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ABSTRACT In recent years, mobile phone location (MPL) data have been widely used to determine the
spatial trajectories of users. Although this massive amount of MPL data can provide insight into human
movement, definite conclusions cannot be drawn because of positioning bias: the locations of MPL data
are usually not the phone users’ actual locations. In recent years, the spatial accuracy of MPL data has been
increasingly evaluated. Such efforts have led to many insights regarding the quality and applicability of MPL
data. Despite these achievements, to the best of our knowledge, no studies have quantitatively assessed the
spatial accuracy of MPL data by considering geographical influencing factors. In this study, we built a linear
evaluation model based on geographical weighted regression (GWR) and a nonlinear evaluation model based
on a random forest (RF) to quantify the relationship between geographical factors and the positioning bias of
MPL data. Nanjing city in China is used as the test case. The results show that both the GWR model and RF
model have good stability. However, the RF model’s overall prediction performance is much better than that
of the GWRmodel. The RF model can estimate the spatial accuracy of the MPL data within narrow margins
of error. The importance ranking of geographical variables shows that the population density, elevation and
building density are the three most important factors, while the normalised difference water index (NDWI)
and distance to the nearest cell tower (DNCT) are the least important variables. The RF model constructed
in this study can be used to evaluate the spatial accuracy of MPL data and simulate the spatial distribution
of the positioning bias of the MPL data covering the study area.

INDEX TERMS Mobile phone location data, positioning bias, geographical factors, spatial accuracy
evaluation.

I. INTRODUCTION
Recently, mobile phone location (MPL) data have become a
crucial data source in various research areas, such as pub-
lic health [1], human mobility patterns [2], and urban and
transportation planning [3], [4]. Notably, MPL data can be
used to determine the spatial trajectories of users and play a
crucial role in revealing the dynamic pulse of a city. However,
such data cannot provide sufficiently accurate space-time
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information to arrive at definite conclusions about human
movement [5], [6]. A key characteristic of MPL data is that
the locations are documented at the level of cell towers.
These locations, which are usually represented as geograph-
ical coordinates of the cell towers, do not necessarily reflect
the actual locations of the phone users [7], [8]. Obviously, the
spatial accuracy of the MPL data directly affects the validity
of human mobility research.

Evaluating spatial accuracy has always been an essential
task in mobile positioning, and it is also the basis and premise
of data applications. Many studies have focused on the spatial
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accuracy ofMPL data [9], [10] and its influential factors [11],
[12]. These studies have enhanced our understanding of the
quality of MPL data. Existing research on the factors influ-
encing the accuracy has two perspectives: a communication
perspective and a geographical perspective. From the com-
munication perspective, the equipment conditions of a cell
tower, such as the carrier frequency and antenna height [13],
influence the spatial accuracy of mobile positioning. From
the geographical perspective, the complex channel environ-
ment (i.e., the geographical environment) is the main fac-
tor that influences the spatial accuracy of MPL data. Some
researchers have qualitatively stated that the spatial accuracy
of MPL data is affected by certain geographical factors,
such as relief, buildings, vegetation, etc. [14]–[16]. However,
to the best of our knowledge, no studies have quantitatively
assessed the spatial accuracy of MPL data by considering the
geographical influencing factors.

The objectives of this research are (1) to identify key
geographical factors that significantly affect the spatial accu-
racy of MPL data, (2) to construct quantitative evaluation
models of positioning bias based on these key geographical
factors, and (3) to map the predicted spatial distribution of
the positioning bias of MPL data over an area. In this paper,
we describe our methods for evaluating the positioning bias
of MPL data based on MPL data, GPS data and geographical
data, and we discuss our validation case study experiments.
We recruited forty volunteer college students to collect their
GPS data and MPL data over the same time period. After
filtering the GPS data, we calculated the positioning bias
of the MPL data. The predictive variables were collected
and pre-processed, and after correlation and multicollinear-
ity tests, we identified seven predictive variables exhibiting
significant influences. A linear evaluation model based on
geographical weighted regression (GWR) and a nonlinear
evaluation model based on random forest (RF) were used to
construct quantitative relationships between the seven pre-
dictive variables and the positioning bias. We simulated the
spatial distribution of the positioning bias of theMPL data for
a study area (nine administrative districts of Nanjing, China)
based on the two models. Our case studies showed that both
models exhibited good stability, and the overall prediction
performance of the RFmodel was much better than that of the
GWR model. These results demonstrated that the RF model
can be useful for spatial accuracy evaluation of MPL data.

The remainder of this article is organised as follows. The
next section discusses the existing research related to this
study. Section III describes the study area and data. The
methods used to evaluate the positioning bias ofMPL data are
described in Section IV. Detailed results of the experiments
conducted in this work are discussed in Section V. Section VI
provides a summary.

II. RELATED WORK
The goal of this work is to quantitatively assess the spatial
accuracy of MPL data from a geographical perspective. The
existing research related to the spatial accuracy of MPL data

can be divided into three groups from the phenomenon to the
mechanism: (1) the uncertainty of spatiotemporal analysis,
(2) the accuracy of MPL data and (3) factors influencing
the spatial accuracy. In this section, we review the related
research on these three groups.

The first group of studies related to the spatial accuracy
of MPL data focuses on the uncertainty of spatiotemporal
analysis. Uncertainty is related to several concepts, such as
accuracy, precision, consistency, etc. [17]. Many critical con-
cerns have been raised about how uncertainties could influ-
ence results [8], [18] and the risk level in decision-making
processes [19]. The uncertainties embedded inMPL data with
respect to their spatiotemporal granularity should be exam-
ined. From the spatial perspective, the positional accuracy
of phone records relies on the size of the tower coverage
area [20]. Zhao et al. [21] compared three frequently used
mobility indicators derived from call detail records (CDRs)
with a dataset that contains both CDRs and actively generated
logs. They found that CDRs tend to underestimate the total
travel distance and the movement entropy while providing
a reasonable estimate of the gyration radius. Yin et al. [22]
took a mobile signalling dataset of 24-hour user tracking
as a benchmark to evaluate the bias in the population dis-
tribution derived from CDRs. They found that the median
relative errors were 25∼30% during hours when humans
were active. From the perspective of temporal granularity,
the interval between two phone communication activities is
usually longer than two hours, especially with CDR data,
which leads to a great deal of uncertainty in human mobility
analysis. Zhao et al. [23] evaluated the effect of temporal
sampling intervals (TSIs) on typical human mobility indica-
tors obtained fromMPL data. They showed that coarser TSIs
tend to underestimate the four selected indicators (movement
entropy, radius of gyration, eccentricity, and daily travel fre-
quency) to different degrees. The temporal granularity of
CDR data can be improved with data completion. Some
modelling techniques have been proposed to predict missing
locations in subscribers’ trajectories. Hoteit et al. [24], [25]
filled the spatiotemporal gaps in CDRs and examined the
quality of filled data in the presence of ground-truthGPS data.

The second group of research explores the accuracy
of MPL data. The accuracy evaluation of MPL data is
the foundation of data applications. Ahas et al. [26] esti-
mated the positioning bias using the differences between
the GSM-measured location and GPS-measured location,
i.e., the actual location of a mobile phone with high accuracy.
They found that 52% of positioning points were accurate
within 400 metres in urban areas and 50% were accurate
within 2600 metres in rural areas. In addition, Ahas et al. [27]
evaluated passive mobile positioning data for tourism surveys
and found that the data can be collected for larger spatial
units. They also found that the spatial and temporal precision
of MPL data is higher than traditional tourism statistics.
Isaacman et al. [28] and Becker et al. [10] quantified the
differences between CDRs and the actual locations logged by
volunteers. Their results showed that the median differences
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between daily ranges computed fromCDRs and those derived
from the ground-truth logs are less than 1.5 miles. Research
on the spatial distribution characteristics of the positioning
bias of MPL data has generally involved simply dividing
a study area into urban and rural areas. Pospíšilová and
Novák [9] calculated the accuracy of positioning based on one
of the primaryCzechmobile network operator’s data and their
distribution. They found that the average accuracy in Prague
is 1 km. The precision within Czechia can be described as
relatively high in regional centres (1.3 km), moderately high
(3.5 km) in cities with over 10,000 inhabitants, and low in the
countryside (6 km). Trevisani et al. [29] found that the aver-
age accuracy is approximately 800 metres for U.S. data and
decreases to 480metres for Italian data. In the Italian case, the
average accuracy increases from urban (0.48 km) to suburban
(0.75 km) and then to highway (1 km) scenarios. In the U.S.
case, the average accuracy increases from suburban (0.49 km)
to urban (0.79 km) and then to highway (2.91 km) scenarios.

The third group of studies identifies the sources and fac-
tors influencing positioning biases. This research is mainly
divided into two aspects: the communication perspective and
the geographical perspective. In the communication perspec-
tive, many studies have shown that the equipment conditions
of a cell tower influence the spatial accuracy of mobile posi-
tioning. The Okumura-Hata model [13] indicated that the
coverage of a cell tower is related to the carrier frequency and
antenna height. Zhong and Xiao [11] found that the coverage
of a cell tower can be controlled by adjusting the downdip
antenna angle. From the geographical perspective, many
studies have indicated that the complex channel environment
(i.e., the geographical environment) is the main factor that
influences the spatial accuracy of MPL data. Many works
have shown that the error sources in wireless location sys-
tems include non-line-of-sight (NLOS) propagation and other
factors [12]. The complexity of the channel environment
is the ultimate cause of NLOS propagation. Many models
have been proposed to describe the path loss of wireless sig-
nals in the channel environment. For example, Edwards and
Durkin [30] proposed the Durkin model to predict large-scale
wireless signal path loss. Okumura and Ohronofi [31] put
forward the Okumura model to predict wireless signals, and
it has been the most widely used model for predicting urban
signals. In addition, the geographical environment affects the
site selection of cell towers [32], thus affecting the distribu-
tion density of cell towers and indirectly affecting the spatial
accuracy of CMPL data. Some researchers have qualitatively
stated that the spatial accuracy of MPL data is affected by
certain geographical factors, such as relief, buildings and
vegetation, etc. [14]–[16]. Although these studies qualita-
tively stated that some geographical factors affect the spatial
accuracy of MPL data, quantitative evaluations of the posi-
tioning bias of MPL data from the geographical perspective
remain scarce. Therefore, for the first time, we build quan-
titative relationship models between the positioning bias of
MPL data and certain geographical factors to evaluate the
spatial accuracy of MPL data.

III. STUDY AREA AND DATA
A. STUDY AREA
The study area in this research covers nine administrative
districts of Nanjing, China (Figure 1). This city covers an area
of 6,587 km2 and has eleven administrative districts. Among
them, Xuanwu, Qinhuai, Gulou, Jianye, and Yuhuatai contain
the most concentrated urban areas. The other six administra-
tive districts are in rural areas, although urbanisation occurs
in parts of these districts. The data collection of this study is
mainly carried out in the nine administrative districts shown
in Figure 1; thus, only these administrative districts are used
to represent the study area.

FIGURE 1. The administrative districts and specific geographical
environment details of the study area.

As one of eastern China’s financial centres, Nanjing is a
megalopolis with a population of more than 8.5 million peo-
ple. Among them, the urban population accounts for 83.2%.
Nanjing has a complex and diverse geographical environ-
ment [33]. The terrain is mainly composed of hillocks (53%
of the area); plains, depressions, rivers, and lakes (39.2%);
lowmountains (3.5%); and hills (4.3%). Nanjing is one of the
eight backbone network nodes of China Telecom. Nanjing’s
unique socioeconomic and geographical status makes it an
ideal area for studying the quantitative relationship between.
positioning biases and the positioning environment.

B. DATA COLLECTION AND PRE-PROCESSING
Two datasets were used in this study. The first dataset is
the spatiotemporal location dataset that includes two types:
MPL data and GPS data. We used this dataset to evaluate
the spatial accuracy of MPL data quantitatively. The second
dataset contains the predictive variables that affect the posi-
tioning accuracy of MPL data.
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1) SPATIOTEMPORAL LOCATION DATASET
As shown in Figure 2, MPL data are a byproduct of cell tower
positioning. This positioning technology obtains the spa-
tiotemporal location information of subscribers (cell phones)
through the network of mobile operators. Accordingly, MPL
data are stored in the database server of mobile operators.
The MPL dataset used in our study is from a major operator
in Nanjing city. It contains both passive and active location
data. Passive MPL data are those where data are generated
only when particular types of human activities occur, e.g.,
placing or receiving a call, sending or receiving a short
message, and connecting to the Internet. The typical passive
MPL data are CDRs. Active MPL data are collected using
mobile tracking, which does not depend on human use of the
phone. They are generated by communication systems that
periodically actively update or regularly update the location
of mobile phones. Periodic updates are triggered by tower
pinging if a subscriber has been ‘silent’ (i.e., no human use
events detected) for a certain time period. Regular updates
are triggered by moving from cell tower’s service area to that
of another tower [21]. Each record in this MPL dataset com-
prises an anonymous user ID, recording date, recording time,
and the coordinates (longitude/latitude in the WGS84 coor-
dinate reference system) of the cell tower that handled the
mobile transaction. GPS is a high-precision radio navigation
positioning system based on man-made satellites. Modern
smartphones usually contain a GPS receiver, making it very
convenient for us to collect and store GPS data. In this study,
the cell phones used to collect MPL data were also used as
the GPS receivers and GPS data memory (Figure 2). Each
record in the GPS dataset includes the device ID, recording
date, recording time, positioning accuracy α, and coordi-
nates (longitude/latitude in the WGS84 coordinate reference
system) of the cell phone. Compared with MPL data,
GPS data usually have higher spatial accuracy and smaller
time intervals between adjacent anchor points. In our study,

FIGURE 2. Collection and storage of MPL data and GPS data.

the location obtained using GPS is taken as the actual location
of a mobile phone.

In the spatiotemporal location data collection phase,
we recruited forty volunteer college students to collect the
data. We provided each volunteer with a mobile phone, and
each phone was equipped with a mobile card from the afore-
mentioned Nanjing operator. We also used the same brand
and model of cell phones to collect data and reduce potential
biases. The volunteers collected GPS data with these mobile
phone GPSs and permitted us to inspect their MPL data
during the data collection period. Specifically, a volunteer’s
MPL data and GPS data were collected by the same phone
in the same period of time (Figure 2). The GPS dataset was
collected by these mobile phone GPSs at 5-second intervals.
Also, to ensure that the samples were representative of the
target population (i.e., all of the geographical environments
in Nanjing), we constructed twenty itineraries so that vol-
unteers could plan routes covering different geographical
contexts, including various elevations, tall building densities,
park areas, lakes, etc.

Four steps were applied in the data pre-processing phase.
We first converted the latitude and longitude coordinates of
the MPL dataset and the GPS dataset into projected coor-
dinates (Beijing 1954 3 Degree GK CM 117E projected
coordinate system). Then, we filtered the GPS data based on
the positioning accuracy α of the GPS data. We kept only
those GPS records with a positioning accuracy of fewer than
3 metres. Furthermore, each anchor point in the MPL dataset
was matched to the anchor point in the GPS dataset based on
the same timestamps of the two datasets. The positioning bias
y of each pair of points was calculated using Equation (1):

y =
√(

Hgps − Hmpl
)2
+
(
Vgps − Vmpl

)2 (1)

where y is the positioning bias of the MPL data; Hgps and
Vgps represent the horizontal position and vertical position,
respectively, in the projected coordinates of a GPS anchor
point; andHmpl andVmpl represent the horizontal position and
vertical position, respectively, in the projected coordinates
of an MPL anchor point. These point pairs constituted a set
of samples D in this study. At this stage, each sample in
D included the GPS anchor point coordinates, the position-
ing accuracy α of the GPS anchor point, the MPL anchor
point coordinates, positioning time, and positioning bias y.
Finally, we filtered the samples D based on the value of α
divided by y. Since the GPS anchor point was taken as the
actual location of a volunteer in this study, the positioning
accuracy α of the GPS anchor point will also affect the
positioning bias y. We only kept samples in D with a
ratio (α/y) of less than 0. 1 [17] to reduce this effect.

After the above data pre-processing phase, we obtained a
datasetD of 6,112 samples for modelling. Themean position-
ing bias y of the 6,112 samples was 2,130.80 metres (mini-
mum 39.73 m, maximum 7,264.98 m, and standard deviation
σ = 1, 711.61 metres). Figure 3 shows the comparative
statistics.
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TABLE 1. Predictive variables, data sources, and pre-processing.

FIGURE 3. Statistical distribution of the positioning bias.

2) PREDICTIVE VARIABLES DATASET
The geographical coordinates of the cell tower serving the
mobile phone at a given time are used as an approximation of
the subscriber position [7]. Therefore, the spatial accuracy of
MPL data is closely related to the coverage (i.e., service area)
of the cell towers. As described in Section III, the complex
channel environment (i.e., the geographical environment) is
the main factor influencing the spatial accuracy of MPL data.
On the one hand, the geographical environment affects the
site selection of cell towers, thus affecting the distribution
density of cell towers and indirectly affecting the spatial
accuracy of MPL data. On the other hand, the geographical
environment affects the propagation loss of wireless signals
and indirectly affects the coverage of cell towers and the
positioning accuracy of MPL data.

Gridded maps of spatial covariates were collated to
describe topography, land use, land cover, population and
cell tower (Table 1). Topography strongly impact the site
selection of cell towers [34], which indirectly affects the
spatial accuracy of MPL data. We used elevation, slope and
aspect to describe the topography of the volunteer’s geo-
graphical environment. Buildings and vegetation can cause
NLOS propagation of wireless signals, resulting in mobile
positioning biases [35], [36]. Building density and distance
to the nearest vegetation (DNV) were used to depict the
distribution of buildings around the volunteers. Water bod-
ies usually refract or reflect wireless signals, causing a loss
in wireless signal propagation [37]. Distance to the nearest
water body (DNWB) was used to quantify the impact of
water bodies on the positioning accuracy. The impact of veg-
etation and water bodies was also described using remotely
sensed imagery. The normalised difference vegetation index
(NDVI) [38] and the modified normalised difference water
index (NDWI) [39] were calculated from a Landsat8 remote
sensing image from July 2020 with a spatial resolution
of 30 m. In some cases, a cell phone is not connected to the
nearest cell tower due to load balance issues [40]. Therefore,
the distribution of the population on the ground also affects
the accuracy of MPL data. The population density is an
important index of the population distribution. As mentioned
above, the spatial accuracy of MPL data is closely related to
the coverage of the cell towers. The cell tower density and
the distance to the nearest cell tower (DNCT) were used to
describe the distribution of the cell towers around the vol-
unteers. In addition, considering the average spatial distance
between cell towers in the study area is 197.3m, griddedmaps
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of the predictive variables are prepared at 200 m by 200 m
resolution to describe these factors (Table 1).

All predictive variables were assigned to GPS anchor
points, the actual locations of the volunteers from the GPS
records. After data preparation, as stated above, we obtained
a set of samples D for modelling. Each sample in D
includes a positioning bias y (calculated by Equation (1))
and a p-dimensional vector of the predictive variables X ,
X = {x1,. . . ,xp}. The form of the dataset D is D =
{(X1,y1),. . . ,(Xn,yn)}, where n is 6,112

IV. METHODOLOGIES
In this section, we construct a linear and a nonlinear evalua-
tion model for the spatial accuracy of MPL data. The GWR
approach is mainly used to build the linear evaluation model.
To further improve the prediction accuracy of the positioning
bias of MPL data, a nonlinear evaluation model based on an
RF is constructed. The analysis results are shown in the next
section to demonstrate the impact of these methods and the
choice of the key parameters on the prediction accuracy.

A. LINEAR EVALUATION MODEL
Regression analysis is often used to quantify some geograph-
ical reasoning. The traditional linear regression model is
shown as:

yi = β0 +
p∑
j=1

βjxj + εi (i = 1, 2 . . . n) (2)

where p is the number of predictive variables; n is the number
of observations (samples); yi is the dependent variable of the
ith sample point; xj is the jth independent variable of the
ith sample point; εi is the residual of the ith sample; β0 is
the intercept, and βj is the regression coefficient of the
jth independent variable.

The traditional linear regressionmodel is based on the ordi-
nary least square (OLS) method to estimate the parameters.
OLS obtains model parameters (the intercepts and regression
coefficients) by reducing the difference between the real and
predicted values of dependent variables. Specifically, when
the sum of squares of residuals is the smallest, the model
parameters are optimal. The traditional linear regression
model implements the average or global estimation of the
parameters, ignoring spatial heterogeneity and nonstationar-
ity. In fact, the influence of a predictive variable on the posi-
tioning bias y may be different at different spatial locations.
Therefore, we built a linear evaluation model for the spatial
accuracy of MPL data based on the GWR approach. The
GWR is an extension of the traditional linear regression
model, which inserts the geographical position of the sample
into the regression parameters [41]. A general version of the
model can be expressed as:

yi = β0(ui, vi)+
p∑
j=1

βj(ui, vi)xj + εi (i = 1, 2 . . . n) (3)

where (ui,vi) represents the spatial coordinates of the ith
sample point; β0(ui,vi) is the intercept, and βj(ui,vi) is the
regression coefficient of the jth independent variable of the
ith sample point. In essence, GWR measures the inherent
relationships around each sample i, where weighted least
squares estimate each set of regression coefficients. The
matrix expression for this estimation is

β ′(ui, vi) = (XTW (ui, vi)X )−1XTW (ui, vi)y (4)

where X is independent variable matrix; y is the dependent
variable vector; β ′(ui,vi) is the estimate of the location-
specific regression coefficients, and W (ui, vi) is a diagonal
matrix denoting the geographical weighting of each sample
point i. The kernel density function determines the weight
assigned to neighbouring units. Several kernel functions can
be used for the weighting scheme. The Gaussian kernel is
specified in this study, and its usual continuous form can be
defined as

W (ui, vi) = exp[−
1
2
(
dij
b
)2] (5)

where dij is the distance between sample point i and observa-
tion point j and b is the kernel bandwidth. The bandwidth is
a key control parameter of the GWR model. The regression
results are sensitive to the choice of neighbours, and the
selected bandwidth may significantly impact the coefficient
estimation [42]. Cross-validation (CV) is generally used to
determine the optimal number of nearest neighbours. It takes
the form of

CV =
n∑
i=1

[yi−y′6=i(β)]
2

(6)

where y′
6=i(β) is the predicted value of yi with the observa-

tions for sample point i omitted from the calibration process.
Here, we are trying to find b that minimises CV. This in
effect minimizes the sum of squared errors at all sample
points and arrives at an optimal bandwidth. In this study,
GWR was applied to build the linear evaluation model and
identify key predictive variables that significantly affect the
spatial accuracy of MPL data.

B. NONLINEAR EVALUATION MODEL
To further improve the prediction accuracy of the positioning
bias of MPL data, a machine learning model, i.e., RF, is used
to build a nonlinear evaluation model. An RF is an ensemble
of many decision trees with some randomness in selecting
predictors at each split and in the training cases for each
tree [43]. This model usually has a high prediction accuracy,
high efficiency, and low probability of overfitting to training
data [44]. As shown in Figure 4, the model is an ensemble of
K regression trees {T1,. . . ,TK}. In the training phase, random
sampling with replacement is executed, generatingK datasets
{D1,. . . ,DK}. The sample number of each dataset is equal to
the number of samples in D. As described in Section III-B
above, we obtain a dataset D of 6,112 samples for mod-
elling after data pre-processing. In our study, the number
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FIGURE 4. A nonlinear evaluation model based on a random forest.

of samples of each dataset in {D1,. . . ,DK} is 6,112. Each
dataset is used to train and generate a regression tree. Further,
K regression trees are assembled into a random forest,
i.e., the nonlinear evaluation model. In the predicting phase,
a p-dimensional vector X of predictive variables of a sample
is put into the model. This model produces K outputs {y′1 =
T1(X ),. . . ,y’K = TK (X )}, where y′k , k = 1,. . . , K , is the
prediction for a sample by the kth tree. A prediction is made
by averaging the outputs of the ensemble, y′.
Several indicators are used to assess the model perfor-

mance in this study; the mean square error (MSE), pseudo
R-squared (RSQ), goodness of fit (R2) and root mean square
error (RMSE) are computed as shown in Equation (7),
Equation (8), Equation (9) and Equation (10) respectively:

MSE = n−1
n∑
i=1

(
y′i − yi

)2 (7)

RSQ =

(
n−

n∑
i=1

(
y′i − ȳ

)2)
/

n∑
i=1

(yi − ȳ) (8)

R2
=

n∑
i=1

(
y′i − ȳ

)2
/

n∑
i=1

(yi − ȳ)2 (9)

RMSE =

√√√√n−1
n∑
i=1

(
y′i − yi

)2 (10)

where n is the number of samples; yi is the actual value of the
positioning bias of the ith sample, and ȳ is the mean of the
actual costs of the positioning bias of n samples. Additionally,
y′i is the predicted value of the positioning bias of the ith sam-
ple using the model. The RF performance is affected by two
crucial parameters: ‘ntree’ and ‘mtry’. The ‘ntree’ variable is
the number of regression trees in the RF. The value of ntree is
set according to the quantitative relationship among theMSE,
RSQ, and ntree. The minimum value of ntree that results in
stable MSE and RSQ values is the appropriate value of ntree.
The ‘mtry’ variable is the number of predictive variables

sampled for splitting at each node of the regression trees in
the RF. We use RF regression implemented with a MATLAB
package [45] to create the nonlinear evaluation model. The
default ofmtry in this implementation is the square root of the
number of independent variables. To obtain the optimummtry
value, model tuning is performed (Figure 5). Specifically, the
mtry value that produces the lowest RMSE is optimum [46].

FIGURE 5. Flow chart of model tuning for the optimum mtry value.

An RF, as an ensemble of decision trees, inherits the ability
to measure the importance of each predictive variable, i.e.,
how often it is used in the model and how much it con-
tributes to reducing the residual sum of squares. In our study,
the importance of the predictive variables is measured by
the mean decrease in accuracy. The idea is to permute the
values of each feature randomly and measure the effect of
this change on the accuracy rate of the tree-based model.
For unimportant variables, shuffling the assignment of their
values to sample points has little effect on the accuracy rate of
the model, but for important variables, the permutation will
reduce the accuracy rate. The greater the influence on the
accuracy rate of the model is, the more critical the feature.

V. RESULTS AND DISCUSSION
A. THE SPATIAL DISTRIBUTION OF POSITIONING BIAS
We first analyse the spatial distribution of the samples and
the geographical environment of the significant positioning
bias samples. Figure 6(a) shows the spatial distribution of the
positioning bias of a volunteer. The trajectory derived from
the MPL data is quite different from the actual route (i.e.,
the route recorded by GPS) of the volunteer (Figure 6(b)).
In the central part of this trajectory, the volunteer is crossing
the Xuanwu Lake park on foot via a path connecting several
islands, three of which have cell towers. However, at times,
the phone connects to cell towers on the lakeshore, far from
the user. Even in the earlier and later parts of the trajectory,
there are only a few cell towers along the volunteer’s route.
It should be noted that the distance differences in the 5-second
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FIGURE 6. (a) Differences in locations given by mobile positioning and GPS positioning, in the example of GPS positioning with 5-second intervals and
mobile positioning with 10-minute intervals in Nanjing, China. (b) The trajectory derived from the MPL data (blue line) and the actual route obtained from
the GPS data (purple line) of a volunteer on the ground.

intervals of the GPS are from the volunteer travelling via
different transportation modes.

As stated in Section III-B, we obtained a dataset D
of 6,112 samples. Figure 7 shows the spatial distribution of
the positioning biases of the 6,112 samples located in the
study area. Of these samples, 3,004 are located in urbanised
districts, and 3,108 are located in predominantly rural dis-
tricts. We find that the spatial distribution of the positioning
bias is related to the geographical environment. Specifically,
the biases of samples in areas with a mountain or a lake are
usually larger than those in areas with a high density of build-
ings. As shown in Figure 8, the positioning biases of samples
in the LaoMountain and PurpleMountain scenic area are very
high, with a maximum of 7,264.98 m. Similarly, the biases of

FIGURE 7. Spatial distribution of the positioning bias of all samples.

FIGURE 8. The geographical environment of the significant positioning
bias samples.

examples around the Xuanwu Lake park and Yangtze River
are also high. These characteristics further indicate that the
spatial accuracy of MPL data is greatly affected by certain
geographical factors, and there is a relationship between these
factors and the positioning bias. Therefore, we proceeded to
quantify this relationship.

B. CORRELATION AND MULTICOLLINEARITY TESTS
Before building the models described in Section IV, we test
the multicollinearity between the predictive variables and the
correlation between the positioning bias and the predictive
variables. In our study, the SPSS tool is used to diagnose mul-
ticollinearity between the predictive variables. The variance
inflation factor (VIF) is often used to detect multicollinearity
between independent variables. Generally, it is considered
that VIF values greater than 10 are often taken as a sig-
nal that the data have collinearity problems [47]. As shown
in Table 2, all VIF values are less than 10, and most of
the predictive variables are significant factors except slope,
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TABLE 2. Multicollinearity between the predictive variables.

FIGURE 9. Correlation between the positioning bias y and predictive
variables.

DNWB and NDVI. The VIF values results show that the
multicollinearity of the predictive variables has little impact
on the regression analysis.

We further investigate the correlation between the pre-
dictive variables and the correlation between the position-
ing bias and the predictive variables. The nonparametric
Spearman (rank) correlation coefficient is used to test the cor-
relation. The result shows that all Spearman correlation coef-
ficient values are significant at the 0.01 level. Figure 9 shows
that elevation, slope, aspect, DNWB, NDVI, and DNCT are
positively correlated with the positioning bias y. Accordingly,
the building density, DNV, NDWI, population density and
cell tower density are negatively correlated with the bias y.
In addition, there is a strong correlation between the NDWI
and NDVI, with a correlation coefficient of -0.82. Similarly,
the building density is strongly correlated with the cell tower
density, with a correlation coefficient of 0.898. Combined
with Table 2, the NDVI (nonsignificant factor) and cell tower
density (with the highest VIF value) are removed from the
predictive variables dataset to further reduce the impact of
multicollinearity on the regression. Furthermore, two other
nonsignificant factors (i.e., slope and DNWB) are elimi-
nated, and seven key geographical factors, namely, elevation,
aspect, building density, DNV,NDWI, population density and
DNCT remain for modelling.

C. EVALUATION MODEL PERFORMANCE: GWR METHOD
VS. RF APPROACH
We compare the twomethods using the indicators proposed in
Section IV-B. As described in Section IV-A, a Gaussian ker-
nel is specified in the linear evaluation model (i.e., the GWR
model). CV is used to determine the optimal kernel band-
width, which is 287.32. For the nonlinear evaluation model
(i.e., the RFmodel), there are two important parameters, ntree
and mtry. Figure 10(a) shows the relationship between the
MSE and ntree of the model, and Figure 10(b) shows the
relationship between the RSQ and ntree. The values of both
the MSE and RSQ fluctuate rapidly as the number of trees
increases, but after about ntree = 500, these values change
slowly until ntree = 1,000. At that point, these metrics tend

FIGURE 10. (a) Relationship between the MSE and ntree. (b) Relationship between the RSQ and ntree.
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FIGURE 11. Relationship between the RMSE and mtry.

to be stable. Therefore, we set the value of ntree to 1000 to
stabilise the overall error rate of the model while ensuring
reasonable model efficiency. Figure 11 shows the relation-
ship between the RMSE and mtry of the model. We obtain
the lowest RMSE for mtry = 3. This result implies that
only a few predictors dominate the others; therefore, if more
predictors are tried, they will eliminate the effect of fewer
significant predictors, resulting in a model de-emphasises the
most important bias sources.

Ten-fold CV is used to evaluate the prediction accuracy
of the two models. Specifically, the samples are randomly
divided into 10 groups, among which 9 groups are taken as
the training data and 1 group is taken as the testing data in turn
to test the prediction accuracy of the models. Aggregating the
results of 10 sets of testing data, Figure 12(a) and Figure 12(b)
show scatter diagrams between the predicted and actual val-
ues of the GWR model and RF model, respectively. The R2

and RMSE of GWRmodel are 0.69 and 689.69, respectively.
The goodness of fit of the model is good; however, the RMSE
is large. As shown in Figure 12(a), there are some large

residuals in the predicted results. In particular, the predictions
have many values less than zero (below the red line), which
is impossible. By comparison, the overall performance of
the RF model is better than that of the GWR model. Model
evaluation with 10 sets of testing data indicate strong model
performance. The R2 andRMSE of the RFmodel are 0.85 and
158.2, respectively. As shown in Figure 12(b), the residuals
of the RF model prediction results are small, and there are no
obvious impossible results (e.g., less than zero).

Distributions of R2 and RMSE of the two models’ ten-
fold CV results are shown in Figure 13(a) and Figure 13(b).
Figure 13(a) shows that the R2 of the ten-foldCV of the GWR
model fluctuates between 0.65 and 0.71, and the R2 of the
ten-fold CV of the RF model fluctuates between 0.81 and
0.88. Figure 13(b) shows that the RMSE of the ten-fold CV
of the GWR model fluctuates between 636.04 and 695.73,
and the RMSE of the ten-fold CV of the RF model fluctuates
between 136.33 and 203.14. The results show that both mod-
els have good stability, and the RF model’s overall prediction
performance is much better than that of the GWR model.

D. INFLUENCE EVALUATION OF THE PREDICTIVE
VARIABLES
This section further investigates the impact of the pre-
dictive variables on the GWR model and RF model.
Figure 14 shows the local coefficients of the Gaussian-
weighted GWR. Among them, the constant term and NDWI
coefficient have a large range. The constant (i.e., intercept)
varies from−7,702.8 to 42,438.1, with an average of 4,867.4.
The NDWI coefficient varies from −20,169.1 to 6,983.8,
with an average of −555. The building density and eleva-
tion coefficients also fluctuate greatly. The building density
coefficient varies from −557.9 to 3,396.5, with an average
of 93.2. The maximum value of the elevation coefficient
is 296, the minimum value is −160, and the average value
is 4.6. By comparison, the coefficients of the remaining

FIGURE 12. Comparisons of the actual bias and the model-predicted bias based on (a) the GWR model and (b) the RF model.
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FIGURE 13. Distributions of (a) R2 and (b) RMSE of the two models’ ten-fold CV.

FIGURE 14. GWR estimates for Gaussian weighting.
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FIGURE 15. Influence evaluation of the predictive variables in the RF
model.

predictive variables exhibit small ranges. The ranges of the
population density, DNCT, DNV and aspect coefficients are
40.7, 15.6, 14 and 13.1, respectively, and the averages are 1.8,
−0.5, −2.1 and 1.2, respectively.
Figure 15 shows the importance of the predictive variables

in the RF model measured by the mean decrease in accuracy.
The population density, elevation and building density are the
three most important factors, while the NDWI and DNCT
are the least important variables. This result implies that
the population density, elevation and building density play a
significant role in splitting each node of the regression trees
in the RF model. In contrast, the NDWI and DNCT are rarely
considered in this process.

E. THE PREDICTED SURFACE OF POSITIONING BIAS
We simulate the spatial distribution of the positioning bias
of the MPL data covering the study area based on the two
models. The 7 key geographical variables from the study area
are collected and pre-processed into a gridded map at 200 m
by 200 m resolution. The entire study area is divided into
grids of 200 m by 200 m, and the values of all geographi-
cal variables are assigned to each grid. The gridded dataset
of 7 key geographical variables is input into the GWR model
and RF model, and the predicted values of all grid cells
are produced. After visualisation, the predicted surface maps
of the positioning bias across the study area are generated
(Figure 16). The predicted positioning bias varies dramat-
ically across the study area and exhibits several scattered
clusters. The predicted positioning bias is further divided
into five somewhat arbitrary levels that loosely correspond
to the accuracy levels needed for human geography studies.
Figure 16(a) shows the spatial distribution of the predictive
bias of the GWR model. The very low (0-500 m) and low
(500-1,000 m) levels are mainly scattered in the eastern,
western and southwestern parts of the study area. The mod-
erate (1,000-1,500 m), high (1,500-2,000 m), and very high
(>2,000 m) levels account for most of the area. These areas
are mainly located in the northern, most of the southern and
some of the western regions. Notably, there are large areas
with error values below 0 m in the GWR results, which are
mainly distributed in the central, northeast and most of the
southeast regions.

Figure 16(b) shows the spatial distribution of the predictive
bias of the RF model. The very-low-level areas are scattered

FIGURE 16. Predicted spatial distributions of the positioning bias of the MPL data in Nanjing city based on (a) the GWR model and
(b) the RF model.
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in the central parts of the study area. These zones are pri-
marily urban areas where the building density is high. The
low-level areas account for most of the study region, which
is mainly cropland. The land use of the moderate level is
mainly water bodies, such as the Yangtze River. The high and
very high areas are mainly located in suburban regions where
mountains or vegetation are the primary types of land use.
For example, the very high bias areas (red areas) shown in
Figure 16(b) contain two central mountains: Tang Mountain
and Lao Mountain. Figure 9 and Figure 15 show that the
bias is significantly associated with the population density
and elevation. Notably, the elevation in the two red areas is
relatively high, and the population density is relatively small.
The opposite is true in the very low bias areas. As described
in Section V-C, the overall prediction performance of the RF
model is much better than that of the GWRmodel. Therefore,
the results of Figure 16(b) are closer to the ground truth.
Compared with that of Figure 16(b), the range in the results
of Figure 16(a) is larger. It is reflected in the fact that more
regions with very high values and many regions with values
less than zero in Figure 16(a).

VI. SUMMARY
The spatial accuracy of data is an essential but often neglected
issue in spatiotemporal big data analytics. This issue has been
and will always be challenging for the validity of research
involving spatiotemporal big data usage. Evaluating the spa-
tial accuracy of data is the basis and premise of spatiotem-
poral data application. In this study, we aimed to evaluate
the spatial accuracy of mobile phone location data, a crucial
data source in various research areas. In a case study of
Nanjing, we found that seven geographical factors, including
population density, elevation, building density, distance to the
nearest vegetation, aspect, distance to the nearest cell tower
andNDWI, significantly affected the spatial accuracy ofMPL
data. We built evaluation models to quantify the relationship
between the seven geographical factors and the positioning
bias of MPL data based on geographical weighted regression
and random forest methods, respectively. The experimental
results obtained from this study demonstrated the capacity
of both models for assessing the positioning bias of MPL
data with consideration of the positioning environment. The
results of the ten-fold CV showed that both the GWR model
and RF model exhibited good stability. However, the overall
prediction performance of the RF model was much better
than that of the GWR model. It was reflected in the fact
that the R2 of the RF model (0.85) was higher than the
R2 of the GWR model (0.69), and the RMSE of the RF
model (158.2) was much smaller than the RMSE of the GWR
model (689.69). Furthermore, there were no value less than
0 in the prediction results of the RF model, which appeared
in the prediction results of the GWR model. These results
demonstrated that the RF model can be useful for spatial
accuracy evaluations of MPL data. We further investigated
the impact of the predictive variables on the RF model. The
importance ranking of the geographical variables showed

that the population density, elevation and building density
were the three most important factors, while the NDWI and
distance to the nearest cell tower were the least important
variables. Based on the above models, we simulated the
spatial distribution of the positioning bias of the MPL data
in the study area. Through a comparative analysis of the
results, the GWR model overestimated some low biases and
some moderate biases and underestimated some low biases;
thus, some incorrect extreme values were generated in the
results. The results of the RF model provided a basis for
us to use MPL datasets in human mobility studies. This
study proposed a useful spatial accuracy evaluation model for
MPL data, which can provide an important theoretical basis
for big data uncertainty analysis, deepen the understanding
of the spatial distribution of positioning bias, and provide
scientific guidance for the correct data application.

This study formulated an excellent quantitative relation-
ship model between the positioning bias of MPL data and
certain geographical factors. We believe that this quantitative
relationship is not unique to the dataset used in this study but
exists in other mobile phone datasets. In the future, we intend
to enlarge the research scope by repeating the experiments
over multiple MPL datasets from different mobile operators
and across different study areas. Nevertheless, we hope this
study provides some insight that can better use mobile phone
location data for future human mobility studies. Moreover,
further research is needed to improve this model. Some equip-
ment factors that affect the positioning accuracy, such as the
sector azimuth and antenna height of a cell tower, can be
considered in the model, and it may improve the performance
of the model.
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