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ABSTRACT Autoencoders (AEs) have been widely used for unsupervised anomaly detection. They learn
from normal samples such that they produce high reconstruction errors for anomalous samples. However,
AEs can exhibit the over-detection issue because they imperfectly reconstruct not only anomalous samples
but also normal ones. To address this issue, we introduce an outlier-exposed style distillation network
(OE-SDN) that mimics the mild distortions caused by an AE, which are termed as style translation. We use
the difference between the outputs of the OE-SDN and AE as an alternative anomaly score. Experiments
on anomaly classification and segmentation tasks show that the performance of our method is superior to
existing methods.

INDEX TERMS Anomaly detection, style distillation, autoencoder, knowledge distillation, outlier exposure.

I. INTRODUCTION
The objective of unsupervised anomaly detection is to iden-
tify anomalous samples from data. Unsupervised anomaly
detection assumes that only normal samples are present while
anomalous samples are absent in the training dataset. This
formulation is useful when it is difficult to collect suffi-
cient anomalous samples in advance or to obtain all possible
anomaly patterns. Real-world examples of such scenarios
include video surveillance [1], medical diagnosis [2], equip-
ment failure detection [3], and manufacturing inspection [4].

There have been many research attempts to investigate
unsupervised anomaly detection using deep neural net-
works. Among them, reconstruction-based anomaly detection
[5]–[7] using autoencoders (AEs) is an intuitive and promis-
ing method to detect anomalies in the image domain. An AE
is trained on normal samples to reconstruct them through a
bottleneck layer, so that an anomalous sample is extremely
distorted whereas a normal sample is not. For a new sample,
the difference between the input and its reconstruction is used
as the anomaly score. A sample with a score higher than a
predefined threshold is rejected as an anomaly.

However, owing to the bottleneck architecture of an
AE, even the reconstructions of normal samples are mildly
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distorted. The performance of reconstruction-based anomaly
detection is strongly influenced by the size of the bottleneck
in the AE. If the size of the bottleneck is excessively large,
the reconstruction performance will be improved, but anoma-
lous samples will also be well restored, defeating the purpose
of the AE. By contrast, reducing the size of the bottleneck
significantly affects the results corresponding to both normal
and anomalous samples. The anomaly scores of some normal
samples can be higher than those of anomalous samples.
This phenomenon causes the over-detection issue, resulting in
deterioration of the overall anomaly detection performance.

In this paper, we introduce an outlier-exposed style dis-
tillation network (OE-SDN). We identify two components
of the distortions by the AE: style translation and content
translation. The OE-SDN has an extensive architecture and is
trained based on knowledge distillation and outlier exposure
regularization to mimic style translation while suppressing
content translation. To detect anomalies, we measure the
difference between the outputs of theAE andOE-SDN to cap-
ture the degree of content translation while style translation
is canceled out, thereby alleviating the over-detection issue.

Fig. 1 shows examples that compare the outputs of the
AE and OE-SDN. In Fig. 1a, the AE blurs the bristles and
changes the overall tone from yellow to red. We regard
these mild distortions as style translation. In Fig. 1b, the AE
transforms abnormal areas such that they resemble normal
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FIGURE 1. Examples of distortions arising from the AE and OE-SDN in normal and anomalous regions. In (a) and (b), the left, middle, and right
represent the input image, the output of the AE, and the output of the OE-SDN, respectively.

areas by generating some bristles to replace the missing
ones. These extreme distortions are regarded as content trans-
lation. Fig. 1a shows that the OE-SDN blurs the bristles
and changes the color as the AE does. However, as shown
in Fig. 1b, the OE-SDN does not replace the missing bristles,
unlike the AE.

II. RELATED WORK
A. RECONSTRUCTION-BASED UNSUPERVISED ANOMALY
DETECTION
A prevalent choice for anomaly detection is reconstruction-
based anomaly detection using such models as an AE [5],
a variational autoencoder (VAE) [6], and a generative adver-
sarial network (GAN) [8]. It identifies a sample as an anomaly
if the reconstruction error is above a certain threshold.
The anomaly detection performance degrades if the recon-
struction error of an anomaly is lower than the threshold.
Gong et al. [7] used an AEwith a memorymodule to calibrate
the reconstruction error of anomalous samples. Zong et al. [9]
considered both the distance of features and the reconstruc-
tion error to detect anomalous samples.

Unlike previous studies [7], [9] that attempted to detect
anomalous samples with a low reconstruction error, this study
targets normal samples with a high reconstruction error.

B. OUT-OF-DISTRIBUTION DETECTION ON LABELED DATA
The aim of out-of-distribution (OOD) detection on labeled
data is to construct a classifier to identify whether input
data were sampled from the distribution of a training set or
from a novel distribution [10]–[13]. Hendrycks et al. [13]
suggested that the confidence can be attributed to samples
based on the maximum prediction value by the classifier
and that samples with a confidence value less than a fixed
threshold can be rejected and regarded as OOD samples.
Liang et al. [12] used adversarial perturbation [14] and tem-
perature scaling to lower the confidence of a classifier when
OOD samples were inferred. Some previous studies used
regularization techniques to calibrate the confidence of the
classifier. Lee et al. [10] set cross-entropy loss as a penalty
term. Hendrycks et al. [11] employed margin ranking loss in
a similar manner.

Without the notion of a classifier, OOD detection is highly
similar to anomaly detection. We borrow ideas from OOD
detection to address unsupervised anomaly detection.

C. KNOWLEDGE DISTILLATION
Knowledge distillation is a method of transferring knowledge
from a teacher network to a student network. Its applica-
tions mainly entail network compression. Hinton et al. [15]
employed the predictions of a teacher network as soft labels
and trained a smaller student network with these labels for
a classification task. Chen et al. [16] and Fukuda et al. [17]
applied knowledge distillation for object detection and speech
recognition tasks, respectively.

The aforementioned applications use knowledge distilla-
tion to distill the knowledge of heavy ensemble models,
achieving state-of-the-art performance with a lighter, faster
network. To minimize the loss of accuracy, as much knowl-
edge as possible should be transferred.

Unlike the conventional knowledge distillation methods,
the objective of knowledge distillation for the proposed
method is not compression but stylemimicking. Thus, instead
of transferring all knowledge from the teacher network,
the proposed method aims to extract and distill only a small
portion of knowledge that corresponds to style translation.

III. METHOD
A. OVERVIEW
The proposed anomaly detector comprises of two neural net-
works, as illustrated in Fig. 2. The first network is the autoen-
coder (AE), which reconstructs the input using a bottleneck
structure. The second network is the outlier exposed style
distillation network (OE-SDN), which imitates the output of
the AE with an extensive non-bottleneck structure. Given
a test sample, the proposed method calculates the anomaly
score by comparing the AE and OE-SDN outputs.

B. AUTOENCODER
AE fAE : X → X is a neural network that is trained to
reconstruct its input, where X is the input data space. An AE
has a bottleneck layer with fewer hidden units than the input
for dimensionality reduction.

1) TRAINING
Suppose the training set consisting only of normal data,
denoted by Xnormal ⊂ X, is given. Then, the objective func-
tion for the AE fAE , denoted by JAE , is as follows:

JAE (fAE ) =
∑

x∈Xnormal

d (x, fAE (x)). (1)
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FIGURE 2. Overview of the proposed anomaly detector.

FIGURE 3. The AE, SDN and OE-SDN are trained on the class ‘‘3’’ subset of the MNIST dataset, where the SDN is the network trained without
the OER term. Due to the bottleneck, the AE can only reconstruct the class ‘‘3’’ samples and it transforms anomalous samples (‘‘0’’ in this case)
to the normal class ‘‘3.’’ (a) Both the SDN and OE-SDN successfully imitate the blurring style of the AE. (b) The output of the SDN is the same as
the output of the AE even for anomalous data; this means that the SDN mimics extreme distortion as well as mild distortion. On the other
hand, the OE-SDN successfully reproduces anomalous data without extreme distortion.

where d : X × X → R is a loss function, which can be
l1 distance, l2 distance, mean squared displacement (MSD),
or structural dissimilarity (DSSIM) [18]. The reconstruction
error is expected to be low for normal samples, whereas it
is high for anomalous samples because the bottleneck may
cause the network to be unable to reconstruct anomalous
samples.

2) ANOMALY DETECTION
Given a test sample xtest, the AE identifies whether it is
anomalous by using the reconstruction error as the anomaly
score:

ε(xtest) = ||xtest − fAE (xtest)||. (2)

If the anomaly score is higher than a predefined threshold,
then the sample is identified as an anomaly.

The anomaly detection performance is affected by the size
of the bottleneck layer. If the size of the bottleneck layer is
small, the AE will considerably distort anomalous samples.
However, the AE will also distort normal samples, especially
those with infrequent or complex patterns. The unintended
distortions of normal samples will deteriorate the overall
anomaly detection performance.

C. OUTLIER-EXPOSED STYLE DISTILLATION NETWORK
OE-SDN fOS : X→ X is a large neural network with no bot-
tleneck layer that mimics the style translation of an AE fAE .
To train an OE-SDN, we propose an objective function based
on knowledge distillation with regularization.

1) KNOWLEDGE DISTILLATION
To make the OE-SDN imitate the style translation of AE,
we adopt knowledge distillation [15]. We distill the knowl-
edge of theAE and provide it to theOE-SDN.Given a training
dataset Xnormal containing normal samples, we define the
knowledge distillation term LKD as:

LKD(fOS ) =
∑

x∈Xnormal

d (fOS (x), fAE (x)). (3)

2) OUTLIER EXPOSURE REGULARIZATION
Knowledge distillation from the small AE to the large
OE-SDN results in the OE-SDN learning the style translation
of the AE. However, the trained OE-SDN may also imitate
some extreme distortions of the AE, as shown in Fig. 3.
Hence, we adapt the concept of outlier exposure [11] to
the regularization for the OE-SDN. We define the outlier
exposure regularization (OER) term LOER with an auxiliary
dataset Xaux as follows:

LOER(fOS ) =
∑

x̃∈Xaux

d (x̃, fOS (x̃)). (4)

This term regularizes the OE-SDN to reproduce the input as
much as possible, preventing extreme changes in anomalous
data. This term does not negatively affect the style-mimicking
tendency because it is based on auxiliary data that is
disjointed from the training data.

The auxiliary dataset Xaux can be obtained in various
ways, such as synthetic data generated using a
GAN [10], real data adopted from a similar domain [11],
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geometrically transformed data, and blurred data [19]. In this
study, we use rotation transformation according to the results
of the preliminary experiment discussed in subsection IV-C.
The 90◦, 180◦, and 270◦ rotations of the original samples in
Xnormal are generated to create Xaux.

3) TRAINING
The objective function for the OE-SDN fOS , denoted by JOS ,
is as follows:

JOS (fOS ) = (1− λ) · LKD(fOS )+ λ · LOER(fOS ), (5)

where λ is the hyperparameter for balancing the knowledge
distillation term and the OER term.

Given the training dataset Xnormal, auxiliary dataset Xaux,
and pre-trained AE fAE , the OE-SDN fOS is trained to mini-
mize the objective function JOS . The AE fAE is fixed during
the training.

4) ANOMALY DETECTION
To detect anomalies, we adopt an alternate anomaly score
instead of a reconstruction error. Given a test sample xtest,
the anomaly score is calculated by measuring the difference
between the outputs of the OE-SDN and AE:

ε′(xtest) = ||fOS (xtest)− fAE (xtest)||. (6)

IV. EXPERIMENTS
This section describes the evaluation of the proposed method
for two unsupervised anomaly detection tasks: classification
and segmentation. Each task has different benchmark datasets
and baseline methods. All the experiments were implemented
using PyTorch [20].

The common configurations for the two tasks are as fol-
lows. We used DSSIM [18] and MSD for the loss functions
of the AE and OE-SDN, respectively. We set the hyperpa-
rameter λ to 0.5 for the OE-SDN. We used the Adam [21]
optimizer for training. To calculate the anomaly scores cor-
responding to the AE and OE-SDN, DSSIM with a window
size of 7 was used.

We evaluated the performance of each method in terms
of the area under the receiver operating characteristic curve
(AUROC), which is calculated independently of the thresh-
old. For the anomaly classification task, the AUROC is cal-
culated using image-wise anomaly scores. For the anomaly
segmentation task, the AUROC is calculated using pixel-wise
anomaly scores.

A. UNSUPERVISED ANOMALY CLASSIFICATION
We evaluated our method for the MNIST [22] and
CIFAR-10 [23] datasets for the classification task of unsu-
pervised anomaly detection. Both datasets had 10 classes
from which we created 10 setups similar to those created
by Ruff et al. [24]. In each setup, one class was chosen
as the normal class and the remaining were the anomalous
classes. Every setup had approximately 6,000 training images
in the MNIST dataset or 5,000 in the CIFAR-10 dataset. The
number of test images was 10,000 for both sets.

For both the MNIST and CIFAR-10 datasets, we imple-
mented an AE with a simple architecture composed of
fully-connected layers. The encoder consisted of four layers
of 128, 64, 32, and 10 units. The decoder was designed
symmetrically to the encoder. Leaky rectified linear units
(LReLUs) with a slope of 0.005 were applied after each
layer except for the output layer. Regarding the OE-SDN,
we constructed the architecture using the residual attention
block of residual non-local attention networks (RNAN) [25],
which has proven to be effective in general image translation
tasks. Fig. 4 shows the detailed architecture of the OE-SDN.
We set an initial learning rate of 0.001 for the AE and
0.0001 for the OE-SDN. We trained the AE in 50k iterations
and the OE-SDN in 10k iterations, which was sufficient for
the loss of each network to converge. The batch size was
20 for both networks.

We compared our method with four baseline methods:
one-class support vector machine (OC-SVM) [26], isolation
forest (IF) [27], GAN for anomaly detection (AnoGAN) [8],
and deep support vector data description (DeepSVDD) [24].
The experimental results for these four baselinemethodswere

FIGURE 4. Architecture diagram for the OE-SDN. The architecture adapts the
RNAN [25], in which we set the number of filters to 32 in all convolution layers.
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TABLE 1. AUROC of each method for unsupervised anomaly classification on MNIST and CIFAR-10 datasets. The highest AUROC for each setup is
highlighted in bold.

obtained from [24]. We also used the AE and SDN (OE-SDN
with λ = 0) as baselines.

The results are shown in Table 1. The proposed OE-SDN
outperformed the baseline methods in terms of the average
AUROC for the MNIST and CIFAR-10 datasets. For the
setups with Dog, Horse, or Truck as a normal class on
the CIFAR-10, the AE performed worse than DeepSVDD,
whereas the OE-SDN yielded superior results. This demon-
strates the effectiveness of the OE-SDN. The SDN performed
worse than the AE in many cases for both datasets. The SDN
learned not only style translation but also extreme distortions
from the AE, as shown in Fig. 3. The OER mitigated this
problem, resulting in a higher AUROC. For the setups with
Airplane or Bird as a normal class in the CIFAR-10 dataset,
the OE-SDN performed worse than the AE. There were more
normal images that the OE-SDN can easily reproduce while
the AE reconstructed with distortions, leading to more false
positive samples than in other setups. An image of an airplane
flying without landing on the ground is an example.

B. UNSUPERVISED ANOMALY SEGMENTATION
We used the MVTec-AD dataset [4] to assess unsu-
pervised anomaly segmentation performance. It contained
5354 images corresponding to 10 object categories and
5 texture categories that represent real-world inspection sce-
narios. The training set of the MVTec-AD dataset had only
normal images, and the test set contained defect images with
a pixel-wise ground-truth mask.

Considering that the MVTec-AD dataset contained rel-
atively large images, we adopted a modern convolutional
neural network (CNN) architecture to implement the AE.

The detailed architecture is shown in Fig. 5. We used the
same architecture for the OE-SDN as in the classification
experiment.

Texture images were cropped to 256 × 256 patches at
random locations for training.We used these patches as inputs
for the networks. Object images were resized to the same size
before being fed into the networks. We set the initial learning
rate to 0.0001 for both the AE and OE-SDN. The networks
were trained for 10k iterations for the AE and 1k iterations for
the OE-SDN with a batch size of 20. In the test phase, texture
images were cropped into 256 × 256 patches with a stride
of 64 before inference, and the maximum anomaly score
was considered when aggregating pixel-wise anomaly scores
of the overlapping patches. After calculating the difference,
we applied a 32 × 32 uniform filter to smooth pixels whose
anomaly scores differed significantly from their surrounding
pixels.

We investigated the effectiveness of the proposed method
in comparison with three unsupervised anomaly segmenta-
tion methods that were used as baselines in [4]: AnoGAN [8],
a method based on CNN feature similarity [28], and anAE [4]
with an alternative architecture. The experimental results for
these three baselines were obtained from [4]. We also used
our AE and SDN as baseline methods to evaluate the validity
of the components of our method similar to the classification
experiment.

As shown in Table 2, the OE-SDN and SDN achieved the
best performance on average for both textures and objects.
The OE-SDN obtained considerable AUROC gain for cat-
egories in which the AE had low AUROC, such as Tile,
Wood, Capsule, Metal Nut, and Zipper. On the other hand,
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FIGURE 5. Architecture diagram for AE for segmentation experiment. Except for the last convolution layer, all
convolution filters have a kernel size of 3 × 3. The number of filters in each encoding block is 8, 16, 32, and 64 in
order; the number of filters in each decoding block is 64, 32, 16, and 8 in order. The convolution layer between the
encoding and decoding blocks has 128 filters. For downsampling, the initial convolution in each encoding block has
a stride of 2. The upsample layer in each decoding block performs bilinear interpolation to accomplish upsampling.

TABLE 2. Pixel-wise AUROC of each method for unsupervised anomaly segmentation on the MVTec-AD dataset. The highest AUROC for each category is
highlighted in bold.

the advantage of the OE-SDNwas insignificant for categories
in which the AE already detected anomalies well, such as
Carpet, Grid, Hazelnut, Screw, and Toothbrush. TheOE-SDN
yielded a slightly lower AUROC than the AE in the Pill cat-
egory which contained the defect patterns that the OE-SDN
cannot reproduce. For example, a slightly changed color was
not reproduced by the OE-SDN, which resulted in missing
abnormal pixels.

Fig. 6 shows examples of cases in which the OE-SDN
exhibited improved performance and those in which it
does not. In successful cases, shown in Fig. 6a, the high
anomaly scores generated by the AE for the normal

regions were significantly suppressed by using the OE-SDN.
However, there were also cases in which the OE-SDN was
not effective, as shown in Fig. 6b. In the first, second, and
fourth rows, when the AE detected abnormal areas appropri-
ately without over-detecting the normal areas, the OE-SDN
did not provide further performance improvement. In the
third and fifth rows, the AE originally did not produce
significant anomaly scores for abnormal areas. Because
the OE-SDN suppressed anomaly scores for normal areas
while maintaining anomaly scores for abnormal areas,
it was difficult to expect performance improvement in such
cases.
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FIGURE 6. Successful and failed cases corresponding to our method on texture categories of the MVTec-AD dataset. Each row
shows the results of each category in the order Carpet, Grid, Leather, Tile, and Wood. Each column represents a raw image,
ground-truth mask, pixel-wise difference of raw input and reconstruction from the AE, and pixel-wise difference of the
outputs of the AE and OE-SDN.

FIGURE 7. Sensitivity analysis of the hyperparameter λ.

C. EFFECT OF AUXILIARY DATASET AND
HYPERPARAMETER
We investigated the effect of the auxiliary dataset Xaux and
hyperparameter λ. Both were verified for the MNIST and
CIFAR-10 datasets, where the OER played a significant role.

1) COMPARATIVE EXPERIMENT FOR AUXILIARY DATASET
We performed a comparative experiment with regard to
the auxiliary dataset Xaux on the MNIST and CIFAR-10

datasets, as shown in Table 3.We generated auxiliary datasets
using geometric transformation (random rotation, flip, and
shearing), noise addition (Gaussian noise and adversarial
noise [29]), blurring (Gaussian blurring and singular value
decomposition blurring), and AE-based reconstruction. Most
choices of Xaux improved the performance of the OE-SDN.
Among them, rotation and vertical flip yielded superior per-
formances. They are simple and prevalent techniques for data
augmentation, meaning that it is not necessary to devise an
entirely novel auxiliary dataset.
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TABLE 3. Results of the comparative experiment for the auxiliary dataset
generation methods. Results are shown in terms of average AUROC of
each setup on the MNIST and CIFAR-10 datasets.

2) SENSITIVITY ANALYSIS OF HYPERPARAMETER
We used the MNIST and CIFAR-10 datasets to study the
robustness of the hyperparameter λ. We first set the auxil-
iary dataset Xaux as randomly rotated data, which achieved
the best performance. We calculated the performance of the
proposed anomaly detector by changing the value of λ. Fig. 7
shows the average AUROC of each setup with varying λ
values. For every λ value, we observed that the OE-SDN
surpasses both the AE and SDN; this means that our reg-
ularization is satisfactory and robust. For the MNIST and
CIFAR-10 datasets, if we set a sufficiently large λ, then
the OER can effectively regularize the network to prevent
mimicking the extreme distortion exhibited by the AE.

V. CONCLUSION
In this study, we presented the OE-SDN to overcome the
over-detection issue of conventional reconstruction-based
anomaly detectionmethods. Considering anAE, theOE-SDN
was trained with two objectives: knowledge distillation and
outlier exposure regularization. Consequently, the OE-SDN
preserved the style translation and suppressed the content
translation of the AE. We introduced an alternate anomaly
score defined as the difference between the outputs of the
AE and OE-SDN. Experiments on real datasets showed
that our method outperforms existing methods, including
reconstruction-based anomaly detection using AEs.

In future work, we will investigate various regularization
and learning methods used in style transfer studies to train
the OE-SDN effectively. Further, because theOE-SDN can be
used with any other reconstruction-based anomaly detection
method, we will apply the OE-SDN to other recent methods
to improve the anomaly detection performance.

REFERENCES
[1] W. Luo, W. Liu, and S. Gao, ‘‘A revisit of sparse coding based anomaly

detection in stacked RNN framework,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 341–349.

[2] C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, ‘‘Deep autoencoding
models for unsupervised anomaly segmentation in brain MR images,’’ in
Brainlesion: Glioma, Multiple Sclerosis, Stroke Traumatic Brain Injuries.
Cham, Switzerland: Springer, 2019, pp. 161–169.

[3] A. Beghi, L. Cecchinato, C. Corazzol, M. Rampazzo, F. Simmini, and
G. A. Susto, ‘‘A one-class SVM based tool for machine learning novelty
detection in HVAC chiller systems,’’ IFAC Proc. Volumes, vol. 47, no. 3,
pp. 1953–1958, 2014.

[4] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, ‘‘MVTec AD
a comprehensive real-world dataset for unsupervised anomaly detec-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 9592–9600.

[5] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, ‘‘Improv-
ing unsupervised defect segmentation by applying structural similarity to
autoencoders,’’ in Proc. 14th Int. Joint Conf. Comput. Vis., Imag. Comput.
Graph. Theory Appl., 2019, pp. 1–8.

[6] J. An and S. Cho, ‘‘Variational autoencoder based anomaly detection using
reconstruction probability,’’ SNUDataMining Center, Seoul, South Korea,
Tech. Rep., 2015.

[7] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and
A. Van Den Hengel, ‘‘Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,’’ in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1–8.

[8] T. Schlegl, P. Seeböck, S. M.Waldstein, U. Schmidt-Erfurth, and G. Langs,
‘‘Unsupervised anomaly detection with generative adversarial networks to
guidemarker discovery,’’ inProc. Int. Conf. Inf. Process.Med. Imag., 2017,
pp. 146–157.

[9] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, ‘‘Deep autoencoding Gaussian mixture model for unsupervised
anomaly detection,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–8.

[10] K. Lee, H. Lee, K. Lee, and J. Shin, ‘‘Training confidence-calibrated
classifiers for detecting out-of-distribution samples,’’ in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–16.

[11] D. Hendrycks, M. Mazeika, and T. Dietterich, ‘‘Deep anomaly detec-
tion with outlier exposure,’’ in Proc. Int. Conf. Learn. Represent., 2019,
pp. 1–18.

[12] S. Liang, Y. Li, and R. Srikant, ‘‘Enhancing the reliability of out-of-
distribution image detection in neural networks,’’ in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–15.

[13] D. Hendrycks and K. Gimpel, ‘‘A baseline for detecting misclassified and
out-of-distribution examples in neural networks,’’ inProc. Int. Conf. Learn.
Represent., 2017, pp. 1–12.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harness-
ing adverasarial examples,’’ in Proc. Int. Conf. Learn. Represent., 2015,
pp. 1–11.

[15] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ in Proc. NIPS Deep Learn. Represent. Learn. Workshop, 2015,
pp. 1–9.

[16] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, ‘‘Learning efficient
object detection models with knowledge distillation,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 742–751.

[17] T. Fukuda, M. Suzuki, G. Kurata, S. Thomas, J. Cui, and B. Ramabhadran,
‘‘Efficient knowledge distillation from an ensemble of teachers,’’ in Proc.
Interspeech, Aug. 2017, pp. 3697–3701.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[19] S. Choi and S.-Y. Chung, ‘‘Novelty detection via blurring,’’ in Proc. Int.
Conf. Learn. Represent., 2020, pp. 1–14.

[20] A. Paszke, ‘‘PyTorch: An Imperative Style, High-Performance Deep
Learning Library,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[21] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Int. Conf. Learn. Represent., 2015, pp. 1–15.

[22] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Database.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[23] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2009.

[24] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Müller, and M. Kloft, ‘‘Deep one-class classification,’’ in
Proc. Int. Conf. Mach. Learn., vol. 80, 2018, pp. 4393–4402.

[25] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, ‘‘Residual non-local atten-
tion networks for image restoration,’’ 2019, arXiv:1903.10082. [Online].
Available: http://arxiv.org/abs/1903.10082

[26] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, ‘‘Estimating the support of a high-dimensional distri-
bution,’’ Neural Comput., vol. 13, no. 7, p. 1443–1471, 2001.

VOLUME 8, 2020 221501



H. Chung et al.: Unsupervised Anomaly Detection Using Style Distillation

[27] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in IEEE Int. Conf.
Data Mining, 2008, pp. 413–422.

[28] P. Napoletano, F. Piccoli, and R. Schettini, ‘‘Anomaly detection in nanofi-
brous materials by CNN-based self-similarity,’’ Sensors, vol. 18, no. 2,
p. 209, Jan. 2018.

[29] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harness-
ing adversarial examples,’’ in Proc. Int. Conf. Learn. Represent., 2015,
pp. 1–11.

HWEHEE CHUNG received the B.S. and M.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technol-
ogy (KAIST), in 2016 and 2018, respectively.
He is currently a Researcher with the Cognex
Deep Learning Lab. His current research interest
includes network debugging in the field of vision
inspection systems in manufacturing.

JONGHO PARK received the B.S. and M.S.
degrees in computer science and engineering from
Seoul National University, in 2015 and 2017,
respectively. He is currently a Researcher with
the Cognex Deep Learning Lab. His research
interest includes optimizing the productivity in
vision inspection industry by adapting deep
learning algorithms.

JONGSOO KEUM received the B.S. and M.S.
degrees in electrical engineering and computer
science from the Gwangju Institute of Science
and Technology, in 2015 and 2017, respectively.
He is currently a Researcher with the CognexDeep
Learning Lab. His main research interest includes
optimized modeling of deep learning architecture
in the field of vision inspection system in manu-
facturing.

HONGDO KI received the B.S. and M.S. degrees
in industrial engineering from Seoul National
University, in 2015 and 2017, respectively. He is
currently a Researcher with the Cognex Deep
Learning Lab. His research interest includes reduc-
ing the cost of applying a learning-based vision
inspection system in manufacturing.

SEOKHO KANG received the B.S. and Ph.D.
degrees in industrial engineering from Seoul
National University, in 2011 and 2015, respec-
tively. He was a Research Staff Member with
the Samsung Advanced Institute of Technology.
He is currently an Assistant Professor of systems
management engineering (industrial engineering)
with SungkyunkwanUniversity. His main research
interest includes developing learning algorithms
for efficient data-driven modeling and their appli-

cations to real-world data mining problems inmanufacturing, healthcare, and
materials informatics.

221502 VOLUME 8, 2020


