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ABSTRACT In this article, a low profile circularly polarized (CP) antenna with wide 3-dB axial ratio
beamwidth (ARBW) is presented. Two-pair of parallel slots are etched on a circular patch and manifested
as magnetic dipoles (MDs). These narrow slots are arranged symmetrically about the axes, and one pair is
orthogonal to another pair of slots. The philosophy of CP radiation across a wide angular range strongly
depends on the spacing between the paired-dipoles, for example spacing of 0.221¢, two-orthogonal far-
field radiated components become equal across a wide-angle. Moreover, this particular spacing between
the paired-dipoles provides a symmetrical electric field distribution along the periphery of the patch, which
ensures the broadside LHCP radiation with wide 3-dB ARBW of 228° and 214° at the plane of ¢ = 0°
and ¢ = 90°, respectively. The measured results from the fabricated prototype exhibit good agreement with
the simulated results. The antenna has impedance bandwidth (IBW) and CP bandwidth (CPBW) of 2.6%
(64 MHz), and 0.9% (22 MHz), respectively. The broadside radiation holds antenna gain higher than 5 dBic
across the entire CPBW.

INDEX TERMS Axial ratio beamwidth, circular polarization, electric field, magnetic dipole, slotted-patch.

I. INTRODUCTION

Discriminated polarization in wireless communication due
to multipath radio waves and misalignment between the end
points is circumvented using circularly polarized (CP) anten-
nas instead of other antennas. A CP antenna with a broader
3-dB axial ratio beamwidth (ARBW) can afford wide area
coverage on ground stations and is successfully trialed in
many satellite communication applications. Therefore, sev-
eral techniques have been explored in the existing litera-
ture. For example, the CP beamwidth associated with 3D
configurations were studied with cavity integrated curvature
dipole [1], folded quadrifilar helical [2], three-dimensional
grounds [3], and sequentially rotated radiating patches [4].
Such antennas perform under the principle of field diffraction
from their embedded structural elements. The method of
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wave construction for beamwidth enrichment of CP antenna
is established by squared [5], cylindrical [6] and inverted
pyramidal [7] cavity—backed reflector. In [8], the principle
of field refraction is verified by constructing a cone-shaped
air cavity into a 3D dielectric cylinder for extending 3-dB
ARBW of conventional CP antenna. The defected ground
structure (DGS) often enhances the cross-polarization (XP)
magnitude in the radiation of a linearly polarized antenna.
Therefore, a fractal DGS was embedded for increasing XP
to the required level, which contributes to a beamwidth
improvement of the CP antenna [9].

A rigorous study on beamwidth characteristics with dipole
antennas has been introduced in [10], [11] and taken much
care about indistinguishable E- and H-plane radiation by
concurrent field excitation. In [12], the production of suffi-
cient surface current on both arms of the dipole is chosen for
creating a wide-beam CP radiation. Simultaneous excitation
of electric and magnetic current with magnetoelectric (ME)
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dipole is employed as a prospective candidate for designing
of CP antenna [13]. The coupled field between parasitic
elements and ME dipole antenna is controlled by adjusting
the capacitance of installed varactor diode for reconfiguration
of 3-dB ARBW [14].

In recent years, more attention is going on the planar
form of CP antennas due to their low profile with a stub,
slot, or shorted load. In [15], the stubs dimension and their
placement were selected as crucial parameters for designing
of wide beamwidth CP antenna. Strips based scheme on slot-
ted patch is examined to study a CP antenna for beamwidth
enhancement [16]. A critical study on the slotted fractional
part concerning the patch is investigated for beamwidth
clarification of CP antenna [17]. In [18], the beamwidth
of CP antenna is presented as function of mutual coupled
field between slotted structures. The techniques like shorted
post [19], shorted plate [20], and SIW based approach [21]
have been preferred to enrich the beamwidth performance of
the CP antenna. Antennas on a suspended substrate [22] and
an extended length of the dielectric substrate [23] have been
used to implement wide beamwidth CP antenna. In summary,
it appears challenging to design a wide 3-dB ARBW planar
CP antenna without using a complex feeding network and
multi-layered structure.

In this work, the incorporation of four identical narrow
slots (12.8 mmx0.6 mm) on a circular patch is conceived
to design a planar CP antenna with extremely wide 3-dB
ARBW. The slot on a patch is served as a MD, and hence,
considering the property of MD, a pair was formed between
two parallel dipoles to realize the CP radiation. Further,
the orthogonal placement of two-pair of MDs with a par-
ticular spacing between the paired-dipole enhances the CP
beamwidth to a large extent. Proposed low profile structure
is able to exhibit more than 214° symmetrical 3-dB ARBW
patterns in both the principal planes with effective cross-
polarization discrimination (XPD). In the subsequent sec-
tions, antenna design methodology and its achievement are
discussed in detail. All the simulations are carried out using
the FEM-based Ansys® HFSS™ EM simulator.

Il. ANTENNA CONFIGURATION AND DESIGN ANALYSIS

Initially, a circular patch of radius, 21.5 mm is designed to
operate in the ISM band (2.42 GHz - 2.462 GHz). The gener-
ation of CP radiation depends on the insertion of appropriate
fractional slotted area in the antenna. It is observed that an
antenna with a <1% (=0.7%) fractional slotted area [ 17] radi-
ates linearly polarized waves. However, the 3-dB ARBW of
CP radiation is tuned with the placement of slotted structure
in the antenna. Now, to realize CP radiation, two narrow slots
(1 and 1’) of 1% fractional area are etched perpendicularly
on the diagonal line of the patch, as shown in Fig. 1(a).
To manifest the effect of parallel dipoles [10], these slots
are placed symmetrically about the center of the patch,
and in parallel with each other. Hence, these slots are
considered as one pair of slots as well as a pair of
MDs with a spacing of 30.4 mm. This design provides
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FIGURE 1. Antenna configurations; (a) CP antenna with one pair of MDs
(1 and 1), (b) CP antenna with one pair of MDs (2 and 2’), and (c)
Proposed CP antenna with two pair of MDs. [Structural dimension:

W = 61.2 mm (0.491¢), h = 1.575 mm (0.0131¢), Rp = 21.5 mm (0.17},),
Lp = 12.8 mm (0.11¢), Wp = 0.6 mm (0.005), P = 27.8 mm (0.22),

X = 6.8 mm] [1o = free space wavelength corresponding to CP frequency
2.421 GHz].

IBW of 2.9% (2.412 GHz - 2.484 GHz), CPBW of 0.7%
(2.425 GHz -2.443 GHz), and 3-dB ARBW of 162° across
the angular range from —80° to 4-82° at 2.436 GHz, as shown
in Fig. 2. Now, to investigate the reason behind this lower
3-dB ARBW, the electric field on the patch surface is studied,
as shown in Fig. 3 (a). The asymmetric and non-uniform
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FIGURE 2. Analysis of different antenna structures (a) Reflection
coefficient (S;;) vs frequency, (b) AR vs frequency, and (c) 3-dB ARBW vs
theta at ¢ = 0°.

confinement of the electric field at the orthogonal sides of the
paired-MDs makes the radiation only from two regions which
lead to restricting the 3-dB ARBW. A similar characteristic
is identified in CP antenna with one pair of slots (2 and 2")
of 1% fractional area in Fig. 1(b) and its performance is
shown in Fig. 2 with IBW of 2.5% (2.402 GHz - 2.464 GHz),
CPBW of 0.45% (2.414 GHz - 2.425 GHz) and 3-dB ARBW
of 154° across the angular range from —78° to +76° at
2.422 GHz. To enhance the 3-dB ARBW further, considering
the orthogonal placement of paired dipoles [10], another pair
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FIGURE 3. Electric field distribution on (a) CP antenna with one pair of

MDs @ 2.436 GHz; and on CP antenna with two pair of MDs for different
values of P (b) P = 0.22)y @ 2.415 GHz (proposed), () P =0 @
2.402 GHz, and (d) P = 0.321y @ 2.457 GHz. [All distributions are
captured in same scale].

TABLE 1. The Simulated 3-dB ARBW of the Proposed CP Antenna for
Different Values of P.

P 04y, | 0.114,, | 0.164,, 0.224,, 0.264,, | 0.324,,
(0 mm)|(14 mm) | (19.8 mm) | (27.8 mm) | (32.8 mm) |{(39 mm)
3-dB o o o ° o o
ARBW 124 164 180 222 100 70

of identical slots (2 and 2') are etched symmetrically about the
center of the patch and orthogonal to the earlier pair of slots
(1 and 1"), as shown in Fig. 1(c). The length and width of each
dipole, are set as Lp and Wp, respectively. The parameter,
P is assigned as the spacing between the paired-dipoles.
The proposed CP design with 2.11% fractional slotted area
provides IBW of 2.8% (2.39 GHz - 2.458 GHz), CPBW
of 0.74% (2.407 GHz - 2.425 GHz), and 3-dB ARBW of
222° across the angular range —110° to +112° at 2.415 GHz,
as shown in Fig. 2. The electric field distribution for the pro-
posed design (P = 0.22)¢) is symmetrical about the center
of the patch and uniform along the periphery of the patch,
as shown in Fig. 3(b). This symmetrical and uniform electric
field is the resultant E-field caused by superimposing of
two-asymmetric and non-uniform field distributions from the
antenna in Fig. 1(a) and 1(b).This kind of field distribution
indicates uniform radiation from the entire periphery of the
circular patch, which helps to overcome the restricted 3-dB
ARBW problem of initial designs (Fig. 1(a) and 1(b)). When
P = 0, the proposed antenna turns into a slotted cross-
dipole [24], and the field is radiating only from the two sides
of the patch, as shown in Fig. 3(c). For the selection of P
beyond 0.221, the 3-dB ARBW is reduced as the field sym-
metries and uniformity is distressed, as shown in Fig. 3(d).
From the electric field distribution analysis it is found
that the spacing (P) between the paired-dipoles is a crucial
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FIGURE 4. Simulated normalized field magnitude of Ey and E,, for several
values of P in the XZ plane.
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FIGURE 5. Simulated AR for several values of P in the XZ plane.

parameter to tune the 3-dB ARBW and also to maximize
the 3-dB ARBW. To comprehend the principle of wide 3-dB
ARBW clearly, it can be assumed that the electric field in
each MD varies as a function of sinusoidal wave. Now, to
perceive the influence of the parameter, P, the simulated
normalized electric field components (Eg and Ey) and the
corresponding AR are plotted in Fig. 4 and Fig. 5, respectively
as a function of the polar angle theta (6) in the XZ plane. It is
noticed that the Ey component is nearly unaffected and it is
an independent function of P variation. However, the level
of E, component progressively drops as P is increased from
0to 0.11Xxg, 0.164¢, 0.22X¢, 0.26L9, and 0.321y9. When P =
0 or enormously small, E, component is nearly flattened
across a wide range of 6 and it is far away from Ey. The two
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FIGURE 6. Effects of feed point location (X¢) variation on (a) AR and S,
and (b) 3-dB ARBW.

orthogonal far-field components, Ey and E, are diverged for
P = 27.8 mm (0.22A¢), and the proposed CP antenna exhibits
a wide 3-dB ARBW of 222° at the plane of ¢ = 0°. For other
values of P (P # 0.22¢), the level of E, is far away from
Ey, which leads to narrower 3-dB ARBW. Moreover, due to
the proper matching between Ey and E,, components (Fig. 4)
across a wide angular range for P = 0.22A, the electric field
on the patch surface of the proposed CP antenna is uniformly
distributed along the periphery of the patch (Fig. 3(b)), which
leads to extremely wide 3-dB ARBW (Fig. 5). The 3-dB
ARBW performance of the proposed CP antenna for different
values of the crucial parameter P is summarized in Table 1.
This analysis helps to finalize the value of P as 0.22X,
to realize the maximum 3-dB ARBW.

It is well known that proper impedance matching depends
on the location of the feed point; the input impedance
increases as the feed point distance (Xy) is increased.
Moreover, it is observed that Xy affects the 3-dB ARBW
and IBW rather than its CPBW as shown in Figure. 6(a)-(b).
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Therefore, during the optimization of feeding location,
the wide 3-dB ARBW with sufficient CPBW is considered as
the higher priority. The feed point is chosen along the x-axis
at a distance Xy = 6.8 mm from the center of the patch.

It was observed from the antenna working principle; the
beamwidth of the CP antenna is greatly affected by the area of
the slotted section. The influences of slot length variation on
the CP characteristics of the proposed antenna are summed up
in Figure. 7. For the slot length (Lp) other than the proposed
one (Lp = 12.8 mm), there is a shift in the CP band, and
it also exhibits a poor 3-dB ARBW. Further, it offers better
impedance matching at the lower and higher frequency for
the increment and decrement of the slot length, respectively.

A CP antenna with wide beamwidth for a single frequency
(just a fraction of the entire CP band) does not validate the
practicality of the CP antenna. Therefore, it is essential to
check the beamwidth (3-dB ARBW) performance of the CP
antenna across its entire CP band. From the literature survey,
it is found that achieving a constant 3-dB ARBW across
the entire CP band is not feasible in practice. Considering
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FIGURE 9. Photographs of the fabricated sample and its measurement
setup.

this issue, the CP antenna designers always try to mini-
mize the fluctuation of 3-dB ARBW across the CP band.
To observe the 3-dB ARBW performance of the proposed
CP antenna across the entire CP band, the values of 3-dB
ARBW are plotted in Fig. 8(a). In this investigation, it is
found that about 66.7% of total CPBW is detected for more
than 90° 3-dB ARBW, which strongly validates the suitability
of the proposed approach for the practical implementations
of the CP antenna. The ground plane inherently acts as a
reflector for antenna. Therefore, it is important to check the
impact of ground plane’s size on 3-dB ARBW and half-
power beamwidth (HPBW) of the proposed antenna, and it
is summarized in Fig. 8(b). For the ground plane dimension
of W = 61.2 mm, both the 3-dB ARBW (222°) and HPBW
(88°) are maximum in the plane of ¢ = 0°. Hence it is
chosen as the optimum dimension for the ground plane of
the proposed CP antenna. In a long-distance communication
system, the 3-dB ARBW of the CP antenna is given the most
priority than its HPBW and a HPBW of 30° to 40° [5] is
even acceptable for such applications. Low profile planar CP
antenna is always suffered from poor HPBW. The HPBW
of a CP antenna can be enhanced using some high-profile
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FIGURE 10. Simulated and measured (a) reflection co-efficient (S¢1),
(b) AR and (c) gain.

structures like 3-D structures and metal backed-cavity. It is
also observed that for most of the planar CP antennas, HPBW
is much lower than its 3-dB ARBW, and in some cases
[11, 16], it is around 40° only.

IIl. RESULTS AND DISCUSSION

Based on the analysis of the previous section, the pro-
posed design is finalized. To validate the simulated results,
the proposed CP antenna was fabricated on a low loss
Taconic TLP-3 substrate of dimension 61.2 mmx61.2 mm,
dielectric constant (g,) = 2.33, loss tangent (fand) =
0.0009, and thickness (k) = 1.575 mm. The photographs
of the fabricated sample and its measurement setup are
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shown in Fig. 9. The antenna offers IBW of 2.6% [64 MHz
(2.397 GHz - 2.461 GHz)], CPBW of 0.9% [22 MHz
(2.411 GHz - 2.433 GHz)] and the realized gain higher than
5 dBic across entire CPBW, as shown in Fig. 10. The 3-dB
ARBW of the proposed CP antenna reaches up to 228° at
¢ = 0° and 214° at ¢ = 90°, as shown in Fig. 11.The
measurement yields the HPBW of 92° and 90° at ¢ = 0° and
¢ = 90° planes, respectively, which are enough to implement
a low profile planar CP antenna. The simulated and measured
radiation patterns for the two principal planes ¢ =0° and ¢ =
90° are in the broadside direction, as shown in Fig. 12. It is
found that in both planes, the left-handed circular polarization
(LHCP) is greater than the right-handed circular polarization
(RHCP). Hence, the proposed CP antenna is LHCP in nature.
This design also offers a sufficient amount (18 dB) of XPD
between the LHCP and RHCP in both principal planes, which
is widely accepted for practical applications of CP antenna.
The inspection of all plots indicates a well matching behavior
between the simulation and measurement results.

The inspected outcomes of recently published related
works are compared with the measured characteristics of the
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TABLE 2. Measured Characteristics of the Proposed CP Antenna Compared With the Other Related Works.

CcpP . HPBW
Antenna type Total size (A3) 1(13 /V;’ BW é‘g (dG];“i‘c‘) (degyat | SABARBW (deg)
’ (%) p=0° ©=0° | ¢=90°
Sequentially rotated 1 16 140 13@ 2.4 GHz 13 NM NM <5 120 180 NM
patches [4]

Metal backed cavity [7] | 0.33x0.33x0.21@ 1.575 GHz 3.4 0.8 15 <7.94 90 168 135
Dielectric cavity [8] 1.6x1.6x0.18@ 1.6 GHz 20 17 25 <55 133 162 164
Electric Dipole [11] | 0.32x0.32x0.3@ 1.95 GHz 237 25 25 <43 40 195 NM

Slots + strips [16] 0.21x0.21x0.016@ 1.575 GHz 1.7 0.6 20 5.4 40 188 188
Slotted [18] 0.29%0.29%0.013@ 2.487 GHz 34 0.9 18 >3.87 60 226 198
Shorted post [19] 71x0.5%0.5%0.013@ 1.575 GHz 24 0.6 25 <79 76 138 136
Magnet‘;jr‘lf]"le [this | 1+035%035%0.013@ 2421 GHz | 2.6 0.9 18 >5 92 228 214

NM: Not mentioned

proposed CP antenna, as listed in Table 2 . It is noticed that the
3-dB ARBW of the proposed CP antenna in both the principal
planes is higher than the included references of its class.

IV. CONCLUSION

A simple and compact CP slotted-circular patch antenna
has been demonstrated for wide 3-dB ARBW applications.
By utilization of symmetric and orthogonal placement of two-
pair of slots and superimposing two orthogonal far-field com-
ponents with maintaining equal magnitudes between them,
a wide 3-dB ARBW can be achieved. The magnitude of E,
component and the electric field distribution on patch surface
are regulated by tuning the distance between the MDs. The
analysis of electric field distributions and the magnitudes of
far-field components as a function of the spacing between
the slots (MDs), not only explicates a clear understanding of
wide beamwidth CP radiation but also produces a simple rela-
tionship between the physical parameters of the antenna and
its characteristics. The foundation of the proposed antenna
is established by its extensive beamwidth in all the principal
planes and across the entire CPBW. Therefore, it can be
expected from the proposed design to catch up applications
in many communication systems due to its low-profile and
superior outcomes.
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