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ABSTRACT The Modular Multilevel Converter (MMC) is the best topology for medium and high voltage
applications. The performance of MMC and the quality of the output waveform completely depends on
the control applied. Nearest Level Modulation (NLM) is the conventional method used to control MMC
that produces N+1 (N is the number of submodules per arm) AC output voltages. This article proposes
a modified NLM control method for the MMC, which produces 2N+1 level which is twice the number
of levels produced by conventional NLM. The proposed method is easy to implement and is extended in
the article to produce a 4N+1 output voltage level which is never done in the literature. The THD of the
output waveform is reduced to more than one-fourth compared to conventional NLM. The cost of switching
devices, capacitors and size of circuit is also reduced to one-fourth for 4N+1 output waveform compared
to conventional NLM. The method is verified through LabVIEW Multisim Co-simulation and real-time
simulation using Field Programmable Gate Array (FPGA) based NI PXI.

INDEX TERMS Modified NLC, power quality, HVDC MMC, hardware-in-loop simulation.

I. INTRODUCTION
The concept of the Modular multilevel converter was intro-
duced in 2003 [1], after that it has been adopted as the art of
technology in the high-voltage and high-power applications,
such as high-voltage direct current (HVDC) transmission,
power derives, and STATCOM [2]–[5]. The fundamen-
tal topology for MMC submodules (SMs) is half-bridge
(HB) [6]. To optimize the cost of the converter and to improve
the quality and performance of MMC, various SMs topolo-
gies and control techniques are being developed [7]–[10].

In the literature, many control techniques such as pulse
width modulation (PWM), space vector control, and selective
harmonic elimination (SHE) have been introduced and used
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to control the MMC [11]–[16]. For a step wave modulation,
mainly SHE and NLM are used since they have some com-
mon features such as low switching frequency and N+1
levels. In HVDC applications where the switching frequency
used in the converter is limited, the NLM is adapted since,
the NLM with its attractive advantages such as being simple
to implement, natural capacitor voltage balancing and not
involving complex mathematics to find particular firing angle
as in SHE, is used majorly [17]–[19]. In NLM, the arm
voltages generated are taken as reference and are fed back to
the modulator to generate the pulses for all the SMs present
in the upper and lower arm of the MMC. The sinusoidal arm
voltage references are converted to the staircase waveform
using the nearest integer method and then using the conven-
tional sorting algorithm, the SMs are inserted and bypassed
depending upon their voltage, the arm current polarity, and
the level of voltage required [20]–[21].

221712 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2924-1601
https://orcid.org/0000-0001-7795-0811
https://orcid.org/0000-0002-0353-2462
https://orcid.org/0000-0002-3386-6375
https://orcid.org/0000-0002-8296-0253
https://orcid.org/0000-0003-4429-9393
https://orcid.org/0000-0001-6417-3750


S. Ali et al.: Power Quality Improvement in HVDC MMC With Modified Nearest Level Control in Real-Time HIL Based Setup

It has been observed that to increase the number of levels
and improve the quality of output waveform the number
of SMs is to be increased every time, which in practice
increases the number devices i.e. capacitors and switches,
cost and complexity of the MMC [22]. In order to improve
the quality of the waveform without any additional switching
devices, using the same number of SMs, this article proposes
a modified NLM method with the output levels raised up to
2N+1. The proposed method is further extended using the
same methodology to produce 4N+1 output levels and Total
Harmonic Distortion (THD) of the output waveform reduces
1/4th of the previous results taken using the conventional
NLM method.

The proposedmethod compared to other previousmodified
methods has many advantages in terms of simplicity, easy
implementation and power quality. For instance, in [23] the
circuit of the MMC is reduced and power quality is improved
using binary, trinary, and modified MMC-based topology,
but their algorithm involves complex calculation and THD
is higher compared to our proposed modified NLC. The
reference [24] proposes an improved NLC algorithm with
a reduced number of SMs but their results are limited to
offline simulation and involves complex calculation com-
pared to our proposed method. The work presented in [25]
shows a modified NLM method and claims less THD but
their work lacks experimental verification and THD is more
compared to our results. The authors of [26] presented level
increased NLM modulation with a reduced number of SMs
and THD but their method involves too much calculation
compared to our proposed method and THD reduction for
11 level is also less compared to our proposed method.
In [27]–[30] different authors presented ways of increasing
AC output voltage levels, decreasing THD, and increasing the
power quality but their method cannot be extended to achieve
4N+1 level AC output voltage as compared to our proposed
method.

The control is implemented in LabVIEW and the model is
designed in Multisim to obtained offline simulation results
using LabVIEW Multisim co-simulation platform and the
results are taken using modified NLM and compared with
conventional NLM technique with the different number of
levels in the output waveform. The real-time results are
obtained using FPGA based controller compact RIO (CRIO)
and NI PXI system. The article is organized as follows:Work-
ing principle of MMC is discussed in section II. Section III
introduces the conventional NLM method. In section IV,
the modified NLM method is introduced and analyzed.
Section V presents the offline and real-time simulation
results.

II. WORKING PRINCIPLE OF MMC
The Single-phaseMMC circuit shown in Fig. 1 consists of the
upper arm and lower arm connected through inductors. Each
arm has N connected SMs in series and each SM consists of
two switches and a capacitor connected across them. Apply-
ing Kirchhoff’s voltage law (KVL) in the upper and lower

FIGURE 1. (a) Single-phase MMC circuit diagram; (b) equivalent circuit of
the MMC.

loop in Fig. 1 we will get:

V =
1
2
Vdc − VU − L

diU
dt

(1)

V = −
1
2
Vdc + VL + L

diL
dt

(2)

And applying Kirchhoff’s current law (KCL) to find the
output current:

i = iL − iU (3)

The equivalent circuit of MMC is shown in Fig. 1(b). Using
equation (1) and (2) the output voltage will be

V =
1
2
(VL − VU )+

1
2
L
di
dt

(4)

From equation (3) it is clear that the ac equivalent voltage can
be expressed as

VE =
1
2
(VL − VU ) (5)

Generally, the ac equivalent voltage can be shown as

V ref
E =

mVdc
2

cos(ωt) (6)

In equation (6) m is the modulation index with 0 < m < 1
and ω is the angular frequency. N submodules are used in
the circuit using the conventional NLMmethod so, the below
equation is satisfied on the dc side.

Vdc = VL + VU (7)

Reference voltages for the upper and lower arm can be
expressed by

V ref
U =

Vdc
2

[1− m cos(ωt)] (8)
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FIGURE 2. Conventional NLM switching pattern.

V ref
L =

Vdc
2

[1+ m cos(ωt)] (9)

III. CONVENTIONAL NLM METHOD
In conventional NLM the number of submodules to be
inserted is calculated by

NU = round0.5
Vdc
2Vd

(1− m cos(ωt)) (10)

NL = round0.5
Vdc
2Vd

(1+ m cos(ωt)) (11)

where Vd is the SM capacitor voltage at any instant. The
round function is used to round the real number into the
nearest available integer according to its decimal fraction.
If the decimal fraction of the argument is less than 0.5 then
the argument will be rounded to previously available integer
otherwise if it is greater than 0.5 then it will be rounded to the
next available integer. To understand the switching states two
cases [t1 to t2, t2 to t3] are analyzed and shown in Fig. 2. In the
first case [t1 to t2], assuming V step

L = MV d then the reference
values of arm voltages and equivalent inner voltage of the
phase at t = t1 can be shown as (12) and (13) respectively.{

V ref
L = (M + 0.5)Vd
V ref
U = [(N −M − 1)+ 0.5]Vd

(12)

V ref
E = (M − 0.5N + 0.5)Vd (13)

In the first scenario, the step waves of arm voltages and
equivalent inner voltage are expressed as{

V step
L = MVd
V step
U = (N −M )Vd

(14)

V step
E = (M − 0.5N )Vd (15)

FIGURE 3. Modified NLM Method.

In the second scenario from t2 to t3 reference values of arm
voltages and equivalent inner voltage are expressed as{

V ref
L = [(M − 1)+ 0.5]Vd
V ref
U = [(N −M )+ 0.5]Vd

(16)

V ref
E = (M − 0.5N − 0.5)Vd (17)

The step waves of arm voltages and equivalent inner voltages
are shown as {

V step
L = (M − 1)Vd
V step
U = (N −M + 1)Vd

(18)

V step
E = (M − 0.5N − 1)Vd (19)

Comparing (15) and (19), it can be observed that the step
height in V step is Vd . Since the positive and negative DC
voltage limits are ±0.5Vdc, the maximum level in equivalent
inner voltage is equal to Vdc/Vd + 1.

IV. PROPOSE MODIFIED NLM METHOD
The modified NLM method is based on introducing a small
phase shift in reference waveform for either upper or lower
arm in each phase of the three-phase MMC. Fig. 3 depicts
the proposed modified N LM method in which the reference
waveform of the lower arm has a phase shift compared to the
waveform of the upper arm reference waveform. The equa-
tions in modified NLM for reference voltage and staircase
waveform respectively can be expressed as shown in (20) and
(21) for 2N+1 AC output voltage levels.

V ref
L =

Vd
2
(1+ m cos(ωt + β)) (20)

V step
L = round0.5

Vd
2
(1+ m cos(ωt + β)) (21)

where β can found using the algorithm shown below in Fig. 4.
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FIGURE 4. Proposed Modified NLM in LabVIEW Multisim Co-simulation.

The proposed algorithm is implemented in LabVIEW for
co-simulation as shown in Fig. 4. The THD of the voltage is
measured and it is fed to the selection block where the THD
from the previous iteration is available. Based on the THD
the phase shift is changed either increased or decreased. If the
THD of the current iteration is less than the previous iteration
the phase is increased and vice versa. The variations in system
such as load variation, temporary faults and transients causes
the variation in β angle. The optimum value of β (phase shift)
in modified NLC was found to be in the range of 9.5 degrees
to 11 degrees.

The proposed method using the same concept of intro-
ducing phase shift in the reference waveform can now
be extended to produce 4N+1 output levels. As shown
in Fig. 5(b) from t1 to t3, if the waveform (2N+1) is taken
as a reference waveform then a phase shifted waveform
from this reference waveform can be used to control either
upper or lower arm which will produce 4N+1 output levels.
This process is further illustrated in Fig. 5(a) and Fig 5(b).

V. LABVIEW MULTISIM CO-SIMULATION AND
REAL-TIME SIMULATION RESULTS
In order to validate the proposed method the offline results
are obtained using LabVIEWMultisim co-simulation and for
real-time simulation results, NI PXI and cRIO are used.

A. LABVIEW MULTISIM CO-SIMULATION RESULTS
To obtain offline simulation results LabVIEW Multisim
co-simulation platform is used in which the conventional and
modified NLC is designed once and used for both offline and
real-time simulation. The methodology obtained for offline
and real-time simulation of three-phase MMC used is shown
in Fig. 6. To show the effectiveness of the modified NLM
method, both conventional and modified NLM methods are
implemented in simulations, and results are obtained.

The parameters used in implementing three-phase MMC
are shown in table 3 and results are obtained for different
levels of output voltage and current waveform for N+1 and
2N+1 level. The modified NLC algorithm is activated at

FIGURE 5. Modified NLM for 4N+1 Output levels, and (b) Modified NLM
Method for 4N+1 Levels.

0.03 sec. When using conventional NLM the THD of the
output voltage and current is 12.1% and 7.46% respectively
for N+1 level (N=5).WithmodifiedNLM the THDof output
voltage and current is 5.98% and 4.35% respectively for
N+1 level (N=5). Different levels of AC output voltage and
current as shown from Fig. 7 to Fig. 14 are obtained using
LabVIEW Multisim co-simulation and their comparison is
shown in Table 1. It is highly important to ensure that power
flow through the sub module is zero over a certain period of
time to maintain capacitor voltages constant. If the capacitor
voltages are diverging and are not kept at a fixed value,
this will result in non-sinusoidal output waveform. Capacitor
voltages are balanced before and after Modified NLC control
is activated as shown in Fig. 15.

B. REAL-TIME SIMULATION RESULTS
The circuit of three-phase MMC is loaded in NI PXI which
is an FPGA-based floating-point solver that is used to burn

VOLUME 8, 2020 221715



S. Ali et al.: Power Quality Improvement in HVDC MMC With Modified Nearest Level Control in Real-Time HIL Based Setup

FIGURE 6. Methodology for offline and real-time simulation.

FIGURE 7. Three-phase output voltage waveforms with 6 levels and
11 levels.

FIGURE 8. Three-phase output current waveform with 6 levels and
11 levels.

FIGURE 9. Three-phase output voltage waveforms with 8 levels and
15 levels.

electrical circuit on the FPGA automatically with a step size
of nanoseconds. The architecture of hardware-in-loop (HIL)
setup is previously shown in Fig. 6. The conventional and
modified NLC algorithm is burned on CRIO which is an
FPGAbased controller with hot swappable input/output mod-
ules. The CRIO uses analog and digital input/output modules

FIGURE 10. Three-phase output current waveform with 8 levels and
15 levels.

FIGURE 11. Three-phase output voltage waveforms with 16 levels and
33 levels.

FIGURE 12. Three-phase output current waveform with 16 levels and
33 levels.

FIGURE 13. Three-phase output voltage waveforms with 22 levels and
43 levels.

FIGURE 14. Three-phase output current waveform with 22 levels and
43 levels.

to control and monitor the three-phase MMC running in NI
PXI. The conventional and modified NLC is used to control
and obtained the real time results for voltage and current of

221716 VOLUME 8, 2020



S. Ali et al.: Power Quality Improvement in HVDC MMC With Modified Nearest Level Control in Real-Time HIL Based Setup

FIGURE 15. SM capacitor voltages.

TABLE 1. Comparison of THD w.r.t SMs Using Convention and Modified
NLC.

FIGURE 16. Three-phase output voltage waveforms with 6 levels and
11 levels.

FIGURE 17. Three-phase output current waveform with 6 levels and
11 levels.

FIGURE 18. Three-phase output voltage waveforms from 11 levels (2N+1)
to 21 levels (4N+1) with N=5 (number of SMs).

three phase MMC for 2N+1 level as shown in Fig. 16 and 17
respectively. The Modified NLM is further extended to

FIGURE 19. Three-phase output current waveform from 11 levels (2N+1)
to 21 levels (4N+1) with N=5 (number of SMs).

TABLE 2. Comparison of THD in Offline and Real-Time Simulation.

TABLE 3. Offline and Real-Time Simulation Parameters.

increases the number of levels obtained in Fig. 15 and 16 from
2N+1 levels to 4N+1 levels as shown in Fig. 17 and 18. It can
be observed that the THD of the output voltage decreases
from 12.35% with N+1 level to 2.82% with 4N+1 level
in real-time simulation (N=5). Moreover, the current THD
decreases from 7.92% with N+1 level to 1.42% with 4N+1
level in real-time simulation (N=5). The THD for output
voltage and current is slightly higher in real-time simulation
results as compared to offline simulation results, due to fun-
damental switching frequency and step size of nanoseconds
in real-time simulation. The THD in offline and real-time
simulation for N+1, 2N+1, and 4N+1 output levels is also
compared in table II to show the effectiveness of the modified
NLC method.

VI. CONCLUSION
Usage of more submodules, capacitors, and increased total
harmonic distortion poses a limitation for conventional NLM
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control for MMC to its wide range of applications includ-
ing HVDC. Therefore, Modified NLC is proposed in this
research work which reduces the number of submodules,
capacitors, and improves the power quality. It is concluded
that as compared to conventional NLM, the Modified NLC
can produce 2N+1 output voltage levels and can also be
extended to produce up to 4N+1 output voltage levels.
Efficacy of proposed modified NLC for MMC is verified
using both offline and real-time simulation results using
LabVIEW-Multisim Co-Simulation and laboratory setup of
power hardware in the loop. Finally, the results in terms of
THD are compared for N+1, 2N+1, and 4N+1 levels using
offline and real-time simulation.
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