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ABSTRACT In this paper, combined with the approximation of neural network, a novel direct adaptive
alleviating tracking control algorithm is presented for a class of non-strict feedback uncertain nonlinear
systems. Here, both nonlinear uncertainties and nonsymmetric dead-zone inputs are considered. First,
according to some coordinate transforms and variable separation methods, the non-strict feedback form is
converted into the normal form. Second, the relationship of state vector and error functions are established,
and the inputs of dead-zone are compensated with adaptive approaches. This novel direct scheme assumes
that the approximation error and optimal approximation norms of NN are to be bounded by unknown
constants and can alleviate the number of online adjusted parameters so as to improve the robust control
performance of the systems. At last, under Lyapunov theorem analysis, the uniformly ultimately boundness
of all the signals in the closed-loop systems can be guaranteed and the dead-zone inputs can be compensated,
the effectiveness of this algorithm is well demonstrated by simulation results.

INDEX TERMS Adaptive neural networks, non-strict feedback form, nonsymmetric dead-zone, uncertain
nonlinear systems.

I. INTRODUCTION
During the last decades, stability theory for uncertain sys-
tems with nonlinearities were discussed constantly [1]–[11],
diverse adaptive approximation-based fuzzy or NN control
schemes have been designed for uncertain systems with
nonlinearities [5], [9]–[19]. Note that many of the these
mentioned approximation-based fuzzy [7]–[10], [14], [17]
or NN [3], [5], [6], [11]–[13] approaches were based on
strict-feedback uncertain nonlinear systems [5], [12], [13] or
pure-feedback nonlinear systems [8], [14]–[16], rather than
uncertain non-strict feedback systems. In fact, the functions
of non-strict feedback uncertain systems contain all the state
variables of the system, that is to say, the above two structures
strict feedback and pure-feedback forms are included in the
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non-strict feedback ones. So, the non-strict ones are more
challenge and general for practical control systems.

Recently, many adaptive researches and control strate-
gies based on backstepping techniques and approximation
of fuzzy or NN have been proposed for non-strict feed-
back uncertain nonlinear systems [17]–[23]. Combing with
input saturation and output constraint, [17] discussed fuzzy
control for non-strict feedback systems. [18] extended NN
scheme to the non-strict feedback with backlashlike hystere-
sis uncertain systems. Considering a class of discrete-time
systems, [19]established states NN reinforcement learning
adaptive control approach. Based on finite-time adaptive con-
trol approaches, [20], [21] analyzed fuzzy states feedback
control and output feedback dynamic surface control for
non-strict feedback respectively. [22] extended NN adaptive
command filter control to stochastic time-delayed systems
with unknown input saturation. Neural control methods for
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full-state constraints and unmodeled dynamics in non-strict
feedback uncertain systems are designed [23]. But, many of
these papers did not consider the unknown dead-zone inputs,
especially for the more complex uncertain nonlinear non-
symmetric dead-zones.

Unknown dead-zone input as one of the nonlinearities
often occurs in the process of the practical engineering,
which is a source of instability and limitation of performance
of systems. Recently, the investigations of input dead-zone
has attracted a great deal of attention [24]–[30]. Decen-
tralized control for large-scale systems with actuator faults
and tracking control for switched stochastic actuator dead-
zone systems were discussed in [24], [25]. [26] studied the
non-backstepping VUFC algorithm for pure-feedback form.
Based on switched nonlinear systems, [27] [28] extended
time-varying tan-type barrier Lyapunov function adaptive
fuzzy control and adaptive neural quantized control for
states constrained systems and MIMO asymmetric actua-
tor systems. Adaptive neural control [29] and fuzzy decen-
tralized control [30] were proposed for unknown control
directions systems and strong interconnected nonlinear sys-
tems in unmodeled dynamics. Based on robust optimal con-
trol method, [36] discussed the event-triggered physically
interconnected mobile Euler-Lagrange systems.

Although many researchers have extensively studied for
non-strict feedback for nonlinear systems or for systems
with unknown dead-zones, to the authors’ best knowledge,
very few investigators concentrated on non-strict feedback
systems with uncertain nonlinearities and non-symmetric
unknown nonlinear dead-zone inputs, and many adaptive
parameters need to be adjusted in the recursive process of
these backstepping or approximation-based approaches, due
to updating parameters of NN optimal weight vector or the
optimal approximation vector of fuzzy logic systems, which
would affect the systems control performance and the online
computation burden. As far as we know, for non-strict feed-
back nonlinear systems, no reports on novel alleviating com-
putation NN control approach in the literature can be found.
All of these motivate this paper.

Motivated by the above considerations, aiming at allevi-
ating the computation, this paper consider a novel adaptive
NN tracking control for a class of non-strict feedback systems
with nonsymmetric dead-zone inputs. Neural networks (NN)
are utilized to approximate the unknown nonlinearities and
nonlinear functions, and a robust NN state-feedback tracking
control method is developed in the framework of backstep-
ping design technique. This approach can not only compen-
sate the effect of the non-symmetric dead-zone inputs but also
improve the robust performance of the system by updating
estimations of unknown bounds. Compared with the related
existing literature, the main advantages and contributions of
this paper proposed are listed below.

1) This established control scheme can compensate non-
symmetric dead-zone inputs, uncertainties and solve the
problems of included non-affine structure states non-strict
feedback simultaneously. Although the previous results

FIGURE 1. Nonlinear dead-zone model.

in [17]–[23] also studied the same control design problem for
non-strict feedback nonlinear systems, they do not consider
uncertain non-symmetric dead-zones and have computing
burden problem.

2) Based on NN novel alleviating computation con-
trol approach, at each design step, F-norm parameters and
unknown constants are used to approximate the bound of
optimal weight vector of NN and the approximation error.
Thus, this approach needs to adjust only one parameter rather
than the elements of the optimal approximation vectors of
NN. As a result, compared with the traditional back-stepping-
based and approximation-based scheme for nonlinear sys-
tems [4]–[14], [17], [23], [27], [29], [37], [38], the approach
needs to adjust fewer parameters and the computational bur-
den is significantly alleviated.

The rest of this paper is organized as follows. Preliminaries
and problem formulation and are explained in Sect. 2. A novel
adaptive NN tracking control design procedure is presented in
Sect. 3. Simulation is demonstrated in Sect. 4 to illustrate the
availability of the approach, Sect. 5 gives the conclusion.

II. PROBLEM STATEMENTS AND PRELIMINARIES
A. PRELIMINARIES FORMULATION AND
SYSTEM DESCRIPTIONS
In this paper, we focus on a class of uncertain nonlinear time-
varying non-strict feedback systems with unknown nonlin-
earities and non-symmetrical dead-zone inputs as follows:

ẋ1 = g1(x1)x2 + f1(x)+41(t),
ẋi = gi(x i)xi+1 + fi(x)+4i(t)

(i = 2, . . . , n− 1)
ẋn = gn(x)u(t)+ fn(x)+4n(t)
y = x1.

(1)

where the non-symmetrical dead-zone with input v(t) and
output u(t) as shown in Fig. 1, and the dynamic model
of unknown non-strict feedback dead-zone nonlinear sys-
tems [26] can be described as:

u(t) = D(v(t)) =


mr (v(t)) if v(t) > br ,
0 if bl < v(t) < br ,
ml(v(t)) if v(t) 6 bl .

(2)
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where x i = [x1, x2, . . . , xi]T ∈ Ri (i = 1, 2, . . . , n), x =
[x1, x2, . . . , xn]T ∈ Rn, and y ∈ R are the state vector and
output of the systems respectively. u(t) ∈ R is the input
of the system (output of the dead-zones ); v(t) ∈ R is
the input to dead-zone. In this paper, fi(·), i = 1, 2, . . . , n
and gi(·), i = 1, 2, . . . , n are unknown smooth nonlinear
functions with fi(0) = 0, gi(0) = 0; 4i(·), i = 1, 2, . . . , n
are smooth uncertain disturbance. mr (·), ml(·) for dead-zone
are unknown nonlinear smooth functions; br , bl represent
unknown right and left slopes of dead-zone and dead-zone
breakpoint parameters respectively.

The control objective is to design robust adaptive NN
controllers v(t) for the non-strict feedback systems (1), such
that the following can be observed:

1) The system output y(t) = x1 can track the desired
trajectory reference signal yd (t) very small;
2) All the signals in the closed-loop systems are uniformly

ultimately bounded. Where yd (t) and its kth order derivative
y(k)d (t) (k = 1, 2, . . . , n) are assumed to be bounded and
continuous.

Similar to [32], [32], to facilitate control system design,
we need the following Assumptions for the dead-zone of the
control problem investigated in this paper.
Asusmption 1 [26], [28]: The dead-zone outputs u(t) is

assumed to be not available and the parameters br and bl are
assumed to be unknown constants, but their signs are known,
i.e., br > 0 and bl < 0.
Remark 1:As stated in [25], [27], [32], [33], this non-strict

feedback nonlinear model with unknown dead-zone input is
a typical model for a hydraulic servo valve or a servo motor
in many practical industrial mechanical processes. However,
many results in these papers were based on traditional back-
stepping technique as well as the approximation features
of FlSs or NN [17], [23], as we known that in the recur-
sive process of these approximation and backstepping-based
approaches, as the order increased, the design procedure can
cause ’explosion of complexity’ [25], [27], [33], many adap-
tive parameters were needed to be adjusted [29]–[33] even
together with dynamic surface control (DSC) method [12],
therefore, the online computation burden is rather heavy,
especially in dealing with MIMO or non-strict feedback
nonlinear systems [17], [23]. Different from these results
[29]–[33], or the optimal control method to compensate the
dead-zone [36], in this paper, we will explore a direct novel
alleviating computation NN control method for nonlinear
non-strict feedback systems.
Asusmption 2 [26]: Assume that the dead-zones’ left

and right growth functions mr (·), ml(·) are smooth, and
there exist unknown positive constants kl0, kl1, kr0, kr1, such
that

0 < kl0 6 m′l(v(t)) 6 kl1,∀v(t) ∈ (−∞, bl],

0 < kr0 6 m′r (v(t)) 6 kr1,∀v(t) ∈ [br ,+∞),

where m′r (v(t)) =
dmr (z)
dz |z=v,m

′
l(v(t)) =

dml (z)
dz |z=v.

In general, for convenience, mr (v(t)) and ml(v(t)) in above
Eqs. are assumed to be true for v(t) ∈ (−∞,ml] and for
v(t) ∈ [mr ,+∞) respectively.
According to the differential mean value theorem, there

exist ξl ∈ (−∞, bl] and ξr ∈ [br ,+∞) such that

ml(v(t))− ml(bl) = m′l(ξl(v(t)))(v(t)− bl),

for ξl(v(t)) ∈ (v(t), bl) or (bl, v(t)). and

mr (v(t))− mr (br ) = m′r (ξr (v(t)))(v(t)− br ),

for ξr (v(t)) ∈ (v(t), br ) or (br , v(t)).
Now define vectors 8(t) and 2(t) as follows:

8(t) = [ϕr (t), ϕl(t)]T ,

2(t) = [m′r (ξr (v(t))),m
′
l(ξl(v(t)))]

T ,

and where

ϕr (t) =

{
1 if v(t) > bl,
0 if v(t) 6 bl,

ϕl(t) =

{
1 if v(t) < br ,
0 if v(t) > br ,

Based on Assumption 2, the dead-zone model (2) can be
redefined as follows:

u(t) = D(v(t)) = 2T (t)8(t)v(t)+ d(v), (3)

d(v) can be calculated from Assumption 2 and above
equations:

d(v(t)) =


−m′r (ξr (v(t)))br , if v(t) > br ,
−[m′l(ξl(v(t)))
+m′r (ξr (v(t)))]v(t), if bl < v(t) < br ,
−m′l(ξl(v(t)))bl, if v(t) 6 bl,

(4)

where ξl(v) ∈ (v, bl)(v < bl); ξl(v) ∈ (bl, v)(bl < v < bv);
ξr (v) ∈ br , v(br < v); ξr (v) ∈ (v, br )(bl < v < bv).
Asusmption 3: Assume that the signs of gi(x i), (i =

1, 2, . . . , n) are known, and there exist positive parameters
gi0 and gi1, satisfying |gi(·)| > gi0 > 0, ∀ x i ∈ �i ⊂ Ri,
and |gi(·)| 6 gi1, ∀ x i ∈ �i ⊂ Ri. Without loss of generality,
we assume that gi0 < gi(·) < gi1 <∞ [3].
Remark 2: In this paper, dead-zone output u(t) is assumed

to be not available, parameters bl and br are assumed to
be unknown but with br > 0 and bl < 0 [33]–[35].
In addition, according to Assumption 2, we conclude that
|d(v)| 6 p∗, and p∗ is an unknown positive constant and
can be chosen as p∗ = (kl1 + kr1)max{br ,−bl}. There
exist positive constant β0, satisfying β0 6 min{kl0, kr0}.
For unknown external disturbance 4i(t), there exist positive
parameters d∗ satisfying |4i(t)| 6 d∗ [33]–[35].
Asusmption 4 [17], [23]: There exist strictly increasing

smooth functions φi(·) : R+ → R+, with φi(0) = 0, such
that

|fi(x)| 6 φi(‖x‖), i = 1, 2, . . . , n (5)
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Remark 3 [17], [23]:According to Assumption 4, we con-
clude that if there exist ai > 0(i = 1, 2, . . . , n), the func-
tion φi(‖x‖) in the Assumption 4 can be deduced that
φi(
∑n

i=1 ai) 6
∑n

i=1 φi(nai), Because φi(s) is smooth and
φi(0) = 0, the following inequality holds φi(

∑n
i=1 ai) 6∑n

i=1 naihi(nai), where hi(s) is a smooth function, satisfying
φi(s) < shi(s), such a property will be used to cope with the
structure of non-feedback [17], [23].

B. RADIAL BASIS FUNCTION NEURAL NETWORK(RBF NN)
In this paper, we will exploit RBF neural networks to approx-
imate the unknown nonlinearities for system (1).

Such as, an unknown smooth nonlinear function ψ(Z ) :
R → R will be approximated on a compact set � by the
following RBF neural network

ψ(Z ) = W ∗T ξ (Z )+ ς (6)

where W ∗ = [W1,W2, . . . ,Wm]T ∈ Rm is an optimal
constant weight vector, and ξ (Z ) = [ξ1(Z1), . . . , ξm(Zm)]T

: � → Rm is a vector-valued function defined in Rm,
denoted the components of ξi(Z ) by ρi(Zi),i = 1, . . . ,m.
ρi(Zi) is called a basis function with the neural number
m > 1, commonly chosen as Gaussian function, ρi(Zi) =
exp

[
−(Zi − %i)2/η2

]
, where %i ∈ �,i = 1, . . . , m are

constant vectors called the center of the basis function, and
η > 0 is a real number called the width of basis function.

As pointed out in [5] and [6], according to the approxi-
mation property of the RBF network, for a continuous real-
valued function ψ(Z ) : � → R, � is a compact, and any
ςH > 0, by appropriately choosing %i ∈ �and η, i =
1, . . . ,m, for some sufficiently large integer m, there exists
an ideal weight vector W ∗ ∈ Rm such that the RBF network
W T ξ (Z ) can approximate the given function ψ(Z )with the
approximation error bounded by ςH .

sup
Z∈�
|ψ(Z )−W T ξ (Z )| 6 ς

where ς = ψ(Z )−W T ξ (Z ) and ς denotes the neural network
inherent approximation error with |ς | ≤ ςH [5], [6].
Remark 4: In this paper, based on F-norm approximation

of NN, the proposed direct novel alleviating NN tracking
control could algorithm guarantee that the adaptive adjusted
parameters here are only one no matter how many states in
the design procedure. Thus, this new approach can alleviate
the online computation burden and improve the robust control
performance.

III. ADAPTIVE ROBUST RBF NN CONTROL DESIGN
AND PERFORMANCE ANALYSIS
Different from the similar backstepping-based results in
feedback form with unknown dead-zone inputs in [1]–[6],
[12]–[16], [29]–[34], [38], in this section, we will discuss a
novel alleviating computation adaptive NN approximation-
based tracking control approach in details for the nonlinear
non-strict feedback plant in (1). The concrete design proce-
dure contains n steps. First, from step 1 to step n− 1, virtual

controllers αi and adaptive laws θ̂i, δ̂i, (i = 1, 2, . . . , n − 1)
will be constructed, in step n, actual controller v(t) will be
designed to ensure that the whole system is stable and the
adaptive laws θ̂i, δ̂i will be given in the following design
procedure.

A. ADAPTIVE NN DESIGNING PERFORMANCE
The coordinate transformation is given as follows:{

z1 = x1 − yd
zi = xi − αi−1, (i = 1, 2, . . . n)

(7)

where αi−1 (i = 1, 2, . . . , n) are virtual controllers, which
will be determined in i − 1th steps. To make the system
achieve the desired performance, the system (1) is consid-
ered to be a series of subsystems. Different from designing
a fractional order controller, here, based on backstepping
design technique, NN approximation and the alleviating algo-
rithm, we will give the detailed feasible virtual control signals
controller, NN adaptive laws and actual controller design
procedure in the following steps.

The first feasible virtual control signal α1 and adaptation
laws θ̂1, δ̂1are considered as follows:

α1 = (
1

1+ g11
)[−c1z1 −

θ̂21 z1||ξ1(Z1)||
2

θ̂1|z1|||ξ1(Z1)|| + τ
(1)
1

−
δ̂21z1

δ̂1|z1| + τ
(2)
1

] (8)

˙̂
θ1 = −ρ

(1)
1 θ̂1 + γ

(1)
1 |z1|||ξ1(Z1)|| (9)

˙̂
δ1 = −ρ

(2)
1 δ̂1 + γ

(2)
1 |z1| (10)

where parameters c1 > 0, τ (1)1 > 0, τ (2)1 > 0, ρ11 > 0,
ρ21 > 0, γ (1)

1 > 0 and γ (2)
1 > 0 are positive design constants

to be designed. θ̂1, δ̂1 are adaptive adjusted parameters to be
designed later. Z1 = [zT1 , θ̂

T
i , yd , y

(1)
d ]T ∈ R4, ξ1(Z1) is basis

function of NN.
The ith feasible virtual control signal αi and adaptation

laws θ̂i, δ̂iare considered as follows:

αi = (
1

1+ gi1
)[−cizi −

θ̂2i zi||ξi(Zi)||
2

θ̂i|zi|||ξi(Zi)|| + τ
(1)
i

−
δ̂2i zi

δ̂i|zi| + τ
(2)
i

− zi−1] (11)

˙̂
θi = −ρ

(1)
i θ̂i + γ

(1)
i |zi|||ξi(Zi)|| (12)

˙̂
δi = −ρ

(2)
i δ̂i + γ

(2)
i |zi| (13)

where parameters ci > 0, τ (1)i > 0, τ (2)i > 0 and ρ(1)i > 0,
ρ
(2)
i > 0, γ (1)

i > 0 and γ (2)
i > 0 are positive design constants

to be designed later. θ̂i, δ̂i are adaptive adjusted parameters
to be designed later. Zi = [zTi ,

¯̂
θTi , (ȳ

(i)
d )]T ∈ R3i+1, ¯̂θi =

[θ̂1, θ̂2, . . . , θ̂i]T ∈ Ri, ȳ(i)d = [yd , y′d , . . . , y
(i−1)
d ] ∈ R(i+1),

ξi(Zi) is basis function of NN.
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Finally, the independent actual controller v(t) and the nth
adaptive laws θ̂n, δ̂n are designed as follows:

v(t) = (
1

1+ gn1
)
1
β0

[−cnzn −
θ̂2n zn||ξn(Zn)||

2

θ̂n|zn|||ξn(Zn)|| + τ
(1)
n

−
δ̂2nzn

δ̂n|zn| + τ
(2)
n
− zn−1 − p∗] (14)

˙̂
θn = −ρ

(1)
n θ̂n + γ

(1)
n |zn|||ξn(Zn)|| (15)

˙̂
δn = −ρ

(2)
n δ̂n + γ

(2)
n |zn| (16)

where parameters cn > 0, τ (1)n > 0, τ (2)n > 0, ρ(1)n > 0,
ρ
(2)
n > 0, γ (1)

n > 0 and γ (2)
n > 0 are positive constants to

be designed later. θ̂n, δ̂n are adaptive adjusted parameters to
be designed later. Zn = [zTn ,

¯̂
θTn , (ȳ

(n−1)
d )]T ∈ R3n+1, ¯̂θn =

[θ̂1, θ̂2, . . . , θ̂n]T ∈ Ri, ȳ
(i)
d = [yd , y′d , . . . , y

(n−1)
d ] ∈ R(n+1),

ξn(Zn) is basis function of NN.
The following four lemmas will be used for control design

in this Section.
Lemma 1 [17]: For any arbitrary ω ∈ R, and ε > 0,

the inequality holds, 0 6 |ω| − ω tanh(ω
ε
) 6 σε. with

σ = 0.2785.
Lemma 2 [35]: for any positive variable a, b ∈ Rn,

a > 0, b > 0, inequalities a− a2
a+b 6 b hold.

Lemma 3 (Young’s Inequality [35]): for any vectors x, y ∈
Rn, the inequality xT y 6 ap

p ||x||
p
+

1
qaq ||y||

q hold, where
a > 0, p > 1, q > 1, and (p− 1)(q− 1) = 1.
Lemma 4: For the coordinate transformations zi = xi −

αi − 1, for i = 1, 2, . . . , n, the following result holds.

‖x‖ 6
n∑
i=1

|zi||ψi(zi, θ̂i, δ̂i)| + |dh| (17)

where ψi(zi, θ̂i, δ̂i) = −ci−
θ̂2i

θ̂i|zi|+τ
(1)
i

−
δ̂2i

δ̂i|zi|+τ
(2)
i

− z(i−1), for

i = 1, 2, . . . , n− 1, and ψn(·) = 1, dh = yd + p∗.
Proof: Let α0 = yd , form the virtual controller αi, i =

1, 2, . . . , n in (8), (11) and the fact that ‖ξ (Zi)‖ 6 1, for i =
1, 2, . . . , n, then, ‖x‖ becomes,

‖x‖ 6
n∑
i=1

|xi| =
n∑
i=1

|zi + αi| 6
n∑
i=1

(|zi| + |αi|)

6
n∑
i=1

|zi| +
n−1∑
i=1

(ci + zi−1 +
θ̂2i

θ̂i|zi| + τ
(1)
i

+
δ̂2i

δ̂i|zi| + τ
(2)
i

− z(i−1))+ |yd |

6
n∑
i=1

|ψi(zi, θ̂i, δ̂i)||zi| + |dh|

This complete the proof. �
Remark 4: Lemma 4 gives the relationship between ‖x‖

and error signals zi, (i = 1, 2, . . . , n), together with (5), plays
an important role in this paper, due to the nonlinear function
fi(x) contains the whole state variables in the ith differentiate

equation, which cannot be estimated by RBF NN directly.
Then, it provide a variable separation approach to decompose
the function fi(x) into a sum bounded functions with respect
to zi, (i = 1, 2, , . . . , n).
The main results are presented by the following theorem.
Theorem 1: Consider the closed-loop system with

unknown dead-zone input of the plant (1) and (2), the virtual
controllers α1 in (8),αi in (11) and adaptive laws ˙̂θ1 in (9),
˙̂
δ1 in (10), ˙̂θi in (12), ˙̂δi in (13), ˙̂θn in (15), ˙̂δn in (16), and
the actual controller v(t) in (14), under Assumptions 1-4.
Suppose that for i = 1, 2, . . . , n, the unknown functions
Hi(Zi) can be approximated by RBF NN system W T

i ξ (Zi) in
the sense that the approximation error ςi is bounded, then
based on the bounded initial conditions, according to the
Lyapunov stable analysis methods.

1) It can guarantee that all the signals in the closed-loop
system are ultimately uniformly bounded(UUB).

2) The output y = x1 can track the reference signals yd
and make sure that the tracking error convergence to a small
neighborhood of zero.

Proof: There will contain n steps.
Step1: Consider the first part in plant (1) ẋ1 = g1(x1)x2+

f1(x) + 41(t). Define the first tracking error variable z1 =
x1 − yd , and along its trajectory, we have ż1 = ẋ1 − ẏd =
g1(x1)x2 + f1(x)+41(t)− ẏd .
Define the first smooth Lyapunov function as follows:

V1 =
1
2
z21 +

1

2γ (1)
1

θ̃21 +
1

2γ (2)
1

δ̃21 (18)

where δ̃1 = δ̂1 − δ1 and θ̃1 = θ̂1 − θ1, parameters γ (1)
1 , γ (2)

1
will be designed in the following analysis.

The time derivative of V1 is

V̇1 = z1ż1 +
θ̃1
˙̂
θ1

γ
(1)
1

+
δ̃1
˙̂
δ1

γ
(2)
1

= z1(g1(x1)(z2 + α1)+ f1(x)+41(t)− ẏd )

+
θ̃1
˙̂
θ1

γ
(1)
1

+
δ̃1
˙̂
δ1

γ
(2)
1

(19)

According to Assumption 4 and Lemma 1-4, we conclude
that,

z1f1(x) 6 |z1|φ1(‖x‖)

6 |z1|φ1(
n∑
j=1

(zjψj)+ |dh|)

6 |z1|
n∑
j=1

[φ1(|zjψj|)+ |dh|]

6
n∑
j=1

z21
2
+

n∑
j=1

1
2
z2j φ̄

2
1 (|zjψj|)

+ |z1|φ1((n+ 1)|dh|) (20)

where φ̄1(|zjψj|) = (n+ 1)|ψj|h1((n+ 1)zjψj)
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And together with Lemma 1, we conclude another
inequality.

|z1|φ1((n+ 1)|dh|) 6 z1U1 tanh(
z1U1

ε1
)+ σε1 (21)

where U1 = φ1((n+ 1)|dh|)
Substituting the above inequalities (20), (21), the virtual

control law (8), and adaptive laws (9), (10) into the derivative
of Lyapunov functionV1 (18), we obtain,

V̇1 6 z1(g1(x1)x2 + δ1(t)− ẏd )+
n∑
j=1

1
2
z2j φ̄

2
1 (|zjψj|)

+
nz21
2
+ |z1|φ1((n+ 1)|dh|)+

θ̃1
˙̂
θ1

γ
(1)
1

+
δ̃1
˙̂
δ1

γ
(2)
1

(22)

Step i: (26i6n− 1), in this step, we will construct the ith
Lyapunov function.

Define the ith smooth Lyapunov function as follows:

Vi =
1
2
z2i +

1

2γ (1)
i

θ̃2i +
1

2γ (2)
i

δ̃2i (23)

where δ̃i = δ̂i− δi and θ̃i = θ̂i− θi, parameters γ (1)
i , γ (2)

i will
be designed in the following analysis. where zi = xi − αi−1,
consider equation ẋi = gi(x̄i)xi+1 + fi(x)+4i(t) in plant (1).

The time derivative of Vi at t is.

V̇i = zi(gi(x̄i)xi+1 + fi(x)+4i(t)− α̇i−1)+
θ̃i
˙̂
θi

γ
(1)
i

+
δ̃i
˙̂
δi

γ
(2)
i
(24)

where αi−1 = α(x1, . . . , xi−1; θ̂1, . . . , θ̂i−1; δ̂1, . . . , δ̂i−1;
yd , y′d , . . . , y

(i−1)
d ) and the derivative of αi−1 is as follows:

α̇i−1 =

i−1∑
k=1

∂αi−1

∂xk
fk (x)+

i−1∑
k=1

∂αi−1

∂xk
(gk (x̄k )xk+1 +4k (t))

+

i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk +

i−1∑
k=1

∂αi−1

∂δ̂k

˙̂
δk +

i−1∑
k=0

∂αi−1

∂y(k−1)d

y(k)d

(25)

Substituting above equation (25) into the derivative of the
Lyapunov function (24), we have.

V̇i = zi(gi(x̄i)xi+1 −
i−1∑
k=1

∂αi−1

∂xk
(gk (x̄k )xk+1))

+ zi(δi(t)−
i−1∑
k=1

∂αi−1

∂xk
δk (t))− zi

i∑
k=1

∂αi−1

∂xk
fk (x)

+ zi(
i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk +

i−1∑
k=1

∂αi−1

∂δ̂k

˙̂
δk +

i−1∑
k=0

∂αi−1

∂y(k−1)d

y(k)d )

+
θ̃i
˙̂
θi

γ
(1)
i

+
δ̃i
˙̂
δi

γ
(2)
i

(26)

where ∂αi−1
∂xi
= −1.

Based on Assumption 4, Remark 3, and Lemma 4, we con-
clude the following inequality,

−zi
i∑

k=1

∂αi−1

∂xk
fk (x)

6
i∑

k=1

∣∣∣∣zi ∂αi−1∂xk

∣∣∣∣ |fk (x)|
6

i∑
k=1

∣∣∣∣zi ∂αi−1∂xk

∣∣∣∣φk (‖x‖)
6

i∑
k=1

n∑
j=1

∣∣∣∣zi ∂αi−1∂xk

∣∣∣∣ |zj|φ̄k (|zjψj|)
+

i∑
k=1

∣∣∣∣zi ∂αi−1∂xk

∣∣∣∣φk ((n+ 1)dh)

6
i∑

k=1

n∑
j=1

1
2
z2i

(
∂αi−1

∂xk

)2

+

i∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)

+

i∑
k=1

∣∣∣∣zi ∂αi−1∂xk

∣∣∣∣φk ((n+ 1)|dh|) (27)

where φ̄k (|zjψj|) = (n+ 1)|ψj|hk ((n+ 1)|zjψj|)).
Based on Lemma 1, we have
i∑

k=1

∣∣∣∣zi ∂αi−1∂xk

∣∣∣∣φk ((n+ 1)|dh|)

6 ziUi tanh
(
ziUi
εi

)
+ σεi (28)

whereUi =
∑i

k=1
∂αi−1
∂xk

φk ((n+1)|dh|), and εi, σ are positive
constants to be designed.

By substituting inequalities (27) and (28) back into (26),
we have,

V̇i 6 −zi

(
i∑

k=1

∂αi−1

∂xk
(gk (x̄k )xk+1)

)
+
θ̃i
˙̂
θi

γ
(1)
i

+
δ̃i
˙̂
δi

γ
(2)
i

+ zi

(
i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk +

i−1∑
k=1

∂αi−1

∂δ̂k

˙̂
δk +

i−1∑
k=0

∂αi−1

∂y(k−1)d

y(k)d

)

− zi

(
i∑

k=1

∂αi−1

∂xk
4k (t)

)
+ ziUi tanh

(
ziUi
εi

)
+ σεi

+

i∑
k=1

n
2
z2i

(
∂αi−1

∂xk

)2

+

i∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|) (29)

Step n: Choose the nth Lyapunov function candidate

Vn =
1
2
z2n +

1

2γ (1)
n
θ̃2n +

1

2γ (2)
n
δ̃2n (30)

In this step, based on plant ẋn = gn(x̄n)u + fn(x) +
4n(t), we are going to construct the actual controller
v(t). According to coordination, we have żn = ẋn −
α̇n−1 = gn(x̄n)u + fn(x) + 4n(t) − α̇n−1, where
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αn−1 = α(x1, . . . , xn−1; θ̂1, . . . , θ̂n−1; δ̂1, . . . , δ̂n−1; yd ,
y′d , . . . , y

(n−1)
d ) and the derivative of αn−1 is as follows:

α̇n−1 =

n−1∑
k=1

∂αn−1

∂xk
(fk (x)+ gk (x̄k )xk+1 +4k (t))

+

n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk +

n−1∑
k=1

∂αn−1

∂δ̂k

˙̂
δk +

n−1∑
k=0

∂αn−1

∂y(k−1)d

y(k)d

(31)

Along the trajectory of Vn, we require

V̇n = znżn +
θ̃n
˙̂
θn

γ
(1)
n
+
δ̃n
˙̂
δn

γ
(2)
n

= zn(gn(x̄n)(2T (t)8(t)v(t)+ d(v))

− zn

(
n−1∑
k=1

∂αn−1

∂xk
(gk (x̄k )xk+1)+4k (t)

)

− zn

(
n∑

k=1

∂αn−1

∂xk
fk (x)

)
+
θ̃n
˙̂
θn

γ
(1)
n
+
δ̃n
˙̂
δn

γ
(2)
n

+ zn

(
n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk +

n−1∑
k=1

∂αn−1

∂δ̂k

˙̂
δk

)

+ zn

(
n−1∑
k=0

∂αn−1

∂y(k−1)d

y(k)d

)
(32)

Based on Assumption 4, Remark 3, and Lemma 4,
we obtain,

−zn
n∑

k=1

∂αn−1

∂xk
fk (x)

6
n∑

k=1

∣∣∣∣zn ∂αn−1∂xk

∣∣∣∣ |fk (x)|
6

n∑
k=1

∣∣∣∣zn ∂αn−1∂xk

∣∣∣∣φk (‖x‖)
6

n∑
k=1

n∑
j=1

∣∣∣∣zn ∂αn−1∂xk

∣∣∣∣ |zj|φ̄k (|zjψj|)
+

n∑
k=1

∣∣∣∣zn ∂αn−1∂xk

∣∣∣∣φk ((n+ 1)dh)

6
n∑

k=1

n∑
j=1

1
2
z2n

(
∂αn−1

∂xk

)2

+

n∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)

+

n∑
k=1

∣∣∣∣zn ∂αn−1∂xk

∣∣∣∣φk ((n+ 1)|dh|) (33)

where φ̄k (|zjψj|) = (n+ 1)|ψj|hk ((n+ 1)|zjψj|)).
Based on Lemma 1, we have,
n∑

k=1

∣∣∣∣zn ∂αn−1∂xk

∣∣∣∣φk ((n+ 1)|dh|)

6 znUn tanh
(
znUn
εn

)
+ σεn (34)

where Un =
∑n

k=1
∂αn−1
∂xk

φk ((n + 1)|dh|), and εn, σ are
positive constants to be designed.

Substitute these inequalities (33), (34) into V̇n (32),
we have:

V̇n 6 zn(gn(x̄n)(2T (t)8(t)v(t)+ d(v))

− zn

(
n−1∑
k=1

∂αn−1

∂xk
(gk (x̄k )xk+1)+4k (t)

)

+

n∑
j=1

n
2
z2i

(
∂αn−1

∂xk

)2

+

n∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)

+ znUn tanh
(
znUn
εn

)
+ σεn +

θ̃n
˙̂
θn

γ
(1)
n
+
δ̃n
˙̂
δn

γ
(2)
n

− zn

(
n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk +

n−1∑
k=1

∂αn−1

∂δ̂k

˙̂
δk

)

− zn

(
n−1∑
k=1

∂αn−1

∂y(k−1)d

y(k)d

)
(35)

Now, we choose the whole Lyapunov function for the
plant (1), V =

∑n
i=1 Vi, the derivative of V is concluded

based on the above analysis.

V̇ 6 z1

(
g1(x1)x2 +41(t)− ẏd + U1 tanh

(
z1U1

ε1

))
+

n∑
j=1

1
2
z2j φ̄

2
1 (|zjψj|)+

nz21
2
+ σ1ε1)+

θ̃1
˙̂
θ1

γ
(1)
1

+
δ̃1
˙̂
δ1

γ
(2)
1

−

n−1∑
i=2

zi

[
i∑

k=1

∂αi−1

∂xk
(gk (x̄k )xk+1 +4k (t))

]

−

n−1∑
i=2

zi

[
i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk +

i−1∑
k=1

∂αi−1

∂δ̂k

˙̂
δk

]

−

n−1∑
i=2

zi

[
i−1∑
k=1

∂αi−1

∂y(k−1)d

y(k)d

]
+

n−1∑
i=2

σεi

+

n−1∑
i=2

zi

[
Ui tanh

(
ziUi
εi

)
+

i∑
k=1

n
2
zi

(
∂αi−1

∂xk

)2
]

+

n−1∑
i=2

 i∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)+

θ̃i
˙̂
θi

γ
(1)
i

+
δ̃i
˙̂
δi

γ
(2)
i


+ zn(gn(x̄n)(2T (t)8(t)v(t)+ d(v))

− zn

(
n−1∑
k=1

∂αn−1

∂xk
(gk (x̄k )xk+1)+4k (t)

)

− zn

(
n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk +

n−1∑
k=1

∂αn−1

∂δ̂k

˙̂
δk

)

+

n∑
j=1

n
2
z2n

(
∂αn−1

∂xk

)2

+

n∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)
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+ znUn tanh
(
znUn
εn

)
+ σεn +

θ̃n
˙̂
θn

γ
(1)
n
+
δ̃n
˙̂
δn

γ
(2)
n

− zn

(
n−1∑
k=1

∂αn−1

∂y(k−1)d

y(k)d

)
(36)

Note that,

n∑
j=1

1
2
z2j φ̄

2
1 (|zjψj|)+

n∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)

+

n−1∑
i=2

i∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)

=

n∑
i=1

i∑
k=1

n∑
j=1

1
2
z2j φ̄

2
k (|zjψj|)

=

n∑
i=1

z2i

n∑
k=1

C(n, k)φ̄2k (|zjψj|)

where c(n, k) = (n− k + 1)/2
Substituting this equality in to above V̇ , we get,

V̇ 6 z1

(
g1(x1)(z2+α1)+41(t)− ẏd + U1 tanh

(
z1U1

ε1

))
+
nz21
2
−

n−1∑
i=2

zi(gk (x̄k )(zk+1 + αk )+4i(t))

−

n∑
i=2

zi

[
i−1∑
k=1

∂αi−1

∂xk
(gk (x̄k )xk+1 +4k (t))

]

−

n∑
i=2

zi

[
i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk +

i−1∑
k=1

∂αi−1

∂δ̂k

˙̂
δk

]

−

n∑
i=2

zi

[
i−1∑
k=1

∂αi−1

∂y(k−1)d

y(k)d

]

+

n∑
i=2

zi

[
Ui tanh

(
ziUi
εi

)
+

i∑
k=1

n
2
zi

(
∂αi−1

∂xk

)2
]

+

n∑
i=1

θ̃i
˙̂
θi

γ
(1)
i

+

n∑
i=1

δ̃i
˙̂
δi

γ
(2)
i

+

n∑
i=1

σεi

+ zn(gn(x̄n)(2T (t)8(t)v(t)+ d(v))

+

n∑
i=1

z2i

n∑
k=1

C(n, k)φ̄2k (|zjψj|) (37)

To facilitate the adaptive controller design, we will use RBF
neural networks to approximate the nonlinearities, now define
H1(·),Hi(·),Hn(·) as follows:

H1(Z1) = 41(t)− ẏd + U1 tanh
(
z1U1

ε1

)
+
nz1
2

+ z1
n∑
i=1

C(n, k)φ̄2k (|z1ψ1|) (38)

For Hi, (i = 2, 3, . . . , n), we define,

Hi(Zi) = −
i−1∑
k=1

∂αi−1

∂xk
(gk (x̄k )xk+1 +4k (t))

−

i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk −

i−1∑
k=1

∂αi−1

∂δ̂k

˙̂
δk −

i−1∑
k=0

∂αi−1

∂y(k−1)d

y(k)d

+Ui tanh
(
ziUi
εi

)
−

i∑
k=1

n
2
zi

(
∂αi−1

∂xk

)2

+ zi
n∑

k=1

C(n, k)φ̄2k (|ziψi|) (39)

Then, substituting Hi(Zi), (i = 1, 2, . . . , n) into V̇ in (37),
we obtain:

V̇ 6 z1(g1(x1)(z2 + α1)+ H1)

+

n−1∑
i=2

zi(gi(x̄i)(zi+1 + αi)+ Hi)

+ zn(gn(x̄n)(2T (t)8(t)v(t)+ d(v)+ Hn)

+

n∑
i=1

θ̃i
˙̂
θi

γ
(1)
i

+

n∑
i=1

δ̃i
˙̂
δi

γ
(2)
i

+

n∑
i=1

σεi (40)

According to the definition of Hi(Zi) and the Lemma1-4 and
Assumption 1-4, it can conclude Hi(Zi) are also smooth
functions, then, based on the universe approximation lemma,
we can use RBF NN to approximate the unknown smooth
function Hi(Zi) on the compact space �1, and Hi(Zi) can be
rewritten as

Hi(Zi) = W ∗Ti ξi(Zi)+ ςi (41)

where Zi is the input of the NN system, W ∗Ti and ςi
denote the ideal optimal approximation parameter vector and
the NN approximator error, respectively. For simplification,
we define

||W ∗Ti || =
1

1+ gi1
θi

Throughout this paper, in order to alleviate online approx-
imation parameters, we assume the following Assumption:
Assumption 5:Based on the definition of θi, on the compact

�i, we assume that the optimal approximation parameter
vector W ∗Ti and the NN approximator errors ςi, satisfy:

||W T
i || 6 θi, |ςi| 6 δi (42)

where i = 1, 2, . . . , n, parameters θi > 0 and δi > 0
are unknown constants. Zi, W ∗i and ςi will be defined later.
θ̂i > 0, δ̂i > 0 will be used to denote estimations of the θi and
δi respectively. Throughout this paper, ˜(·) = ˆ(·)− (·).
Remark 5: There are a lot of significant results regarding

adaptive fuzzy or NN control or FNN control algorithms
for nonlinear systems with unknown dead-zones. However,
many of these approximation control methods go through
updating the estimations of each optimal parameter of FLSs
[7]–[11], [20]–[23] NN, FNN directly, resulting the heavy
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online computation burden due to the rules of fuzzy, the hid-
den nodes of NN, or FNN are rather large generally. In this
paper, Assumption 5 relaxes the conditions that the approxi-
mation errors or external disturbance are bounded with only
unknown constants rather than known constants or satisfying
square integrable condition. Only estimations θ̂i, δ̂i, (i =
1, 2, . . . , n, of parameters θi, δi need to adaptively adjusted.
Thus, this novel proposed approach reduces the adjusted
parameters and alleviate the on-line computation burden.

According to approximation functions, Hi, (i = 1,
2, . . . , n), virtute controllers α1, . . . , αn−1, and actual con-
troller v(t), and the adaptive laws θ̂i, δ̂i, (i = 1, 2, . . . , n)
back into V̇ . Based on Young’s inequalities, we obtain the
following inequalities:

ziHi 6 |zi|θ∗Ti ‖ξi(Zi)‖ + |zi||δi|, (i = 1, 2, . . . , n− 1)

zn(gn(x̄n)(2T8v(t)+ d(v)+ Hn)

6 zngn1β(v(t)+ p∗)+ znθ∗Tn ‖ξn(Zn)‖ + |zn||δn|

For i = 1, 2, . . . , n, based on the Lemma 4, we could
conclude the following inequalities hold:

ziθ∗Ti ξi(Zi)−
θ̂2i z

2
i ||ξi(Z1)||

2

θ̂i|z1|||ξi(Zi)|| + τ
(1)
i

+
θ̃i
˙̂
θi

γ
(1)
i

6 |zi|(θ̂i − θ̃i)||ξi(Zi)|| −
θ̂2i z

2
i ||ξi(Zi)||

2

θ̂i|zi|||ξi(Zi)|| + τ
(1)
i

+
1

γ
(1)
i

θ̃i[−ρ
(1)
i θ̂i + γ

(1)
i |zi|||ξi(Zi)||]

6 τ (1)i −
ρ
(1)
i

γ
(1)
i

θ̃iθ̂i 6 τ
(1)
i −

ρ
(1)
i

γ
(1)
i

θ̃2i +
ρ
(1)
i

γ
(1)
i

θ2i (43)

Similarly, based on the adaptation laws (24),(25) and Young’s
inequality, we have

ziδi −
δ̂2i z

2
i

δ̂i|zi| + τ
(2)
i

+
1

γ
(2)
i

δ̃i
˙̂
δi

6 |zi|(δ̂i − δ̃i)−
δ̂2i z

2
i

δ̂i|zi| + τ
(2)
i

+
1

γ
(2)
i

δ̃i(−ρ
(2)
i δ̂i + γ

(2)
i zi)

6 τ (2)i −
ρ
(2)
i

γ
(2)
i

δ̃2i +
ρ
(2)
i

γ
(2)
i

δ2i (44)

By substituting inequality (43), (44) back into (40),
we acquire,

V̇ 6 −
n∑
i=1

[ciz2i +
ρ
(1)
i

γ
(1)
i

θ̃2i +
ρ
(2)
i

γ
(2)
i

δ̃2i ]

+

n∑
i

[
ρ
(1)
i

γ
(1)
i

θ2i +
ρ
(2)
i

γ
(2)
i

δ2i ]+ µi (45)

where µi =
∑n

i=1[τ
(1)
i + τ

(2)
i + σεi] is a constant.

If we choose the appropriate adjusted parameters and con-

stants τ (1)i , τ
(2)
i , σi, εi, ρ

(1)
i , ρ

(2)
i , γ

(1)
i , γ

(2)
i , p∗, d∗, θi, δi and

based on the Assumptions 1-4, Lemmas 1-4 and the RBF
NN approximations, together with the virtual and actual con-
trollers, we will have the following inequalities.

V̇ 6 −µ
n∑
i=1

[
1
2
z2i +

1

2γ (1)
i

θ̃2i +
1

2γ (2)
i

δ̃2i ]+ α (46)

where µ = min
16i6n

{2ci, 2ρ
(1)
i , 2ρ

(2)
i } and

α =

n∑
i=1

[
ρ
(1)
i

γ
(1)
i

θ2i +
ρ
(2)
i

γ
(2)
i

δ2i + µi]

Then, we obtain

V̇ 6 −µV + α (47)

Multiplying both sides of the above Eq. by eµt and it can be
rewritten as

d
(
V (t) eµt

)
/dt ≤ `eµt (48)

Then, integrating the above equation over [0, t], we can
obtain

0 ≤ V (t) ≤
`

µ
+

[
V (0)−

`

µ

]
e−µt (49)

If we note that 0 < e−µt < 1 and (`/µ ) e−µt > 0, then,
we can know the above Eq.holds as

0 ≤ V (t) ≤ `/µ + V (0)

and we can conclude that

|zi| ≤

√
`

µ
+

[
V (0)−

`

µ

]
e−µt

Therefore, it can be shown that all the signals zi, θ̃i, δ̃i
(i = 1, 2, . . . , n) in the closed-loop systems (1) are bounded.
There exists T > 0, for T >

√
2µ/`, satisfying |z1| 6 T

for all t > T , the tracking error z1 = x1 − yd converges to a
neighborhood of zero. The proof is completed. �
Remark 6: Compared with many approximation control

approaches, which involve updating the estimations of each
optimal parameter of FLSs NN, and FNN directly [2]–[4],
[6]–[11], [19], [22], [29]–[31], due to the hidden nodes of
NN, or FNN and the rules of fuzzy are rather large generally,
which result in the heavy online computation burden. Based
on Assumption 5, at each design procedure for each system
in this paper, fewer parameters need to be adjusted, we only
need to approximate the unknown constant for the norm of
the optimal parameter. So, this new approach can improve the
robust control performance and alleviate the online computa-
tion burden.
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IV. SIMULATION EXAMPLE
In this section, based on a practical one-link robot simulation
system and its figure model can be seen in [38], the effec-
tiveness of the presented control technique will be illustrated.
The dynamics of one-link manipulator with the inclusion of
motor [20], [38] can be described by the following equations:{

Dq̈+ Bq̇+ N sin(q) = τ + τd
M τ̇ + Hτ = u− Kmq̇

where τd is the torque disturbance, τ represents the torque
produced by the electrical system [20], [38], q is the link posi-
tion, q̇ is velocity, and q̈ is acceleration.D = 100kg/m2 is the
mechanical inertia. u is the control input used to represent the
electromechanical torque. B = 1Nms/ras is the coefficient
of viscous friction at the joint,Km = 2NM/A is the back-emf
coefficient, H = 0.1F is the armature resistance, N = 10
is a positive constant related to the mass of the load and the
coefficient of gravity [38], and M = 20 H is the armature
inductance [38].

When we introduce the variable change x1 = q, x2 = q̇,
and x3 = τ , and assume that the system exist unknown
disturbance and unknown functions, x = [x1, x2, x3]T is the
state of the system, and y = x1 is system output, u is the input
of the system and the output of the dead-zone. Then, above
one-link system can be re-expressed as

ẋ1 = g1(x1)x2 + f1(x)+41(t),
ẋ2 = g2(x2)x3 + f2(x)+42(t)
ẋ3 = g3(x)u(t)+ f3(x)+43(t)
y = x1.

(50)

where g1(x1) = 1+0.6x21 , f1(x) = ((B/D)x1+x2)x3,41(t) =
exp (−(B/D)(x1 + x2)), g2(x2) = (N/D + cos(x1x2))x2,
f2(x) = (N/M )x1x22 + x2x23 , 42(t) = 1

Km
sin(x2), g3(x) =

x2 + x1x2x23 , f3(x) = ((Km/M ) + sin(x1x2))x3, and 43(t) =
1
Km

sin(x3). Then, we obtain the following third-order uncer-

tain non-strict feedback nonlinear system with unknown
dead-zone input:

ẋ1 = (0.01x1 + x2)x3 + exp (−0.01(x1 + x2))
+ (1+ 0.6x21 )x2

ẋ2 = 0.5x1x22 + x2x
2
3 + (0.1+ cos(x1x2))x2 +

1
2
sin(x2)

ẋ3 = (x2 + x1x2x23 )u+ (0.1+ sin(x1x2))x3 +
1
2
sin(x3)

y = x1
(51)

Choose the initial values x1(0) = y(0) = x2(0) =
0.5, x3(0) = 0.7. The unsymmetrical dead-zone inputs
satisfies

u = D(v) =


mr (v(t)− br ) v(t) > br
0 bl < v(t) < br
ml(v(t)− bl) v(t) 6 bl

the dead-zone break points are chosen as: mr = br =
0.8,ml = bl = 2.5.

The objective of simulation is to apply the proposed novel
adaptive NN tracking control approach for this three-order
system, satisfy 1) the whole signals in this closed-loop system
are bounded, 2) the output y = x1 can track the reference
signal yd = 0.25 sin(t) very well.

Based on the novel adaptive robust NN tracking control
approach in Sec3, the designed adaptive NN virtual controller
αi adaptive laws θi, δi and actual controller v(t) are chosen as
follows:

αi = (
1

1+ gi1
)[−cizi −

θ̂2i zi||ξi(Zi)||
2

θ̂i|zi|||ξi(Zi)|| + τ
(1)
i

−
δ̂2i zi

δ̂i|zi| + τ
(2)
i

− zi−1], i = 1, 2 (52)

v(t) = (
1

1+ g31
)
1
β0

[−c3z3 −
θ̂23 z3||ξ3(Z3)||

2

θ̂3|z3|||ξ3(Z3)|| + τ
(1)
3

−
δ̂23z3

δ̂3|z3| + τ
(2)
3

− z2 − p∗] (53)

˙̂
θi = −ρ

(1)
i θ̂i + γ

(1)
i |zi|||ξi(Zi)||, i = 1, 2, 3 (54)

˙̂
δi = −ρ

(2)
i δ̂i + γ

(2)
i |zi|, i = 1, 2, 3 (55)

where z1 = x1 − yd , z2 = x2 − α1, z3 = x3 − α2,
for i = 1, 2, 3, Zi = [zTi ,

¯̂
θTi , (ȳ

(i)
d )]T , ¯̂θi = [θ̂1, . . . , θ̂i]T ,

ȳ(i)d = [yd , y′d , . . . , y
(i−1)
d ], ξi(Zi) = [ξi1(Zi), . . . , ξi9(Zi)]T ,

i = 1, 2, 3 is basis function of NN.
ξij(Zi) = exp[−(Zi−%ij)

T (Zi−%ij)
η2ij

], (j = 1, 2, . . . , 9).

The initial conditions and design parameters are selected
as follows: θ̂1(0) = θ̂2(0) = θ̂3(0) = 0, δ̂1(0) = δ̂2(0) =
δ̂3(0) = 0.5, c1 = c2 = c3 = 0.5, τ (1)1 = τ

(2)
1 = 0.1, τ (1)2 =

1, τ (2)2 = 0.8, τ (1)3 = 10, τ (2)3 = 0.5, ρ(1)1 = 1, ρ(2)1 = 0.9,
ρ
(1)
2 = 1.5, ρ(2)2 = 9, ρ(1)3 = 1.8, ρ(2)3 = 0.3, γ (1)

1 = 0.9,
γ
(2)
1 = 0.8, γ (1)

2 = γ
(2)
2 = 1.2, γ (1)

3 = γ
(2)
3 = 0.3. β = 9.

and NN center parameters are chosen as %i1 = −7, %i2 =
−5, %i3 = −3, %i4 = −1, %i5 = 0, %i6 = 1, %i7 = 3, %i8 =
5, %i9 = 7, η2ij = 3.

FIGURE 2. Output y and reference signal yd .

The effective simulation results are shown in Figs. 2-5.
Fig. 2 plots the trajectory of output y and the tracking sig-
nal yd . A good tracking performance is achieved and the
trajectories of signals are bounded. We conclude that the
adjusted parameters θ̂1, θ̂2, θ̂3 and adaptive signals δ̂1, δ̂2, δ̂3
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FIGURE 3. Adaptive adjusted parameters θ̂1, θ̂2, θ̂3 and adaptive signals
δ̂1, δ̂2, δ̂3.

FIGURE 4. Trajectory of states signals x2 and x3.

FIGURE 5. Trajectory of input signal v .

are ultimately uniformly bounded in Figs. 3. From Figs.4 we
can see control signals are bounded, and the dead-zone output
(or system input) v is also bounded, and is located in a small
convergence of zero in Figs.5.

From the above simulation results, it can be clearly shown
that the proposed control method can guarantee that all the
signals in the closed systems are UUB, the proposed con-
troller design method is effective. Compared with related
results [20], [22], [23], [38], we need only one adaptive law to
compensate the unknown dead-zones in non-feedback form.
This method can reduce the online computing burden and
simplify the design procedure considerably.

V. CONCLUSION
In this paper, a novel NN alleviating tracking control
approach has been proposed for a class of uncertain

non-strict feedback systems with both asymmetrical dead-
zones inputs and unknown nonlinear functions. Compared
with the existing results, we consider not only asymmetrical
dead-zones, but also non-strict feedback structure. This pre-
sented scheme adopts variable separation technique and adap-
tive method to cope with the non-strict feedback structure and
the unknown dead-zones, the unknown functions have been
approximated by NN. By using two unknown parameters
as the approximation error and the bound of the norm of
the optimal approximation vectors of the NN, the number
of adjusted parameters is alleviated. Furthermore, based on
Lyapunov theorem analysis, it has been shown that all the
signals in the closed-loop systems are UUB and the tracking
error is controlled into a small compact set. Finally, sim-
ulation results illustrate the feasibility and effectiveness of
this approach. In the future, we could explore these method
to more complex systems, such as switched or stochastic
nonlinear non-strict feedback system.
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