to be partitioned based on the number of
queues. Our designs use the embedded memory blocks pro-
vided by the FPGA. The available space for data buffer is
set to 16384 word in total, where each word equals the bus
width. It is important for a designer to consider delineating
and sharing the available memory among multiple queues.
However, since the buffer depth can only be base-two values,
the buffer depth is set to 4096 word in the 3-class design,
consuming 3 x 4096 = 12288 word memory in total. The
5-, 6-, and 7-class designs use buffers with 2048-word depth,
consuming 5 x 2048 = 10240, 6 x 2048 = 12288, and
7 x 2048 = 14336-word total memory space, respectively.
While the 1-, 2-, 4-, and 8-classes designs use 1 x 16384-
word, 2 x 8192-word, 4 x 4096-word, and 8 x 2048-word
buffers, utilizing all the 16384 word memory space.

Each traffic class is assigned to a separate buffer to
enable better traffic flow isolation, where the buffering
memory is implemented through a First-In-First-Out (FIFO)
approach. Each buffer is constituted by one or a set of
FIFOs, with the corresponding memory space. According to
the ATS algorithm, the frames’ eligibility time are assigned
in ascending order so that the frames arrive earlier will be

221505

IEEE Access

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

forwarded before the later ones. The FIFO feature satisfies
the mechanism since the frame stored at the head of the FIFO
gets processed first.

C. ATS SCHEDULER MODULE

The scheduler module realizes the computational functions
and maintains the scheduling parameters on a per-stream
basis. The ATS buffering approach provides the possibil-
ity of fine-grained traffic management. The scheduler sepa-
rately makes scheduling decisions and applies to frames that
belong to different traffic classes. The following piece of
pseudo-code demonstrates the calculation of the frame’s eli-
gibility time in the ATS scheduler module. The Djenghrecover
and Deppryorun denote the required duration to recover a
full bucket, equaling to the frame length and the committed
burst size, respectively. Then the shaperEligibility time and
bucketFull time can be calculated based on the bucketEmpty
time. Before the frames get queued in the buffer, the mod-
ule calculates and assigns the eligibility time to the frames.
The eligibility time is the maximum among arrival time,
groupEligibility time, and shaperEligibility time. Afterwards,
the bucketEmpty time is updated based on the values of
eligibility time, bucketFull time, and shaperEligibility time.

/* ATS eligibility time calculation */
DiengihRecover = framelength/rate;
D emprytoFun = burstsize/rate;
thaperEligibility = TbucketEmpty + DlengthRecover;
ThucketFull = TbucketEmpty + DemptyToFulﬁ
Teligibility = max(Tarrivai» TgroupEligibility,
TshaperEligibility);
if Tesigivitity < (Tarrival + MaxResidencetime/ 1.06‘9)
TgroupEligibility = TshaperEligibility;
TbucketEmpty = (Teligibility < TpucketFun) ?
TshaperEligibiliry :
TshaperEligivitity + Tetigivility — ThucketFull

In our design, the Hardware Description Language (HDL)
tool assigns general circuit for the arithmetic functions in the
scheduler module instead of Digital Signal Processor (DSP)
blocks. DSP is a dedicated block in FPGA to accelerate
massive floating-point calculation. The speed improvement
in our design is trivial since the ATS algorithm is a rela-
tively simple process. The calculation mostly uses integer
addition/subtraction and comparison. The arithmetic func-
tion is programmed with less than 20 lines of HDL codes.
It is translated to the adder and general FPGA circuit in the
scheduler module. The benefits of using a general circuit
are retaining the design’s simplicity and keeping the design
portable among any FPGA platforms. However, this means
the design will have higher logic block consumption because
of the calculation [26].

D. INFO BUFFER
After calculating eligibility time, a group of Info buffers is
employed after the scheduler module to store all the eligibility

221506

time information. Same as the data buffer, the info buffer is
also separated by the traffic classes. A group of shift registers
is used in the scheduler module to delay the eligibility info
until their corresponding traffic class is determined. Then the
scheduler module forwards the calculated eligibility times to
the corresponding info buffer. A valid signal will be sent to
the Write request port of the info buffer from the scheduler
module at the same time so that the positions where the
frames and their eligibility info are stored are identical in the
Data and info buffer.

Regardless of bus width, the total space for the info buffer
is fixed at 4096 word, where each word equals to 32 bit. The
3-class design uses 1024-word buffer for info buffer, taking
3x 1024 = 3072-word memory space. The 5-, 6-, and 7-class
design use 512-word buffers and occupy 5 x 512 = 2560,
6 x 512 = 3072, and 7 x 512 = 3584-word space. The 1-,
2-, 4-, and 8-class designs have 1 x 4096-word, 2 x 2048-
word, 4 x 1024-word, and 8 x 512-word buffers, utilizing all
4096-word memory space for info buffer.

E. TRANSMISSION SELECTOR

After the scheduler module executes the arithmetic function
and writes the eligibility times in the Info buffers, the stored
data are used for transmitting operations by the transmission
selector.

When a frame comes to the head of the data buffer,
the selector sends a read request to the corresponding info
buffer and matches the eligibility time with the frame. This
process recurs every time a frame is transmitted. Accordingly,
the selector reads out the frames with eligibility time ear-
lier or equal to the current time. Finally, frames are trans-
mitted when the egress port is idle. Similar to a multi-
plexer in functions, the selector receives frames from several
buffers and transmits through one output. When multiple
frames are eligible for transmission, the one with the earliest
eligibility time will be selected first. The selector assures
one frame of getting transmitted every round to avoid port
contention.

The eligibility-time-driven feature decides the transmis-
sion selector works in a non-work-conserving manner.
It means the selector is not always busy, despite the presence
of stored frames in the buffers. The selector only reads out
the frames when one or more eligibility times are met with
the current time, otherwise, the frames will remain in the
FIFO until the time. In this way, the transmission channel
may become idle during consecutive transmissions, making
lower bandwidth utilization. On the other hand, since the
non-work-conserving selector regulates frame transmission
according to time instant, it is one of the primary features to
achieve deterministic transmission and mitigate jitter in the
network.

Figure 1 describes the schematic relationship between the
scheduler module and the selector. However, the two function
blocks are implemented within the same entity. Because of
that, some of the signals and variables can be shared easily
between the two blocks.

VOLUME 8, 2020

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

IEEE Access

F. STRICT-PRIORITY BENCHMARK

To benchmark the hardware resource utilization and through-
put of traffic scheduling hardware, we also develop a
strict-priority scheduling entity as a reference. It is the default
transmission selection algorithm supported by all bridges in
the IEEE 802.1Q networks [30]. The strict-priority demands
no complex scheduling algorithms. It uses a work-conserving
selector that always performs transmission when frames
exist in the buffers. It is common to integrate strict-priority
scheduling with another scheduler to offer a deterministic
guarantee.

As depicted in Figure 2, the strict-priority design utilizes a
similar structure as the ATS, including a stream gate instance,
a group of buffers for per-class queuing, and one transmission
selector. The strict-priority stream gate is responsible for clas-
sifying and filtering the incoming data frames. The gate sup-
ports a maximum of eight different classes. Compared with
ATS, the time stamping process is removed from the stream
gate, as the transmissions are not triggered by time instant.
Frames with the same priority level are stored in one buffer.
The memory space applies the same division scheme as ATS.
On the other hand, since the scheduling policy requires no
frame metadata, the strict-priority design requires no memory
space to info buffer to store frame information. When frames
present in the data buffer and the transmission selector is idle,
it polls buffers starting from the highest-priority class. As a
reference group, the strict-priority design is also evaluated
with the configurations of 64-, 128-, 256-bit, and 512-bit
bus width, combining with one to eight maximum supported
traffic classes.

Strict-priority Entity

Embedded Memory

Lowest _Data buffer

priority

Stream
gate | | Poling >

S —
| ==

Transmission
Selector

Highest

priority ———— >

LSelected for transmission

FIGURE 2. An illustration of the modules in the strict-priority entity. The
frame stored in the buffer with the highest priority is selected for
transmission by the entity.

IIl. HARDWARE IMPLEMENTATION METRICS

A. LOGIC BLOCK

FPGA comprises arrays of basic logic blocks combined to
implement logic-gate, arithmetic, and register-related opera-
tions. Each logic block has multiple inputs and outputs pins,
and it has access to programmable connections to adjacent
blocks. One fracturable Look-Up Table (LUT) receives the
inputs to the logic block. It stores the values that correspond
to all input variables and drives the outputs according to
the input values. In this way, the LUT is able to implement

VOLUME 8, 2020

any user-defined Boolean functions. Each logic block also
contains several registers before the output pins of the block.
In some cases, logic blocks also include adders for simple
arithmetic capability [27]. With a fixed designing structure,
the number of logic blocks needed in the ATS design is
driven by multiple elements. In this work, we investigate the
effect of the traffic classification (Section III-E) and bus width
(Section III-D) on resources utilization.

B. BRAM

In the FPGAs, large FIFOs are composed of Block Random
Access Memorys (BRAMs) [28]. The amount of used BRAM
blocks is used to reflect the memory usage of hardware design
in this work. The specific Intel Stratix V device used here
contains 2640 M20K BRAM blocks with 20480-bit space
each. The M20K BRAM supports a flexible memory config-
uration depending on the bus width of the design. The space
of each BRAM (denoted by 6, and & = 20480 in this paper)
can be calculated using Equation 1, where t and w denote the
depth and data width:

OBRAM = TBRAM X WBRAM (1)

Depending on the depth of one FIFO, the number of M20K
BRAMs in one FIFO can be calculated by:
TFIFO X WBRAM

SBRAM = T Oy)

dpram denoted the amount of BRAM per FIFO. Figure 3
shows the number of BRAMs needed per FIFO as a function
of FIFO’s depth. Four different bus-width cases used in our
designs are given. As can be seen from the figure, the amount
of required BRAMs per FIFO increases with the bus width
and FIFO’s depth.

30

T
64 bus width

128 bus width
256 bus width +
512 bus width

25 1

+X»> 0

N
o

Number of BRAMs per FIFO
—
w

+ X
10
+ x A
° + | X A °
mii 4
0 200 400 600 800 1000 1200

Depth of FIFO (words)

FIGURE 3. Number of memory BRAMs per FIFO as a function of FIFO
depth, with 64-, 128-, 256-, 512-bit bus width.

C. I/0 PINS

The I/O pins are used to connect the FPGA with external,
as well as some reserved pins to specialized peripherals,
e.g., external clock signals, Double-Data-Rate Synchronous

221507

IEEE Access

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

dynamic random-access memory (DDR SDRAM). In this
work, we use the customized Avalon-Streaming interfaces to
connect the ATS entity.

Table 1 shows the I/Os of the ATS entity. The entity uses
one data_in interface to receive frames from the upstream
entity, such as a switch fabric, one startofframe interface to
mark the beginning of the frames. The ATS entity transmits
all frames via one data_out interface to the downstream
entity, such as an Ethernet MAC and PHY. The total number
of I/O pins used in the design can be calculated by:

Apin = Winput + Doutput + Oclock + Wstart_in + Wreset
+ @start_our (3)

where A, denote the total number of I/O pins. wswarr_in
and g our are the number of 1/Os for the startofframe
interfaces. The design also has one clock interface for a single
timing reference, one reset interface, which are represented
by wciock and wyeger, accordingly. wjppyr and woupys are the
data widths of the input and output interfaces.

TABLE 1. 1/0 pins used in the ATS entity.

1/0 Width (bit)
64/128/256/512| Input

Direction Description
Data input from upstream
block, e.g. switch fabric

Mark the beginning of

data_in

startofframe_in 1 Input

input data
Reset bit to initialize all
reset 1 Input .
signals
clk 1 Input Clock signal
data_our |64/128/256/512| Output |Data output from the entity
Mark the beginning of
startofframe_out 1 Output output data
D. DATA RATE

Traffic scheduling plays an important role in the forwarding
process, therefore, the achieved maximum data rate is a cru-
cial parameter for the ATS design. The maximum rate (R)
supported by one interface is calculated by:

Riax = @pus X Frnax @

Fax 1s the maximum frequency of the design, indicating how
many input data cycles the design can handle in one second.
The maximum rate is calculated under the situation when
(64 x n) Byte frames are transmitted, which leaves no spare
bit on the data bus. In reality, the data rate declines when there
are spare bits in the data bus while processing a frame. We use
the maximum results of data rate for comparison in this work.
Modern FPGAs are compatible with high-speed data
communications. The Stratix V GT devices come with
28.05-Gbps and 12.5-Gbps transceivers that are suitable for
fast switching applications [29]. With a targeted clock fre-
quency of 200MHz, 64-bit, 128-bit, 256-bit, and 512-bit
designs correspond to 10G, 25G, 40G, and 100G interfaces,
respectively. Bus width plays a critical role in affecting the
FPGA utilization. For instance, specific operations may be
executed on a per-bit base, especially the registers created for
interfaces that increase proportionally with the width.

221508

E. NUMBER OF SUPPORTED CLASSES

The forwarding process supports up to eight traffic classes
with separate queues for each class [7]. The process in the
one-class configuration is always straightforward. Since there
is only one data path in the design, all frames are mapped
to the same priority level. The scheduler module only needs
a sole function block to calculate the eligibility info. The
selector starts to transmit frames from the buffer whenever an
eligibility time is reached, without checking if another traffic
class occupies the port.

In more complex cases, where multiple classes are sup-
ported, the received frames are classified and forwarded to the
corresponding buffers by the stream gate. Assuming a single
input interface to the stream gate, it can support different
numbers of classes with minor changes since one sequential
case statement is used for the stream gating process in the
design. In contrast to the stream gate, the scheduler module
needs separate and concurrent code blocks to calculate per-
stream status. The scheduler module scale is expected to vary
significantly with the number of streams and traffic classes.

Depending on the network configuration, the required
number of traffic classes differs among cases. Designs
with more supported classes come with a cost of hardware
resources and prices. As described above, the resource uti-
lization changes with the number of traffic classes used in
the design. They are caused by the difference of needed
logic blocks in the scheduler module. Besides, the config-
uration and size of FIFOs vary with the number of supported
classes, and these factors also significantly impact resource
utilization.

IV. EXPERIMENTAL EVALUATION
A. METHODOLOGY
To evaluate the ATS design, we carried out synthe-
sis, fitting, and timing analyzing within RTL simulations.
The work is implemented on an Intel Stratix V FPGA
(5SGXMABN3F4514) in the Intel Quartus 16.1 and Model-
sim 10.5b software. Firstly, the logic functions are validated
with testbench in the RTL simulations. The conducted tests
include: (a) stress tests that generate consecutive bursty Ether-
net 802.3 tagged frames with the minimal length, (b) random-
ization tests that feed frames with variable length and interval.
After the functional validations, we run a series of simu-
lated synthesis and fitting for the design in Quartus, these
steps translate the code into device-specific primitives and
map the primitives to the device and specify the usage of rout-
ing resources. The required data on the logic block utilization,
registers, pins, and memory blocks can be acquired from the
Analysis and Synthesis Summary in Quartus software.
Finally, the static timing analysis is performed using the
timing analyzer. The tool measures the timing performance of
all paths, as well as determines clock signals for all register-
to-register transfers translated from the code. The tool gener-
ates a timing report that contains the maximum frequency of
the clock in the design.

VOLUME 8, 2020

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

IEEE Access

64bit

7 5000 600 300
128bit ¥
= 7]
—%— 256bit < 8000 = 2 b4
X = & 500 250 -
—— s12bit £ 4000 - \ bk//‘%x
o] 4 @ i~ K
£ 6000 g P 2 400 £ 200417 ™~
o 53000 - z \ =
g 3 =
o © 300 £ 150
S 4000 3 / & YV 2
g 4 2000 > S
2 1 > < x
3 i 5 S 200 2100
2 2000 g / 3 \/ -
[Qo
4 / W £ 1000 £ 100 50
€ e 3 =
3 . FY
— 0 0 T 0
(@) (c) (e) (9)
>
-+ 64bit E 25000 2600 300
128bit S s 5
- 256bit < 8000 o 5 =) ~ N
S & 2 500 1%74 250
—+- 5126t & 2 4000 8 b z e
c 7 b= \ =
‘» 6000 £ £ 400 H——t 2 200
< A £ 3000 @ AL RS s
o o s A A 2 2
s ki ; <300 A 2150
-2 4000 2 r S L4 %4 o]
g Al E2000 g o e ; =
- X > == o Q \ n
5 g AT § 200 : <2 100
w0 x)~ \
52000 14— 2 AT 5 - 3
5 X et o 1000t § 100 & 50
= § | 8% 2 d)
I} s o 3 AN e =
8 let] E TH 5, ++‘H’ .
3 12345678 z 12345678 12345678 12345678

(b) Maximum number of
supported traffic classes

(d) Maximum number of
supported traffic classes

(f) Maximum number of
supported traffic classes

(h) Maximum number of
supported traffic classes

FIGURE 4. All experimental results of two scheduling methods. Four upper charts are the results of ATS scheduling:

(a) number of used logic blocks, (c) number of used registers, (e¢) number of used BRAMs, (g) the maximum

frequency (Fmax) as a function of the Maximum number of supported traffic classes. Each chart consists of four cases of
different bus width used in the design, differentiated by color. The results of the strict-priority scheduling are given in the
bottom row by (b) number of used logic blocks, (d) number of used registers, (f) number of used BRAMs, (h) Fmax as a

function of the Maximum number of supported traffic classes.

B. EXPERIMENTS

The platform in this work uses an x64-based processor. Over-
all, the ATS and strict-priority entities each are tested with
32 different setups from the combination of the following
variables:

Bus width. The ATS design presented in this work can
be configured to 64-bit, 128-bit, 256-bit, and 512-bit use
cases. These four options are picked with the consideration
of the minimum Ethernet frame so that the input of one cycle
contains only one Ethernet frame or pieces from the same
frame.

Maximum supported traffic classes. To evaluate the
effect of traffic classification on the design, the maximum
supported classes in the design varies from one to eight
classes.

C. EXPERIMENTAL RESULTS

All the experimental results are discussed in this section.
In Figure 4, the first row consists of (a) number of used
logic blocks, (c) number of used registers, (e) number of used
BRAMSs, and (g) Fiuax as a function of the maximum number
of supported traffic classes in the ATS design. Charts in
the second row: (b), (d), (f), (h) give the corresponding results
of the strict-priority scheduling. Table 2 lists the maximum
data rate achieved in each design. Finally, Figure 5 shows
the logic block utilization as a function of the traffic class
by entities: (a) stream gate, (b) transmission selector.

VOLUME 8, 2020

1) ATS RESOURCE UTILIZATION AND FREQUENCY VERSUS
CONFIGURATION

Figure 4a shows the number of logic blocks used in the ATS
scheduling. Since the required logic blocks in the scheduling
design only take a small portion of the total amount in the
Stratix V devices, the utilization is compared through the
actual number of logic blocks instead of the percentage,
which is below 1% in most cases. As can be seen, the number
of logic blocks increases with the maximum number of traf-
fic classes by a factor of 6.31, 7.44, 10.57, 7.80 for 64-bit,
128-bit, 256-bit, 512-bit bus width, respectively.

The differences caused by the bus width is relatively slight
for the single-class designs, where the 64-bit, 128-bit, and
256-bit ATS require a similar amount of logic blocks, and
the 512-bit ATS utilizes around 500 more logic blocks. The
difference becomes more evident with more traffic classes:
when the design support eight classes, the 512-bit ATS has
2880, 4620, 5125 more logic blocks than the 256-, 128-,
64-bit ATS. The reasons are that logic blocks are used
frequently and mostly on a per-bit basis. Each class requires
more logic blocks with a broader bus width. Thus, with
the increasing number of supported classes, the difference
becomes more considerable.

The results for registers used in ATS are given in Figure 4c.
The numbers of registers increase from the single-class
designs to eight-class designs, and the growth rates get slower
with a wider bus width. The respective increasing factors are

221509

IEEE Access

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

TABLE 2. The maximum data rate of all the strict-priority and ATS designs, values in Gbps.

64-bit bus width 128-bit bus width | 256-bit bus width 512-bit bus width
Max. number of Strict- Strict- Strict- Strict-
supported classes | priority ATS priority ATS priority ATS priority ATS
1 class 18.04 16.90 32.99 30.98 65.81 63.86 130.40 125.77
2 classes 15.16 13.59 29.13 27.58 59.86 58.25 120.50 122.67
3 classes 14.54 13.13 29.74 27.82 62.32 62.68 117.98 116.92
4 classes 14.49 13.29 29.09 27.27 61.27 62.85 122.90 109.38
5 classes 14.94 14.14 29.56 27.60 59.88 62.36 122.24 115.24
6 classes 15.08 13.89 29.57 30.92 62.10 60.76 122.42 113.17
7 classes 14.99 13.64 31.05 29.66 61.12 57.41 125.35 121.10
8 classes 15.16 13.25 30.17 28.41 61.55 60.91 117.47 111.96

—8— 64bit ATS —< 256bit ATS—e - 64bit Strictpriority —x
128bit ATS—— 512bit ATS

256bit Strictpriority
128bit Strictpriority—¢ 512bit Strictpriority

4000
3500
3000 /
2500 /
2000 /’/‘// —=
1500 / —
1000 At — =
500 ﬁ’—’:'_x—___—'_‘
o @j’-‘fw- = -
1]

3 4 5 6 7 8
Maximum number of supported traffic classes
(a) Logic block utilization in the stream gate
—8— 64bit ATS —< 256bit ATS—® - 64bit Strictpriority —< 256bit Strictpriority
128bit ATS—— 512bit ATS 128bit Strictpriority—¢ 512bit Strictpriority

2000 //
1500 ///
/'/

1000 /
500 p———
nu/ - =

*= -1

=

o | 1

2 3 4 6 8
Maximum number of supported traffic classes

(b) Logic block utilization in the transmission selector

FIGURE 5. Logic block utilization by entity in the ATS and strict-priority
designs. The results of the stream gate module are given in (a) and the
transmission selector’s results are shown in (b). In both figures, solid
lines represent the results for ATS scheduling, dashed lines represent
strict-priority scheduling. Bus width used in the design are differentiated
by color.

3.46,3.10, 2.51, 1.72 for 64-bit, 128-bit, 256-bit, and 512-bit
bus width ATS. Taking the vertical comparison, the differ-
ences among four bus width cases change slightly from a
single class to eight classes. Because the registers’ primary
usage is to store data temporally, the number of registers
scales lightly on a per-bit basis.

The number of required BRAMs in the ATS are plotted
in Figure 4e. The results take both Data and info buffer
into consideration. As described in Section II-B and II-D,
the available memory space for data buffer is 16384 words of

221510

bus width, the available space for info buffer is 4096 words
of 32 bit. While in the cases of 3-, 5-, 6-, and 7-classes
designs, data buffer consumes 12288, 10240, 12288, and
14336 words of bus width, info buffer consumes 3072, 2560,
3072, and 3584 32-bit word. Since Quartus may employ extra
BRAMSs to improve timing, the single- and 2-class designs
use the most and same amount of BRAMs with the same
bus width. 5-class designs use the least BRAMs since they
consume less memory space than other cases. 3- and 6-class
designs have the same amount of BRAMs, as well as 4- and
8-class designs. More BRAMs are required with wider bus
width due to the word width equals the design’s bus width.

ATS design achieves higher than 200MHz frequency in all
cases. Figure 4g indicates that the single-class designs have
the highest maximum frequency than the others that support
more classes. The results are due to the lack of classification
and coordination functions for multiple traffic classes. So the
designs can reach the shortest logic delay between registers.
The F,4x of the designs with multiple classes fluctuate within
a certain range, the standard deviations of these ATS designs
are: o64pir = 5.7, 0128pir = 10.5, 0256pir = 8.5, 05126ir = 9.4.
The fluctuation is caused by the differences in fitting and
placing the modules in the circuit. Thus, the signal transitions
among registers vary in every case, which results in Fj,
value changes. Moreover, the fitting results generated by the
Quartus software are dependant on the values of the Fitter
Initial Placement Seeds. In this work, each compilation is
tested with multiple seeds, and the maximum results are
picked.

Due to the fixed interfaces of the design, the number of /O
pins is independent of scheduling methods and traffic classes.
According to the fitting results, the 64-bit, 128-bit, 256-
bit, and 512-bit designs use 132,260, 516, 1028 1/O pins,
respectively. The amount of pins only scales with the bus
width used in the design since the width of the data_in and
data_out interfaces are the only variables of the I/O pins.

2) COMPARISON WITH BENCHMARK

As shown in Figure 4b, the same variation as ATS also
applies to strict-priority scheduling. The number of logic
blocks increases with the number of classes by a factor

VOLUME 8, 2020

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

IEEE Access

of 6.39,9.79, 10.55, 5.84 for 64-, 128-, 256- and 512-bit,
respectively. In general, the ATS scheduling requires more
logic blocks than strict-priority with the same configuration
on traffic class and bus width. On average, the 64-bit, 128-
bit, 256b-bit, and 512-bit ATS utilize 119%, 96%, 73%, 51%
more logic blocks than the corresponding strict-priority,
respectively.

Figure 4d indicates that the number of registers used in
strict-priority also increase with the number of maximum
traffic classes, but with a slighter change than ATS. The num-
ber increases by 2.77, 2.43, 1.47, 0.87 for 64-, 128-, 256- and
512-bit. ATS requires more registers than the corresponding
strict-priority designs. The results indicate the 64-bit, 126-bit,
256b-bit, and 512-bit ATS require 101%, 96%, 70%, 51%
more registers on average than the strict-priority groups.

Due to the use of info buffer, ATS requires slightly more
logic blocks than strict-priority, as shown in Figure 4f.
At the same time, two scheduling methods require the same
amount of BRAMSs used for data buffer with the same
configurations.

Compared with ATS, the strict-priority performs 9.56%,
4.91%, 1.05%, and 4.73% higher F,, on average across
the 64-bit, 128-bit, 256-bit, 512-bit designs, as given
in Figure 4h. Nevertheless, in some particular cases, ATS
also achieves higher Fj,,, than the corresponding strict-
priority. The strict-priority is a basic scheduling method,
which requires a less complicated circuit than the ATS to be
implemented, therefore, it is more likely to achieve higher
frequency in the strict-priority designs. Moreover, these two
approaches differ significantly in the achievements, the fre-
quency performance is affected by multiple factors besides
the logic complexity, such as the fitting and routing among
the hardware circuit. Thus, ATS can also achieve higher
frequency than the strict-priority.

3) MAXIMUM DATA RATE

Table 2 lists the maximum data rate achieved by all the
designs. The values are collected after running seed sweep
for place-and-route in the Quartus software. The maxi-
mum values we got from our experiments are given. Within
every column, the single-class designs achieve the high-
est rate compared with the others that support multiple
classes. Depending on the higher F),,, results, strict-priority
achieves a higher rate than the corresponding ATS in most
cases. Every time the bus width doubles, the rates also
approximately become as twice as faster. ATS reaches
13.98Gbps, 28.78Gbps, 61.13Gbps, 117.03Gbps datarate on
average for 64-bit, 128-bit, 256-bit, and 512-bit designs. The
designs are compatible with the 10G, 25G, 40G, and 100G
Ethernet, accordingly.

4) LOGIC BLOCK UTILIZATION BY ENTITIES

The number of logic blocks used in the stream gate is given
in Figure 5a, where it increases with both traffic classes
and bus width. Besides, increasing from one class to eight
classes, the number increases by a factor of 3.68 for 64-bit

VOLUME 8, 2020

ATS, 6.35 for 128-bit ATS, 15.58 for 256-bit ATS, and
39.69 for 512-bit ATS. The same trend is also observed in
the strict-priority scheduling: the number of logic blocks
increases by a factor of 3.93,6.90, 10.04, 19.02, accord-
ingly. Figure 5b shows the number of logic blocks used in
the transmission selector, including the scheduler module in
ATS cases. As can be seen, the numbers of logic blocks
increase linearly with the number of classes. However,
the numbers do not scale with the bus width used in the
designs. The number of logic blocks used in the transmission
selector increases by a factor of 6.63, 6.61, 6.58, 6.72 for 64-
bit, 126-bit, 256b-bit, and 512-bit ATS. In the corresponding
cases, the factors are 10.21, 9.14, 14.98, 10.74 for the strict-
priority. Compared with the entities in the strict-priority, ATS
needs to send temporal information to the scheduler mod-
ule, and the module does the arithmetic functions. There-
fore, in order to achieve in circuit, ATS requires more logic
blocks than strict-priority in both stream gate and selector
module.

V. CONCLUSION AND FUTURE WORK

Traffic Scheduling of TSN is a critical feature in the Ether-
net ecosystem to achieve real-time communications. In this
paper, we map the ATS function blocks to hardware imple-
mentation and introduce the FPGA design of ATS. Based
on that, we analyze the hardware performance and resource
utilization of ATS scheduling. Furthermore, we investigate
the impacts of traffic classification and bus width setup on
the results. We also create a benchmark using a strict-priority
scheduling entity in order to compare ATS with a widely-used
scheduling method.

Firstly, our results show the overall utilization and perfor-
mance of ATS. The frequency of ATS design achieves above
200MHz in all cases. The average data rates for 64-bit, 128-
bit, 256-bit, and 512-bit designs are compatible with 10G,
25G, 40G, and 100G Ethernet interface. Both the number of
logic blocks and registers used in ATS scales with the number
of traffic classes. Regarding individual entities, the results
indicate the number of logic block in the stream gate increase
with both the number of traffic class and bus width. While
the amount in the scheduler module only scales with the
number of traffic classes. Finally, we compare the results in
parallel with the implementation of strict-priority schedul-
ing. Our results show that strict-priority achieves a slightly
higher frequency performance than ATS. Meanwhile, ATS
requires more hardware resources in the entire design and
individual entities than strict-priority. It is worth mentioning
that the performance and resource utilization results should
be implementation-dependent. The results in this paper rep-
resent our selected designs and the experimental setup. All
tests are created with consistency for comparing purposes.

As the objective of ATS is to achieve deterministic
low-latency transmission. Latency performance is another
important metric of the ATS design, therefore, future work
can be carried out to investigate the switching delay generated
by the ATS entity.

221511

IEEE Access

Z. Zhou et al.: Mapping TSN Traffic Scheduling and Shaping to FPGA-Based Architecture

REFERENCES

[1]

[2]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. L. Bello, “The case for Ethernet in automotive communications,” ACM
SIGBED Rev., vol. 8, no. 4, pp. 7-15, Dec. 2011.

J.-D. Decotignie, “‘Ethernet-based real-time and industrial communica-
tions,” Proc. IEEE, vol. 93, no. 6, pp. 1102-1117, Jun. 2005.

H. Charara and C. Fraboul, “Modelling and simulation of an avionics full
duplex switched Ethernet,” in Proc. Adv. Ind. Conf. Telecommun./Service
Assurance Partial Intermittent Resour. Conf./E-Learn. Telecommun. Work-
shop (AICT/SAPIR/ELETE), 2005, pp. 207-212.

IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 25: Enhancements for Scheduled Traf-
fic, IEEE Standard 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q),
Mar. 2016.

J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive
switched Ethernet networks,” in Proc. 28th Euromicro Conf. Real-Time
Syst. (ECRTS), Jul. 2016, pp. 75-85.

P. Perry Tang and T.-Y.-C. Tai, “Network traffic characterization using
token bucket model,” in Proc. IEEE Conf. Comput. Commun., 18th Annu.
Joint Conf. IEEE Comput. Commun. Societies Future Now (INFOCOM),
vol. 1, Mar. 1999, pp. 51-62.

IEEE Draft Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment: Asynchronous Traffic Shaping, IEEE
Standard P802.1Qcr, Draft 2.3, 2002.

A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “‘Performance comparison of IEEE 802.1
TSN time aware shaper (TAS) and asynchronous traffic shaper (ATS),”
IEEE Access, vol. 7, pp. 44165-44181, 2019.

J. Specht and S. Samii, “Synthesis of queue and priority assignment for
asynchronous traffic shaping in switched Ethernet,” in Proc. IEEE Real-
Time Syst. Symp. (RTSS), Dec. 2017, pp. 178-187.

H. Flatt, S. Schriegel, J. Jasperneite, and F. Schewe, “An FPGA based
approach for the enhancement of COTS switch ASICs with real-time
Ethernet functions,” in Proc. IEEE 17th Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Sep. 2012, pp. 1-4.

H. Flatt, J. Jasperneite, and F. Schewe, “An FPGA based cut-through
switch optimized for one-step PTP and real-time Ethernet,” in Proc.
IEEE Int. Symp. Precis. Clock Synchronization Meas., Control Commun.
(ISPCS), Sep. 2013, pp. 7-12.

H. Kirrmann, C. Honegger, D. Ilie, and I. Sotiropoulos, ‘Performance of
a full-hardware PTP implementation for an IEC 62439-3 redundant IEC
61850 substation automation network,” in Proc. IEEE Int. Symp. Precis.
Clock Synchronization Meas., Control Commun., Sep. 2012, pp. 1-6.

P. Loschmidt, R. Exel, and G. Gaderer, “Highly accurate timestamping
for Ethernet-based clock synchronization,” J. Comput. Netw. Commun.,
vol. 2012, pp. 1-11, Dec. 2012.

Z.Zhou, Y. Yan, S. Ruepp, and M. Berger, “Analysis and implementation
of packet preemption for time sensitive networks,” in Proc. IEEE 18th Int.
Conf. High Perform. Switching Routing (HPSR), Jun. 2017, pp. 1-6.

M. Kovacevic, V. Skobic, M. Knezic, and Z. Ivanovic, “Towards imple-
mentation of frame preemption mechanism on FPGA platform,” in Proc.
19th Int. Symp. INFOTEH-JAHORINA (INFOTEH), Mar. 2020, pp. 1-7.
F. Gross, T. Steinbach, F. Korf, T. C. Schmidt, and B. Schwarz, “A
hardware/software co-design approach for Ethernet controllers to support
time-triggered traffic in the upcoming IEEE TSN standards,” in Proc.
IEEE 4th Int. Conf. Consum. Electron. Berlin (ICCE-Berlin), Sep. 2014,
pp. 9-13.

Z. Li, H. Wan, Y. Deng, X. Zhao, Y. Gao, X. Song, and M. Gu, “Time-
triggered switch-memory-switch architecture for time-sensitive network-
ing switches,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 1, pp. 185-198, Jan. 2020.

A. Pruski and M. Berger, “Design considerations for high-performance
time sensitive networking switches,” in Proc. 10th Int. Conf. Netw. Future
(NoF), Oct. 2019, pp. 114-117.

M. H. Farzaneh and A. Knoll, “Time-sensitive networking (TSN):
An experimental setup,” in Proc. IEEE Veh. Netw. Conf. (VNC), Nov. 2017,
pp. 23-26.

A. Grigorjew, F. Metzger, T. Hossfeld, and J. Specht, “A simulation of
asynchronous traffic shapers in switched Ethernet networks,” in Proc. Int.
Conf. Netw. Syst. (NetSys), Mar. 2019, pp. 1-6.

Z. Zhou, M. S. Berger, S. R. Ruepp, and Y. Yan, “Insight into the IEEE
802.1 Qcr asynchronous traffic shaping in time sensitive network,” Adv.
Sci., Technol. Eng. Syst. J., vol. 4, no. 1, pp. 292-301, 2019.

221512

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

a1
[&

TSN

E. Mohammadpour, E. Stai, M. Mohiuddin, and J.-Y. Le Boudec, “Latency
and backlog bounds in time-sensitive networking with credit based shapers
and asynchronous traffic shaping,” in Proc. 30th Int. Teletraffic Congr.

(ITC), vol. 2, Sep. 2018, pp. 1-6.

E. Mohammadpour, E. Stai, M. Mohiuddin, and J.-Y. Le Boudec, ‘“Latency
and backlog bounds in time-sensitive networking with credit based shapers
and asynchronous traffic shaping,” 2018, arXiv:1804.10608. [Online].
Available: http://arxiv.org/abs/1804.10608

Intel. Avalon Interface Specifications. Accessed: May 26, 2020. [Online].
Available: https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/manual/mnl_avalon_spec.pdf?language=en_US

J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE
Commun. Standards Mag., vol. 2, no. 2, pp. 29-33, Jun. 2018.

E. Monmasson and M. N. Cirstea, “‘FPGA design methodology for indus-
trial control systems—A review,” IEEE Trans. Ind. Electron.,vol. 54,no. 4,
pp. 1824-1842, Aug. 2007.

Altera, Intel Corporation. Stratix V Device Handbook, Volume 1:, Device
Interfaces and Integration. Accessed: Apr. 13, 2020. [Online]. Avail-
able: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/stratix-v/stx5_core.pdf

1. Kuon, R. Tessier, and J. Rose. FPGA Architecture: Survey and Chal-
lenges. Boston, MA, USA: Now, 2008.

Altera, Intel Corporation. Stratix V Device Overview. Accessed:
Jun. 15,2020. [Online]. Available: https://www.intel.com/content/www/us/
en/programmable/documentation/sam1403476018909.html#sam 1403475

986993

IEEE Draft Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks, Standard P802.1Q-Rev/DO0.2, Jul. 2020.

ZIFAN ZHOU received the M.Sc. degree in
telecommunication engineering from the Tech-
nical University of Denmark (DTU), in 2018.
He is currently pursuing the Ph.D. degree in
latency-critical transmission with the Network
Platform and Service Research Group. His
research interest includes simulations and hard-
ware design of ultra-low latency networks.

MICHAEL STUBERT BERGER (Member, IEEE)
was born in 1972. He received the M.Sc. degree in
electrical engineering and the Ph.D. degree from
the Technical University of Denmark, in 1998 and
2004, respectively. He is currently an Associate
Professor with the University of Denmark, within
the area of switching and network node design.
He has been participating in several projects with
relation to TSN. He was a Project Leader on the
national project Ethernet for RAN (ERAN), where
was explored in the Front haul Network. Furthermore, he coordinated

the participation from DTU in a Eurostars Project on TSN (Fronthaul for
CRAN). He is also responsible for the Department participation in a Nordic
University HUB project on industrial IoT, fog computing, and TSN. He is
currently a Mentor of one Postdoctoral position and two Ph.D. students in
the area of TSN and deterministic networks.

YING YAN received the B.Eng. degree in elec-
trical engineering from the Beijing University of
Technology, China, in 2002, and the M.S. degree
in electronics engineering and the Ph.D. degree
in telecommunication engineering from the Tech-
nical University of Denmark, in 2002 and 2010,
respectively. From 2006 to 2007, she worked as a
Research Scientist with the Department of Com-
munication Platforms, Technical Research Centre
of Finland (VTT), Finland. Her research interests

include time sensitive network (TSN), the Internet of Things (IoT) networks,
5G Mobile networks, network simulation and emulation, traffic data mining
and analysis, and network security.

VOLUME 8, 2020

