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ABSTRACT Dependence assessment, which is to assess the influence of the operator’s failure of a task
on the failure probability of subsequent tasks, is an important part in Human reliability analysis (HRA).
The technique for human error rate prediction (THERP) has been widely applied to assess the dependence
in HRA. However, due to the complexity of the real world, various kinds of uncertainty could occur
in dependence assessment problem, and how to properly express and deal with uncertainty especially
interval uncertainty remains a pressing issue. In this article, a novel method based on the interval evidential
reasoning (IER) algorithm is proposed to assess dependence in HRA under interval uncertainty. First,
dependence influential factors are identified and their functional relationship is determined. Then, judgments
on these factors provided by the analysts are represented using interval belief distributions. Next, the interval
evidential reasoning algorithm is employed to aggregate interval belief distributions of different factors
according to their functional relationship while considering the credibility of the interval belief distribution.
Finally, the conditional human error probability (CHEP) is calculated based on the fused interval belief
distribution, where the upper and lower values are determined by assigning belief degree to the highest and
lowest grade of the corresponding grade interval, respectively. Two numerical examples demonstrate that
the proposed method not only properly deals with interval uncertainty using interval belief distribution and
IER algorithm, but also provides a novel and effective way for dependence assessment in HRA.

INDEX TERMS Dependence assessment, human reliability analysis, interval evidential reasoning, interval
uncertainty.

I. INTRODUCTION
Aims to quantify human’s contribution to the system risk for
a given task and provide recommendations in improving the
reliability of the task, human reliability analysis (HRA) is
a crucial part of the probability safety assessment (PSA) of
large-scale complex systems as the human error has attracted
increasing attention in the design and risk assessment
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of complex systems. Generally, HRA includes the evalua-
tion of human’s performance and the corresponding impact
on structures, systems, and components of a complex
facility [1]–[3], and many methods have been developed for
HRA [4]–[7].

Dependence assessment, which refers to the assessment of
the influence of the operator’s failure to perform a task on the
failure probability of subsequent tasks, is an important part of
HRA [8]–[10]. When there is dependence between two tasks,
the failure probability of the subsequent task would be higher
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if the operator fails the preceding task [11]–[13], hence, it is
important to properly assess the dependence among tasks
to avoid underestimation of the risk. Normally, the result
of dependence assessment is the conditional human error
probability (CHEP), given the failure of the preceding task.

Various methods have been developed regarding the
assessment of dependence between human failure events
(HFEs) in HRA, including technique for human error rate
prediction (THERP) [4], [14], [15], cognitive reliability and
error analysis method (CREAM) [16]–[18], and standard-
ized plant analysis risk-human reliability analysis method
(SPAR-H) [19]–[22]. Among these methods, THERP has
been the most commonly used one for its contributions
including (1) It suggests five dependence levels and provides
guidelines for assigning the level of dependence between two
tasks based on several factors, (2) It provides a modification
formula for each dependence level to calculate the CHEP.

Despite these advantages, there are still some limita-
tions, and the most significant one is that the obtained
result may lack traceability and repeatability due to the
absence of specific guidance [10]. To overcome these
limitations, many methods have been extended for the
THERPmodel, including decision tree (DT) [19], [23], fuzzy
expert system (FES) [10], [12], [24], [25], and evidence
theory [26]–[31]. However, the flexibility of DT is limited
since the analyst’s judgments are typically constrained to
extreme situations [1], which could impact its applicability.
The FES relies heavily on the rules by the experts, but sub-
jectivity and inconsistency could be found in some cases, and
the number of rules would also increase exponentially when
the number of input factors increases, thus limit its usage in
the dependence assessment problem [26], [27]. The evidence
theory, on the other hand, has shown to be effective in depen-
dence assessment problems for its ability to model and fuse
information under uncertainty, and there have been various
applications [15], [28], [32]. However, several challenges are
not well-addressed, and the most significant one is the inter-
val uncertainty problem [24]. In the dependence assessment
process, the analysts may not always be confident enough
to provide judgments on a certain grade, but at times wish
to provide judgment on a group of them, and such inter-
val uncertainty would have an impact on the assessment
result, and the CHEP could be an interval value as well.
However, current researches mainly use the pignistic prob-
ability function to evenly distribute the belief on the grade
intervals to separate grades and the obtained CHEP is a
precise value, which in some way ignores the interval uncer-
tainty and could impact the reliability and accuracy of the
result.

To this end, a novel dependence assessment based on the
interval evidential reasoning (IER) algorithm, which is devel-
oped by [33] and has been used in several decision-making
problems under interval uncertainty [26], [34]–[36], is pro-
posed to deal with interval uncertainty in this article. Firstly,
the interval belief distribution is used to represent the ana-
lysts’ judgments on the input factors under both probabilistic

and interval uncertainty. Next, the IER algorithm is applied
to aggregate interval belief distributions of different factors,
while the weight of the interval belief distributions are deter-
mined based on their credibility. Then, the CHEP is calculated
using the final interval belief distribution, where the upper
and lower values are calculated by assigning the belief degree
to the highest and lowest grade of the grade interval, respec-
tively. Finally, two examples are studied to demonstrate the
effectiveness and efficiency of the proposed method, where
the results are compared with other methods. By using the
IER algorithm, the proposed method could represent the
analysts’ judgments more flexibly and reliably as the interval
belief distribution is applied, furthermore, since the obtained
CHEP is in the form of interval value, the proposed method
couldmore accurately reflect the actual result without the loss
of any information.

The remainder of this article is organized as follows.
Section 2 briefly reviews the basics of evidence theory,
interval belief distribution, and interval evidential reason-
ing algorithm. In Section 3, the proposed IER-based depen-
dence assessment is introduced. Two numerical examples
are introduced in Section 4 to demonstrate the effective-
ness of the proposed method, and Section 5 concludes the
paper.

II. PRELIMINARIES
A. EVIDENCE THEORY
Evidence theory is an effective tool to deal with uncertainty,
and has been widely used in problems such as decision
making [37], [38], classification [39], [40], clustering [41]
and many others [42]–[46]. In evidence theory, one of the
basic concepts is the frame of discernment, which is a set of
mutually exclusive and collective exhaustive events denoted
by Θ = {θ1, θ2, . . . , θN }. The power set of Θ consists
of 2N subsets, denoted by 2Θ , as follows:

2Θ = {∅, {θ1}, . . . , {θn}, {θ1, θ2}, . . . , {θ1, . . . , θN−1},Θ}
(1)

Definition 1 (Basic Probability Assignment):A basic prob-
ability assignment (BPA) that is assigned to a proposition
is defined as m(θ), and the BPA assigned to 2Θ is called
the degree of global ignorance and the BPA assigned to a
smaller subset of Θ except for any singleton proposition or
Θ is referred to as the degree of local ignorance, i.e., interval
uncertainty, and is defined as follows:

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1 (2)

When m(A) > 0, A is called a focal element, and the set of
all focal elements is called the core of a BPA.

In evidence theory, m(A) measures how strongly the evi-
dence supports A, while the belief measure Bel and plausi-
bility measure Pl express the lower bound and upper bound
of the degree of support for each proposition. Bel and Pl are
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defined as follows:

Bel(A) =
∑
B⊆A

m(B)

Pl(A) = 1− Bel(Ā) =
∑

B∩A6=∅
m(B) (3)

where Ā = Θ − A, and Pl(A) ≥ Bel(A) for all A ⊆ Θ .
[Bel(A),Pl(A)] is defined as the belief interval of A.
Two independent BPAs m1,m2 can be combined by

Dempster’s rule of combination as:

m1 ⊕ m2(A) =


1

1− k

∑
B∩C=A

m1(B)m2(C), A 6= ∅

0, A = ∅
(4)

with

k =
∑

B∩C=∅
m1(B)m2(C) (5)

where k is the conflicting factor.
Definition 2 (Evidence Distance): Let m1 and m2 be two

independent BPAs on the same frame of discernment with
N hypotheses. The distance between m1 and m2 is:

d(m1,m2) =

√
1
2
( Em1 − Em2)TD( Em1 − Em2) (6)

where Em1 and Em2 are the vectors of m1 and m2, and D =
|A∩B|
|A∪B| is the similarity matrix between the focal elements
with 2N × 2N elements. This distance represents the conflict
between twoBPAs, the larger the distance between twoBPAs,
the more conflict exists between these two BPAs.

Assume that there are n BPAs for combination, these BPAs
may be of different credibility, thus different weight when
being combined, and the credibility of different BPAs can be
defined as follows [28].
Definition 3 (Evidence Similarity): Suppose the distance

between two BPAs mi and mj is d(mi,mj), then the similarity
degree between these two BPAs is:

Sim(mi,mj) = 1− d(mi,mj) (7)

and the similarity matrix can be obtained as:

SMM =



S11 · · · S1j · · · S1M
...

...
...

...
...

Si1 . . . Sij . . . SiM
...

...
...

...
...

SM1 . . . SMj . . . SMM

 (8)

Definition 4 (Evidence Credibility): The credibility degree
of the BPA mi is defined as:

Crdi =
Sup(mi)∑M
j=1 Sup(mj)

, i = 1, 2, . . . ,M (9)

where Sup(mi) is the support degree of mi, and is defined as:

Sup(mi) =
M∑

j=1,j6=i

Sij (10)

B. INTERVAL BELIEF DISTRIBUTION
Though Dempster’s rule of combination has been effective
in many scenarios, it falls short when there is high conflict
between two BPAs. To this end, [47] proposed the evidential
reasoning (ER) algorithm, which uses a new evidence com-
bination rule to deal with highly conflicted evidences. On the
basis of that, [33] further extended the evidential reasoning
algorithm by considering interval uncertainty, and proposed
the interval evidential reasoning (IER) algorithm. Based on
the evidence theory, the IER algorithm can effectively com-
bine conflicting evidences under various kinds of uncertain-
ties, such as probability uncertainty, cognitive uncertainty,
and interval uncertainty, by taking both local ignorance and
global ignorance of the frame of discernment into consider-
ation. In the IER algorithm, based on the concept of BPA,
the interval distribution is introduced under the frame of
discernment to represent how strongly the evidence supports
a given proposition.

1) INTERVAL BELIEF DISTRIBUTION
Definition 5 (Interval Belief Distribution): The interval belief
distribution is used to measure the extents to which the evi-
dence supports each hypothesis and the propositions, which
is also known as a piece of evidence. A piece of evidence ep
can be represented by an interval belief distribution on the
power set of the frame of discernment Θ as follows:

ep = {(θij, βij,p)| i = 1, . . . ,N ; j = i, . . . ,N }, (11)

where θij denotes the grade interval from θi to θj, i.e. θij =
{θi, θi+1, . . . , θj}, and βij is the corresponding belief degree
which represents how strongly the evidence supports this
proposition. (θij, βij) is a focal element of ep and represents
that the evidence supports proposition θij to a degree of βij.
Both global ignorance and local ignorance are taken into
account in the definition of interval belief distribution, and∑n

i=1
∑n

j=i βij,p = 1.
It should be noted that in the interval belief distribution,

all the subsets of Θ are regarded as referential grades with
θi ≺ θj, i < j for all i, j ∈ {1, . . . ,N }, and the proposition
θij is regarded as the grade interval from θi to θj. Therefore,
the complete set of all grades intervals of an evidence can be
represented as follows [26]:

A =



θ11 θ12 . . . θ1(N−1) θ1N

θ22 . . . θ2(N−1) θ2N

. . .
...

...

θ(N−1)(N−1) θ(N−1)N

θNN


(12)

where there are N singleton grades and N (N − 1)/2 grade
intervals, i.e. N (N + 1)/2 elements in total.
Unlike the power set of Θ , the interval belief distribution

only considers grade intervals between neighboring proposi-
tions, and subsets such as {θ1, θN } are ignored. That’s because
that all the singletons of Θ are assumed to be referential
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grades, hence, only assessments on grade intervals between
neighboring grades would exist in the real world.

The IER algorithm also extends evidence theory by intro-
ducing evidence weight to reflect the relative importance of
different evidences. A piece of evidence ep is characterized
by two elements including the interval belief distribution
(θij, βij) and weight ωp in the framework of the IER algo-
rithm. A weighted interval belief distribution is defined as
follows:

mp = {(θij,mij,p)| i = 1, . . . ,N ; j = i, . . . ,N ; (Θ,mΘ,p)}

(13)

where mij,p represents the degree of support for θij from
evidence ep while taking the weight ωp into consideration,
and is defined as:

mij,p = ωpβij,p (14)

It should be noted that mΘ,p is the degree of residual
support that reflects the uncertainty of evidence ep, and it
satisfies mΘ,p = 1 −

∑N
i=1

∑N
j=imij,p. Normally, it can be

divided into two parts: m̄Θ,p and m̃Θ,p, where m̄Θ,p = 1−ωp
is caused by the relative importance of the evidence ep and
m̃Θ,p = ωp(1 −

∑
θ⊆Θ mθ,p) is caused by the cognitive

uncertainty in the information on ep, i.e. global ignorance
and local ignorance. It should be noted that since global
ignorance and local ignorance can be expressed using grade
intervals, the cognitive uncertainty would eliminate to zero,
i.e., m̃Θ,p = ωp(1−

∑N
i=1

∑N
j=imij,p) = 0.

2) INTERVAL EVIDENTIAL REASONING (IER) ALGORITHM
Proposed by [33], the IER algorithm is effective in dealing
with interval belief distributions. Suppose two interval belief
distributions are defined as:

m1 = {(θij, β1,ij)}, m2 = {(θij, β2,ij)} (15)

where β1,ij, β2,ij are the belief degrees associated with the
grade interval θij.

Suppose ω1 and ω2 are the weights of two interval belief
distributions, then the weighted BPAs of two interval belief
distributions are calculated as:

m1
ij = ω1β1,ij

m1
2 = 1−

N∑
i=1

N∑
j=i

ω1β1,ij = 1− ω1

m2
ij = ωnβ2,ij

m2
2 = 1−

N∑
i=1

N∑
j=i

ωnβ2,ij = 1− ω2 (16)

By aggregating two interval belief distributions, the com-
bined BPA assigned to each grade interval θij, denoted by Cij,

can be calculated as follows:

Cij =
1

1− k

−m1
ijm

2
ij +

i∑
t=1

N∑
l=j

(m1
tlm

2
ij + m

1
ijm

2
tl)

+

i−1∑
t=1

N∑
l=j+1

(m1
tjm

2
il + m

1
ilm

2
tj)+ m

1
2m

2
ij + m

1
ijm

2
2

 (17)

and the BPA at large in Θ is defined as:

C2 =
m1
2m

2
2

1− k
(18)

where

k =
N∑
i=1

N∑
j=i

i−1∑
t=1

i−1∑
l=t

(m1
tlm

2
ij + m

1
ijm

2
tl) (19)

Hence, the overall combined belief degree βij on grade
interval θij can be obtained as:

βij =
Cij

1− C2
(20)

For ranking purposes, the expected utilities can be cal-
culated. Suppose u(θii) is the value of grade θii with
u(θi+1,i+1) > u(θii) as it is assumed that the grade θi+1,i+1 is
preferred to θii. Due to the interval uncertainty, the maximum,
minimum and average utilities should be calculated. As the
belief degree βij could be assigned to the best grade θjj in
the grade interval θij, the maximum expected utility could be
calculated as:

umax =
N∑
i=1

N∑
j=i

βiju(θjj) (21)

Similarly, if the belief degree βij is assessed to the worst
grade θii in the grade interval θij, the minimum expected
utility can be obtained as:

umin =
N∑
i=1

N∑
j=i

βiju(θii) (22)

The average expected utility is given by:

uavg =
umax + umin

2
(23)

III. METHODOLOGY
In this section, an IER-based dependence assessment method
is developed for assessing the dependence among human
errors in HRA, and the proposed method consists of four
parts: (1) identify the influential factors and their anchor
points; (2) evaluate each input factor using interval belief
distributions; (3) combine the analysts’ judgments using the
IER algorithm; (4) calculate the overall dependence levels
error among human operations. The detailed process of the
proposed method is illustrated in Fig 1.
Step 1: Identify the influential factors and the functional

relationship among them
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FIGURE 1. Framework of the proposed method.

In order to conduct human dependence assessment, the first
step is to determine the factors that have influences on the
dependence of human actions. For example, five influential
factors are identified in the THERP model for nuclear power
plants, namely, ‘‘closeness in time’’, ‘‘task relatedness’’,
‘‘similarity of cues’’, ‘‘similarity of goals’’, and ‘‘similarity
of performers’’ [12]. However, it should be noted that the
identification of the influential factors is based on the specific
situation and application, and the influential factors may
change according to the changes in the assessment situation.

Furthermore, once the influential factors are identified,
the relationship among these factors should be determined for
assessment. For example, the functional relationship among
the influential factors of a working model for post-initiator
HFEs of a nuclear power plant is shown in Fig 2. It is shown
that there are four independent factors and one intermediate
factor, hence, the influential factors could be further dis-
tinguished. Normally, it is assumed that only judgments on
independent factors can be provided, and the assessment on
intermediate factors is determined based on the assessment of
its sub-factors.
Step 2: Determine the anchor points and referential grades

of each factor
After identifying the influential factors and their relation-

ships, the anchor points and the corresponding referential
grades of each factor should be provided as the guidance
for analyst’s judgment to support the dependence assess-
ment based on prior knowledge obtained from experts. The
anchor points of a factor represent possible situations of the
factor, and the corresponding referential grades qualitatively

FIGURE 2. Functional relationship among factors.

provide the impact of this factor on the dependence of human
actions. For example, the ‘‘closeness in time’’ between two
actions can be different, which would have different effects
on the dependence between these two actions, such as anchor
point ‘‘5 min’’ indicates referential grade ‘‘Complete Depen-
dence’’, ‘‘30 min’’ indicated ‘‘Moderate Dependence’’, and
‘‘8 h’’ indicates ‘‘Zero Dependence’’.
Step 3: Determine the dependence level among HFEs with

respect to each factor
Based on the anchor points and referential grades obtained

in Step 2, the analysts could provide judgments of the input
factors by referring to the anchor points and corresponding
grades, where the anchor points are critical to reduce the
subjectively of the judgment. However, due to the complexity
of the real world, the judgment provided by the analyst may
not be straightforward, as the analyst may not be able to
incorporate all the belief on a specific dependence level,
especially when ambiguity and uncertainty occur. In the pro-
posed method, the ambiguity of the analyst’s judgment can
be expressed by dividing into sets of possible dependence
levels, i.e., grade intervals, and uncertainty can be represented
using the interval belief distribution. Furthermore, ratios can
be provided by the analyst to indicate the relative probabilities
of different grade intervals.

An example of analyst’s judgments is shown in Table 1.
Case 1 indicates that the analyst is totally confident that the
dependence level is High Dependence (HD). Case 2 shows
that the analyst is confident that the dependence level lies
within Moderate Dependence (MD) and HD, but has no idea
which dependence level is more likely. Case 3 indicates that
the analyst believes that HD is 2 times more likely than MD.
Case 4 shows that the analyst provides the judgment within
levels Low Dependence (LD), MD, and HD.
Step 4: Construct interval belief distributions
After obtaining the analyst’s judgments on the dependence

level of each factor, these judgments should be transformed
into interval belief distributions for combination. Since the
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TABLE 1. Examples of analyst’s judgments for a specific factor.

model is based on five dependence levels, the frame of dis-
cernment would be 2 = {ZD, LD,MD,HD,CD}, and the
number of grade intervals is 5× 6÷ 2 = 15.
For cases where the analyst fails to provide the ratio of

different grade intervals, the belief would be assigned to the
entire grade interval, for example, the interval belief distribu-
tion of Case 2 in Table 1 can be calculated as:

S = {([MD,HD], 1)}

For cases where the ratios of different grades are provided,
their belief degrees can be calculated by dividing total belief
into different grades according to the ratio. For example,
the belief degrees of Case 3 in Table 1 can be calculated as:

βMD =
1

1+ 2
= 0.3333, βHD =

2
1+ 2

= 0.6667

and the interval belief distribution is obtained as:

S = {(MD, 0.3333), (HD, 0.6667)}

Step 5: Combine the interval belief distributions of judg-
ments from different analysts for a specific factor

In actual assessment practice, it is normally the case that
not only one but several analysts are asked to provide their
judgment on a factor, and a corresponding interval belief dis-
tribution can be constructed based on each judgment. Then,
the judgments from different analysts for specific factors
should be combined.

It should be noted that since different analysts may provide
different judgments, and these judgments may vary quite
hugely, it is necessary to determine the credibility of each
judgment. Therefore, the weight of the analysts’ judgments
are determined based on their credibility degrees, shown
in (7)-(10).

Suppose there are four analysts that provide judgments
on a specific factor independently, and the interval belief
distributions are constructed based on their judgments, shown
in Table 2. As shown in the table, Analyst 1 and 2 suggest
that the dependence level lies between LD and MD, while
Analyst 3 shows more belief in the level MD, HD or CD, and
Analyst 4 supports dependence levels MD and HD.

Hence, the weights of the judgments are calculated
using (7)-(10), and can be obtained as:

ω1 = 0.2571, ω2 = 0.2558, ω3 = 0.2558, ω4 = 0.2313

Then, the interval belief distributions can be combined
using (16)-(20), and the combination result can be obtained
as:

S={(LD, 0.1949),(MD,0.4468),(HD,0.2898),(CD,0.0685)}

TABLE 2. Interval belief distributions of judgments from different
analysts for a specific factor.

Step 6: Combine the interval belief distributions of differ-
ent factors

After determining the interval belief distributions of differ-
ent factors, the interval belief distributions should be fused.
It should be noted that only the judgments of the factors
from the same level in the functional relationship can be
combined, and the interval belief distribution of a factor in the
upper level is obtained by the combination of interval belief
distributions of its corresponding sub-factors. For example,
in Fig 1, the interval belief distributions of factors ‘‘Similarity
of Cues’’ and ‘‘Similarity of Goals’’ can be combined to
get the BBA of factor ‘‘Task Relatedness’’. Moreover, if the
judgments for ‘‘Task Relatedness’’ are also directly provided,
they should be used to combine with the combined result,
and the weight of each interval belief distribution should be
determined based on its credibility degree as well. Through
this step, it is clearly displayed that how the fused interval
belief distributions constructed and how the input factors
influence on the dependence level, and the fused interval
belief distribution represents the combined result that is cal-
culated by the input factors.
Step 7: Calculate the CHEP p(B|A)
Once the final interval belief distribution is obtained by

combining the interval belief distributions of different factors,
the CHEP can be calculated to draw a final conclusion, and
the conditional human error probability CHEP p(B|A) can be
calculated as [48]:

p(B|A) =
N∑
i=1

βi × pi(B|A) (24)

with

pi(B|A) =
1+ K × pB
K + 1

(25)

where i = ZD, LD, MD, HD and CD. pi(B|A) can be
regarded as the utility value of dependence level i, pB is the
basic human error probability of task B,K = 0, 1, 6, 19, ∞
for dependence levels CD, HD, MD, LD and ZD,
respectively.

However, it should be noted that for cases where interval
uncertainty is involved, i.e., the judgments from the analysts
lie in several dependence levels without specific preference,
grade intervals would be involved in the final interval belief
distribution, and the CHEP would be an interval as well.
Hence, in this case, when the belief degree βij is assigned to
the highest grade θjj in the grade interval θij, the upper value
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of the CHEP can be obtained as:

p+(B|A) =
N∑
i=1

N∑
j=i

βij × pj(B|A) (26)

Similarly, if the uncertainty turns out to be against the
assessment, i.e., the belief degree βij is assigned to θii,
the lowest grade in the interval θij, the lower value of the
CHEP can be obtained as:

p−(B|A) =
N∑
i=1

N∑
j=i

βij × pi(B|A) (27)

Therefore, the CHEP can be represented as p(B|A) ∈
[p−(B|A), p+(B|A)], and the average expected utility value
pavg(B|A) can be calculated using (23).

IV. CASE STUDY
In order to demonstrate the process and the effectiveness
of the proposed method, two case studies on post-initiator
human failure events of a nuclear power plant [2], [10] are
used.

This case study refers to a set of required operator actions
to avoid excessive boron dilution in the reactor cooling sys-
tem in case of an anticipated transient without scram (ATWS)
at a boiling water reactor (BWR). It is assumed that the
standby liquid control system (SLCS) has been successfully
initiated by the operators to shut the reactor down. The
operators are required to increase the voiding and inhibit the
actuation of the automatic depressurization system (ADS) to
facilitate the reactor shutdown. The operator tasks include
the prevention of the ADS (Action A) and the control of
the reactor vessel level (Action B) to prevent diluting boron
concentration after theADS failure. The probability of human
failure in controlling the reactor vessel level is used as the
output.

Two examples are considered, the first example considers
the case where the analysts’ judgments are precise judgments
without interval uncertainty, while the case where interval
uncertainty exists in the analysts’ judgments is considered in
the second example.

A. EXAMPLE 1: ASSESSMENT WITHOUT INTERVAL
UNCERTAINTY
1) CASE SETTING
In order to conduct the dependence assessment, the influential
factors that influence the dependence of B and A should
be determined first. In this case, three factors that directly
influence the dependence level are identified, namely, CT,
TR, and SP. Moreover, TR is believed to be affected by two
factors: SC and SG. Hence, there are five influential factors
in this problem, four of which are input factors and one is the
intermediate factor, and the functional relationship is shown
in Fig 2.
Hence, when conducting the assessment, the interval belief

distribution of SC and SG is firstly calculated by transferring
the analysts’ judgments on SC and SG to interval belief

distributions. Then, the interval belief distribution of TR is
calculated by combining the interval belief distributions of
SC and SG. Finally, the fused interval belief distribution that
represents the assessment results is obtained by combining all
the input factors.

For each influential factor, anchor points and linguistic
judgments corresponding to five dependence levels are pro-
vided by experts. The anchor points and corresponding lin-
guistic judgments for CT are shown in Table 3, and the anchor
points and corresponding linguistic judgments for SC, SG,
and SP are shown in Table 4, Table 5 and Table 6, respectively.

TABLE 3. Anchor points and referential grades for input factor CT.

TABLE 4. Anchor points and referential grades for input factor SC.

TABLE 5. Anchor points and referential grades for input factor SG.

TABLE 6. Anchor points and referential grades for input factor SP.

The weights of the influential factors are determined using
the AHP method, where the hierarchical relationship of the
influential factors is shown in Fig 2. For assessing the depen-
dence level of TR, the hierarchical level consists of two
factors SC and SG, and the weight can be directly obtained by
pairwise comparison. Suppose that the judgment concerning
the relative importance of factor SC over factor SG is:

mCG =
1

mGC
= 2
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Hence, the weights of factors SC ωSC and SG ωSG can be
calculated as:

ωSC =
2
3
, ωSG =

1
3

Similarly, the weights of factors TR ωTR, SP ωSP and CT
ωCT can be obtained as:

ωTR = 0.6483, ωSP = 0.2297, ωCT = 0.1220

2) ANALYSTS’ JUDGMENT
Based on the anchor points and linguistic judgments sug-
gested by experts in Table 3, 4, 5 and 6, the analyst can
provide judgments of the dependence level between two tasks
with respect to each of the input factors by referring to this
information. Assume that there are three analysts to provide
their judgments on the dependence level of each input factor,
and the judgments are shown in Table 7.

TABLE 7. Analysts’ judgments on input factors for Example 1.

For example, for factor ‘‘closeness in time’’, Analyst 3 sug-
gests that the dependence level MD is 5 times more likely
than HD. For factor ‘‘similarity of cues’’, Analyst 1 has
full confidence that the dependence level is LD. For factor
‘‘similarity of goals’’, all analysts have more confidence that
the dependence level is HD. For ‘‘similarity of performers’’,
the judgments given by the analysts show more belief in
dependence level LD.

3) IER PROCESS
Based on the analysts’ judgments shown in Table 7, the inter-
val belief distributions can be constructed, shown in Table 8.

TABLE 8. Interval belief distributions based on analysts’ judgments for
Example 1.

Then, the interval belief distributions constructed based on
the analysts’ judgments are combined to obtain a more com-
prehensive and reliable assessment of the input factors using
the IER algorithm. First, the weights of these interval belief
distributions can be obtained by calculating the credibility of
each judgment using (7)-(10). Then, the BPAs are combined
to obtain the assessment of different factors. The combined
interval belief distributions of the input factors are shown
in Table 9.

TABLE 9. Combined interval belief distributions of the influential factors
for Example 1.

The combined interval belief distributions of input fac-
tors are then fused using the IER algorithm. Since it is a
two-level hierarchy in the functional relationship, the com-
bination should also consist of two steps. First, the interval
belief distributions of factors SC and SG should be com-
bined to calculate the interval belief distribution of factor TR.
According to (16), the weighted BPAs of the two interval
belief distributions can be obtained as:

mSC (LD) = ωSCβSCLD = 0.1399,

mSC (MD) = ωSCβSCMD = 0.5079,

mSC (HD) = ωSCβSCHD = 0.0189,

mSC (2) = 1− ωSC = 0.3333

mSG(MD) = ωSGβSGMD = 0.0200,

mSG(HD) = ωSGβSGHD = 0.2933,

mSG(CD) = ωSGβSGCD = 0.0200,

mSG(2) = 1− ωSG = 0.6667

Then, by combining the weighted BPAs using the IER
algorithm, the interval belief distribution for factor TR can
be obtained as:

STR = {(LD, 0.1632), (MD, 0.6222),

(HD, 0.2028), (CD, 0.0116)}

Secondly, the interval belief distributions of factors CT,
TR and SP are combined using the same process to calculate
the final interval belief distribution of CHEP p(B|A), and the
combined interval belief distribution is:

SCHEP = {(ZD, 0.0164), (LD, 0.2937), (MD, 0.5272),

(HD, 0.1539), (CD, 0.0086)}

Assume the basic human error probability of the task B
is pB = 0.01, then the conditional human error probability

222194 VOLUME 8, 2020



W. Bi et al.: Dependence Assessment in HRA Based on the IER Algorithm Under Interval Uncertainty

p(B|A) can be calculated as:

p(B|A) =
5∑
i=1

βi × pi(B|A)

= 0.0164× 0+ 0.2937×
1+ 19× 0.01

20
+ 0.5272

×
1+ 6× 0.01

7
+ 0.1539×

1+ 1× 0.01
2

+0.0086× 1 = 0.1836

Hence, the conditional human error probability CHEP
p(B|A) given the failure of task A is 0.1836.

4) COMPARATIVE ANALYSIS
In order to further illustrate the effectiveness and efficiency of
the proposedmethod, the result is compared to the assessment
results using the dependence assessment method based on
evidence theory and AHP [28] and the evidential AHP depen-
dence assessmentmethod [49], and the comparison results are
shown in Table 10.

TABLE 10. Comparison results of different dependence assessment
methods for Example 1.

As shown in Table 10, the CHEP value of the depen-
dence assessment based on evidence theory and AHP [28] is
p(B|A) = 0.1404, and the CHEP value of the evidential AHP
dependence assessment method [49] is p(B|A) = 0.1936,
both are relatively close to the result of the proposed method.
Hence, it can be concluded that the proposed method can
provide reliable dependence assessment results when interval
uncertainty is not involved.

B. EXAMPLE 2: ASSESSMENT UNDER INTERVAL
UNCERTAINTY
1) ANALYSTS’ JUDGMENTS
In this section, a case of interval uncertainty in the analysts’
judgments is considered to show the effectiveness and effi-
ciency of the proposed method to deal with interval uncer-
tainty in the inputs.

By referring to the anchor points and linguistic judgments
shown in Table 3, 4, 5 and 6, the judgments of the depen-
dence level between two tasks are provided by the analysts.
Similarly to Example 1, it is assumed that there are three
analysts to provide their judgments, and the judgments are
shown in Table 11.

2) IER PROCESS
Based on the analysts’ judgments, the interval belief distribu-
tions of the input factors can be constructed, and are shown
in Table 12.

TABLE 11. Analysts’ judgments on input factors for Example 2.

TABLE 12. Interval belief distributions based on analysts’ judgments for
Example 2.

Then, the interval belief distributions constructed based on
the analysts’ judgments are combined using the IER algo-
rithm to obtain the assessment of the input factors, and the
combined interval belief distributions of the input factors are
shown in Table 13.

TABLE 13. Combined interval belief distributions of the influential
factors for Example 2.

For the two-level hierarchical functional relationship,
the interval belief distributions of factors SC and SG are
firstly combined to obtain the interval belief distribution of
factor TR, and is calculated as:

STR = {(LD, 0.0435), ([LD,MD], 0.1528), (MD, 0.6104),

([MD,HD], 0.1933)}

Then, by combining the interval belief distributions of
factors CT, TR and SP using the IER algorithm, the final
interval belief distribution of the conditional human error
probability CHEP can be obtained as:

SCHEP = {(ZD, 0.0098), ([ZD,LD], 0.0068), (LD, 0.0800),

([LD,MD], 0.1527), (MD, 0.6087),

([MD,HD], 0.1334), (HD, 0.0085)}

Similarly to Example 1, assume the basic human error
probability of the task B is pB = 0.01. Since interval
uncertainty exists in this problem and the obtained interval
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belief distribution includes grade intervals, the conditional
human error probability p(B|A) would also be in the form of
interval data. The upper and lower value of the CHEP can be
calculated using (21)-(22), when the belief degree is assigned
to the highest grade of the grade interval, the upper value of
the CHEP can be obtained as:

p+(B|A) =
5∑
i=1

N∑
j=i

βij × pj(B|A)

= 0.0098× 0+ (0.0068+ 0.0800)

×
1+ 19× 0.01

20
+ (0.1527+ 0.6087)

×
1+ 6× 0.01

7
+ (0.1334+ 0.0085)

×
1+ 1× 0.01

2
= 0.1921

When the belief degree is assigned to the lowest grade of
the grade interval, the lower value of the CHEP could be
calculated as:

p−(B|A) =
5∑
i=1

N∑
j=i

βij × pi(B|A)

= (0.0098+ 0.0068)× 0+ (0.0800+ 0.1527)

×
1+ 19× 0.01

20
+ (0.6087+ 0.1334)

×
1+ 6× 0.01

7
+ 0.0085×

1+ 1× 0.01
2

= 0.1305

Thus, the CHEP given the task A’s failure is p(B|A) =
[0.1305, 0.1921], and the uncertainty degree of this inter-
val can be calculated as p+(B|A) − p−(B|A) = 0.1921 −
0.1305 = 0.0616. The average utility value of the CHEP
can be obtained as pavg(B|A) = 1

2

[
p+(B|A)+ p−(B|A)

]
=

0.1613, which equals to the average utility obtained using
the betting probability [50], and that is because since only
grade intervals with two grades are involved, (23) is exactly
the utility calculation equation using the betting probability.
Furthermore, it should be noted that the confidence in the
analysts’ judgment is not considered in this case, hence,
the confidence of the CHEP result is not considered.

3) COMPARATIVE ANALYSIS
In order to further demonstrate the effectiveness of the pro-
posed method in dealing with interval uncertainty, the results
are further compared to the assessment results using the
dependence assessment method based on evidence theory
and AHP [28] and the evidential AHP dependence assess-
ment method [49], and the comparison results are shown
in Table 14.

It is clear in Table 14 that the result of the proposed method
is different from the results using the dependence assessment
method based on evidence theory and AHP [28] and the
evidential AHP dependence assessmentmethod [49] since the
result of the proposed method is a interval value while the
results of other methods are simply expected utilities. That is

TABLE 14. Comparison results of different dependence assessment
methods for Example 2.

because by using grade intervals to represent interval uncer-
tainty in the analysts’ judgment and using maximum and
minimum utility rather than the pignistic probability function
to calculate the CHEP value, the proposedmethod couldmore
effectively reflect the interval uncertainty in the assessment.
Furthermore, it can be noted that the CHEP values of other
methods both lie between the CHEP interval obtained using
the proposed method, which confirms the effectiveness and
accuracy of the proposed method. Therefore, it can be con-
cluded that the proposed method could effectively deal with
interval uncertainty and reflect the interval uncertainty in the
assessment results.

C. DISCUSSION
As shown in Example 1 and Example 2, the result of the
proposed method can be in the form of precise data and
interval data, depending on the kinds of judgments given
by the analysts. As can be seen from the results, by giv-
ing the analysts’ judgments different weights based on their
credibility, the proposed method is able to combine different
judgments while considering their credibility, which allows
the more credible information to provide more influence
toward the final result. In other words, by combining the
evidence credibility with the IER algorithm, the uncertainty
in the analysts’ judgments is reduced.

More importantly, as shown in Example 2, for assessment
under interval uncertainty, the result of the proposed method
is in the form of interval data, while the results of other
methods are simply precise data. As the interval uncertainty is
generally difficult to reduce or eliminate, using interval value
provides a more comprehensive and reliable way to properly
reflect the interval uncertainty in the assessment without
degeneration. Hence, the proposed method is shown to be
able to provide reliable results for dependence assessment
under interval uncertainty.

V. CONCLUSION
In this article, a dependence assessment for human reliability
analysis based on the interval evidential reasoning algorithm
is proposed. First, the interval belief distribution is applied to
represent the analysts’ judgments, where both probabilistic
and interval uncertainty are captured using grade intervals
and belief degrees. Then, the weight of each interval belief
distribution is determined based on the credibility of the
analysts’ judgments. Next, the interval evidential reasoning
algorithm is applied to aggregate interval belief distributions
of different factors and obtain the final interval belief dis-
tribution. Finally, the upper and lower values of the CHEP

222196 VOLUME 8, 2020



W. Bi et al.: Dependence Assessment in HRA Based on the IER Algorithm Under Interval Uncertainty

interval are calculated by assigning the belief degree to the
highest and lowest grade of its corresponding grade interval,
respectively. By using the interval belief distribution and the
IER algorithm to represent and aggregate the analysts’ judg-
ments, the proposed method enhances the ability to deal with
interval uncertainty of the dependence assessment method.
To validate the effectiveness of the proposed method, two
numerical examples are examined, the results show that the
proposed method not only can deal with cases under interval
uncertainty, but also could provide reliable results for cases
without interval uncertainty. It can be concluded that the
proposed method provides a novel and promising way for
dependence assessment in HRA under interval uncertainty.

For future researches, how to use real-world data to more
precisely determine the relationship between the parameter
and the dependence level of the corresponding factor will be
further studied. Furthermore, we will also seek more practical
applications for the proposed method and study the potential
of integrating the confidence of the analysts’ judgments into
this method.
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