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ABSTRACT The complementary fusion of global and local features can effectively improve the performance
of image retrieval. This article proposes a new local texture descriptor, combined with statistical modeling
in transform domain for texture image retrieval. The proposed local descriptor calculates the eight directions
of the central pixel by using the relationship between the central pixel and the neighboring pixels in six
directions, which is called the local eight direction pattern (LEDP). In the texture image retrieval system of
this article, the feature extraction part combines global statistical features and local pattern features. Among
them, both the relative magnitude (RM) sub-band coefficients and relative phase (RP) sub-band coefficients
are modeled as wrapped Cauchy (WC) distribution in the dual-tree complex wavelet transform (DTCWT)
domain, and the global statistical features employ the parameters of this model; while the local pattern
features respectively choose the local binary pattern (LBP) histogram features in the spatial domain and
the LEDP histogram features of each direction sub-band in the DTCWT domain. On the other hand, the
similarity measurement selects matching distances for different features and combines them in the form
of convex linear optimization. Texture image retrieval experiments are conducted in the Corel-1k database
(DB1), Brodatz texture database (DB2) and MIT VisTex texture database (DB3), respectively. Experimental
results show that, compared with the best existingmethods, the approach proposed in this article has achieved
better retrieval performance.

INDEX TERMS Texture image retrieval, local descriptor, statistical modeling, feature fusion, similarity
measurement.

I. INTRODUCTION
With the development of multimedia technology and
the arrival of the digital age, the number of digital images
in the Internet database increases exponentially. How to
search the required images from various databases becomes
an urgent problem. Content-based image retrieval (CBIR) is
a technique that uses features which can represent image con-
tent to search for images which are similar to query images.
Usually, CBIR extracts features from both database images
and query images, and selects the image that best matches
the query image [1]. In other words, CBIR system mainly
includes two essential parts: feature extraction and similar-
ity measurement. The effectiveness of the former mainly
depends on how to extract features and what types of features
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are extracted. The accuracy of the latter is determined by
which form of similarity measurement is selected. Both affect
the performance of retrieval at the same time. Therefore,
how to find a useful image retrieval method has become a
hot topic in current research. In the literatures [2]–[4], the
researchers made a comprehensive and detailed literature
review on CBIR.

The texture is a primary visual feature of the image, and
texture image represents a large class of natural images.
Texture image analysis has been widely used in image
retrieval[5], human identification[6], segmentation of remote
sensing images[7], defect classification[8], etc. Texture fea-
tures, shape features and color features are all important
features of texture analysis, which can be applied in different
fields, especially in the field of image processing. However,
when applied to different image processing tasks, the selected
features are different[9], [10]. Texture features are significant
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features in image retrieval. Compared with shape and color
features, texture features can obtain more image feature infor-
mation and be effectively extracted in spatial and transform
domains. In the transform domain, the statistical features
based on wavelet transform have become one of the essential
features to describe texture image because wavelet analysis is
very consistent with human visual perception. Do et al. [11]
proposed generalized Gaussian distribution (GGD) statistical
features based on detail sub-band coefficients in the discrete
wavelet transform (DWT) domain. Kwitt et al. [12] proposed
the statistical features of Gamma distribution and Weibull
distribution of magnitude sub-band coefficients based on
DTCWT; Oulhaj et al. [13] proposed GGD statistical features
of RM sub-band coefficients and Gaussian mixture statisti-
cal features of RP sub-band coefficients based on complex
wavelet transform [14]. Vo et al. [15] used the GGD sta-
tistical feature of real and imaginary sub-band coefficients
and the Vonn distribution statistical features of RP sub-band
coefficients in uniform discrete curvelet complex transform
domain. On the other hand, the local pattern feature is a
critical feature of texture image in the spatial domain. It is
widely used in the classification and retrieval of natural and
texture images. Ojala et al. [16] proposed LBP and applied
it to texture image classification. Zhang et al. [17] pro-
posed the local derivative pattern (LDP) for face recognition.
Tang et al. [18] further extended LBP to face recognition
under different illumination conditions. Tajeripour et al. [19]
proposed a modified LBP for stone porosity computing.
Verma et al. [20] proposed a local tri-directional pat-
tern (LTriDP) for texture image retrieval. Pan et al. [21]
proposed local vector quantization pattern(LVQP) for tex-
ture classification. Gupta et al. [22] proposed color tex-
ture image retrieval based on LBP and local extrema
peak valley pattern (LDPVP), combined with local direc-
tional peak valley pattern (LDPEVP) and color feature.
Chakraborty et al. [23], [24] proposed local gradual hexagon
pattern and R-theta local neighborhood pattern for facial
image recognition and retrieval. Dubey et al. [25] pro-
posed local bit-plane decoded pattern for biomedical image
retrieval. Verma et al. [26] combined LBP with local neigh-
borhood difference pattern (LNDP) for natural and tex-
ture image retrieval. Liu et al. [27], [28] proposed binary
rotation invariant and noise tolerant(BRINT) and median
robust extended local binary pattern(MRELBP) for tex-
ture classification, and these two approaches are robust to
noise and illumination, etc. In these methods, the global
features of the image captured in the transform domain,
lack the description of the local information, while the
local features applied to the spatial domain, lack the use
of the transform domain information. To further explore
the application of local pattern features in the transform
domain, Qian et al. [29] extended the conventional local
binary pattern to pyramid transform domain (PLBP) for
texture classification. Akoushideh et al. [30] further used
the multi-level, multi-resolution approach and multi-band
(ML +MR +MB) approach on the basis of PLBP to

increase the accuracy of classification. Murala et al. [31]
proposed a local tetra pattern (LTrP) based on the Gabor
wavelet transform domain, which produced four directional
features and one magnitude feature, and effectively improved
the performance of texture image retrieval. Lei et al. [32] used
the Gabor wavelet transform to verify that image information
in the joint spatial domain and transform domain can provide
more useful features.

In recent years, because only one feature can not fully
describe the image information, multi-feature fusion has
become an effective method for texture image classification
and retrieval. Yang et al. [33] fused statistical features and
LBP features based on the DTCWT domain for texture image
classification. Ershad et al. [34] fused the gray level co-
occurrence matrix (GLCM) and the LBP feature for texture
classification, and applied K-L divergence and hybrid color
LBP to color image classification [35]. Kumar et al. [36]
fused LBP features in the spatial domain and mean and
variance features in the contourlet transform domain for tex-
ture image retrieval, and chi-square distance was used for
similarity measurement. Zhou et al. [37] proposed to fuse
the features of the color histogram, local direction pattern
and dense SIFT based on bag of feature (BoF), and use the
diffusion process to optimize the global matching of the fused
multi-feature images, and use L1 distance as a similarity
measurement. Nazir et al. [38] proposed a fusion method
based on color and shape features, where the color moment
and the color histogram are selected to represent color fea-
tures, and invariant moments are adopted for shape features.
Naghashi et al. [39] combined two spatial features for fusion,
in which the LTP was firstly calculated in the image spa-
tial domain, and then the feature vector was obtained by
applying the GLCM in the LTP. In [39], the combination of
the above two methods retains the strong robustness of LTP
and extracts the spatial correlation between adjacent pixels
and the spatial information and frequency of adjacent local
patterns through GLCM, and L1 distance is also used as a
similaritymeasurement. Because thesemethods fusemultiple
features, the image information can be fully described, and
the performance of texture image retrieval or classification
can be effectively improved.

Our motivation is to find a local descriptor in the
multi-scale and multi-directional transform domain, which
is multi-directional and can make full use of the directional
information in the sub-band coefficients. In addition, we hope
to select the same statistical model for different sub-band
coefficient modeling in the transform domain, and at the
same time, find a method that can effectively combine mul-
tiple features for texture image retrieval. For these reasons,
in this article a new texture image retrieval method which
fuses global statistical features and local pattern features is
proposed based on the spatial domain and DTCWT domain.
Firstly, a new local texture descriptor is proposed in the
DTCWT domain. It forms the LEDP in eight directions by
judging the relationship between pixel intensity values in
six directions and central pixel intensity value. Meanwhile,
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FIGURE 1. Base image of 2D-DTCWT.

the magnitude LEDP (MLEDP) and phase LEDP (PLEDP),
which play an auxiliary role, are proposed.

Then, the wrapped Cauchy (WC) statistical distribution
is used to model both the RP and the RM sub-band coeffi-
cients in the DTCWT domain. Finally, LBP is extracted as a
complementary feature in the spatial domain. The similarity
measurement selects the appropriate distance measure for
different features, and the similarity measurements corre-
sponding to all features are combined in the form of convex
linear optimization. The effectiveness of the proposed LEDP
is verified by comparing experiments in DB1 and DB2 image
databases. The efficiency and feasibility of texture image
retrieval method based on statistical features and local pattern
features are evaluated by comparative experiments in DB2
and DB3 image databases.

To sum up, the main contribution of this article is threefold:
i) a new local descriptor LEDP is proposed to make better use
of the directional sub-band information in DTCWT domain;
ii) the same statistical model is used for the RM sub-band
coefficient and the RP sub-band coefficient to ensure the
unity of the modeling form; iii) an optimized combination
of similarity measurements is used to realize better matching
between the extracted features and the corresponding similar-
ity measurements.

The rest of this article is organized as follows. Section II
introduces the related theory and the detailed calculation
steps of the LEDP. Section III presents in detail the features
and similarity measures used in this article. Experimental
results and discussions are given in Section IV. Section V
concludes with the summary of this article and indicates some
possible future work

II. RELATED THEORY
A. DTCWT
DTCWT is a multi-scale and multi-directional image com-
plex transform method proposed by Kingsbury [40]. It has
two obvious advantages for texture image analysis: good
translation invariance and more direction selectivity. In gen-
eral, six high-frequency complex directional sub-bands
(±15◦,±45◦,±75◦) and two low-frequency approximate
bands can be obtained by 2-D DTCWT decomposition. Fig.1
illustrates the base image of six directional sub-bands in
DTCWT domain. The first line represents the real part direc-
tion of the complex wavelet, and the second line represents
the imaginary part direction of the complex wavelet.

After DTCWT decomposes the image, the complex sub-
band coefficients at different scales can be obtained. Since

the complex value sub-band coefficient has two parts: the
real part coefficient and the imaginary part coefficient, the
phase sub-band coefficient p and the magnitude sub-band
coefficient m at the spatial position (i, j) can be obtained by
the real part coefficient and the imaginary part coefficient.
Through the phase sub-band coefficient p and the magnitude
sub-band coefficient m, RP sub-band coefficients and RM
sub-band coefficients, which are easier to distinguish texture
information, can be obtained, and at the spatial position (i, j)
in the complex sub-band they are defined as follows

RP (i, j) = ps,k (i, j)− ps,k (i, j+ 1) (1)

RM (i, j) = ms,k (i, j)− ms,k (i, j+ 1) (2)

where RP (i, j) and RM (i, j) represent the RP sub-band coef-
ficient and RM sub-band coefficient at the position (i, j),
respectively; ps,k andms,k represent the phase and magnitude
coefficients in the kth direction sub-band at scale s, respec-
tively. The phase sub-band coefficient histogram is uniform
and will not produce any distinguishable information about
the image, while the RP sub-band coefficient histogram will
produce information to distinguish different images [15]. The
magnitude sub-band coefficient is always greater than zero,
which limits the range of histogram fitting of the selected sta-
tistical model. Therefore, RM sub-band coefficient is selected
to increase the optional range of statistical model.

B. WRAPPED CAUCHY DISTRIBUTION
The definition of probability density function of wrapped
Cauchy distribution can be expressed by (3) as [41]

p (θ; ρ,µ) =
1
2π

1− ρ2

1+ ρ2 − 2ρ cos (θ − µ)
(3)

where θ ∈ [−π, π]; µ ∈ [−π, π] is the position parameter;
ρ ∈ [0, 1) is the scale parameter, and the larger the value,
the sharper the corresponding probability density curve. The
model parameters can be estimated by the maximum likeli-
hood method.

C. LBP
Ojala et al. [16] proposed LBP for texture image analysis.
Given one center pixel of the image, the LBP value can be
obtained by comparing the gray value of the center pixel and
the gray value of the neighboring pixels. LBP with radius R
and neighborhood P is defined as follows

LBPP,R =
P∑
p=1

2(p−1) × f1
(
gp − gc

)
(4)

f1 (x) =

{
1 x ≥ 0
0 else

(5)

where gc is the gray value of the central pixel and gp is the
gray value of the neighboring pixels.
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D. LEDP
The LTrP proposed by Murala et al. [31] is based on the
direction of the pixel to effectively capture the local infor-
mation of the image. In the spatial domain, firstly, the first
derivative of 0◦ and 90◦ directions is calculated to get the
central pixel direction, and then the LTrP value in the spatial
domain is calculated according to the central pixel direction.
Meanwhile, The LTrP based on the Gabor transform is also
proposed in reference [31], and it uses the 0◦ and 90◦ real sub-
band coefficients in the Gabor transform domain to calculate
the direction of the center pixel of the sub-band image, thus
obtaining the LTrP value in the transform domain.

According to Section II.A, each layer in the DTCWT
domain generates six complex sub-bands, and the real and
imaginary parts of each sub-band have the same direction.
In this article, the LEDP based on the DTCWT domain is
proposed, and the LEDP in the transform domain is calculated
by using the coefficients of the real and imaginary parts of
the six directional sub-bands (±15◦,±45◦,±75◦). Precisely,
given image I , the first-order derivatives along ±15◦,±45◦

and±75◦ directions are denoted as I1θ (gc)
∣∣
θ=±15◦,±45◦,±75◦ ,

and gθ
∣∣
θ=±15◦,±45◦,±75 denote the neighborhood pixel values

of the central pixel in the direction sub-band. Then, it can be
written as

I115◦ (gc) = I (g15◦)− I (gc) ,

I145◦ (gc) = I (g45◦)− I (gc) ,

I175◦ (gc) = I (g75◦)− I (gc) (6)

I1
−15◦ (gc) = I (g−15◦)− I (gc) ,

I1
−45◦ (gc) = I (g−45◦)− I (gc) ,

I1
−75◦ (gc) = I (g−75◦)− I (gc) (7)

and Dir±15◦ ,Dir◦±45 and Dir±75◦ can be calculated by the
following formula

Dir±15◦

=


1 (I115◦ (gc) ≥ 0 and I1

−15◦ (gc) ≥ 0)
or (I115◦ (gc) < 0 and I1

−15◦ (gc) < 0)
0 (I115◦ (gc) < 0and I1

−15◦ (gc) ≥ 0)
or (I115◦ (gc) ≥ 0 and I1

−15◦ (gc) < 0)
Dir±45◦

=


1 (I145◦ (gc) ≥ 0 and I1

−45◦ (gc) ≥ 0)
or (I145◦ (gc) < 0 and I1

−45◦ (gc) < 0)
0 (I145◦ (gc) < 0 and I1

−45◦ (gc) ≥ 0)
or (I145◦ (gc) ≥ 0 and I1

−45◦ (gc) < 0)
Dir±75◦

=


1 (I175◦ (gc) ≥ 0and I1

−75◦ (gc) ≥ 0)
or(I175◦ (gc) < 0andI1

−75◦ (gc) < 0)
0 (I175◦ (gc) < 0and I1

−75◦ (gc) ≥ 0)
or (I175◦ (gc) ≥ 0andI1

−75◦ (gc) < 0)

(8)

Finally, the obtained Dir±15◦ , Dir±45◦ ,and Dir±75◦ can
be converted into the direction of the central pixel

by (9)

I1Dir. (gc) = Dirθ |θ=±15◦,±45◦,±75◦ × 2p + 1, p = 0, 1, 2

(9)

where p is the number of directional pairs. From the above
formula, the direction of the central pixel may be 1, 2, . . . , 8.
In this way, the whole image can be converted into eight
values (directions).

If the direction obtained by (9) is ‘‘1’’, then the second-
order LEDP2 (gc) of direction 1 can be defined by the fol-
lowing formula

LEDP2 (gc)

=

{
f2
(
I1Dir (gc) , I

1
Dir (g1)

)
, f2
(
I1Dir (gc) , I

1
Dir (g2)

)
,

. . . , f2
(
I1Dir (gc) , I

1
Dir (gP)

)}
|P=8

(10)

f2
(
I1Dir (gc) , I

1
Dir
(
gp
))

=

{
0 I1Dir (gc) = I1Dir

(
gp
)

I1Dir
(
gp
)

else
(11)

where f2 is a function to judge the relationship between the
direction of the center pixel and the direction of the neighbor-
hood pixel. If the direction of the center pixel is the same as
that of the neighborhood pixel, the direction of the assigned
neighborhood pixel is 0, and if they are different, the original
direction will be maintained.

If the 8-bit local pattern values of the central pixel are
obtained by (10) and (11), then the seven binary pattern values
of direction 1 can be obtained by the following formula

LEDP2|Direction=2,3,. . . ,8

=

P∑
p=1

2(p−1) × f3
(
LEDP2 (gc)

)
|Direction=2,3,. . . ,8 (12)

f3
(
LEDP2 (gc)

)
|Direction=φ =

{
1 LEDP2 (gc) = φ
0 else

(13)

where φ = 2, 3, . . . , 8, f3 is a function that converts neigh-
borhood pixel direction to 0 or 1. Similarly, a total of 56(7×8)
binary pattern values can be obtained for the other seven
directions.

Guo et al. [42] proposed themagnitude LBP using themag-
nitude component of local difference operators and verified
its effectiveness. According to their theory, this article puts
forward MLEDP and PLEDP. Use the first derivative of the
central pixel gc in the direction of ±15◦,±45◦,±75◦, they
are as shown in the following formula.

MI1
±15◦,±45◦,±75◦

(
gp
)

=

√(
I115◦,45◦,75◦

(
gp
))2
+

(
I1
−15◦,−45◦,−75◦

(
gp
))2

(14)

MLEDP

=

P∑
p=1

2(p−1) × f1
(
MI1θ (gp)

−MI1θ (gc)

)
|P=8,θ=±15◦,±45◦,±75◦

(15)
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PI1
±15◦,±45◦,±75◦

(
gp
)

= arctan(
I115◦,45◦,75◦

(
gp
)

I1
−15◦,−45◦,−75◦

(
gp
) ) (16)

PLEDP

=

P∑
p=1

2(p−1)×f1
(
MI1θ (gp)

−MI1θ (gc)

)
|P=8,θ=±15◦,±45◦,±75◦

(17)

where MI1
(
gp
)
is the magnitude of the pixel, and PI1

(
gp
)
is

the phase of the pixel. In order to reduce the computational
complexity, this article selects the uniform patterns [43].
Therefore, for the neighborhood P = 8, the feature vector
length of the LEDP in each direction is reduced toP(P−1)+3.
For a given image I ,m scale decompositions are performed

in the DTCWT domain to obtain six complex directional sub-
bands in each scale. Firstly, the first derivatives of the real and
imaginary sub-band coefficients in

each direction are calculated, and then the second-order
LEDP(DTLEDP) at six scales can be obtained as follows

DT 2
m,θ1 (gc)

= DT 1
m,θ1 (gc)− DT

1
m,θ1 (g45◦) |θ1=15◦,45◦,75◦ ,

m = 1, 2, .., 6 (18)

DT 2
m,θ2 (gc)

= DT 1
m,θ2 (gc)− DT

1
m,θ2 (g−45◦) |θ2=−15◦,−45◦,−75◦ ,

m = 1, 2, .., 6 (19)

The direction of the center pixel gc is calculated by replac-
ing I1θ1 (gc) ⇒ DT 2

m,θ1 (gc) and I1θ2 (gc) ⇒ DT 2
m,θ2 (gc)

in (8). Similarly, DTLEDP, MLEDP, and PLEDP values can
be obtained by (8) ∼ (19). Finally, each layer will respec-
tively produce 8 DTLEDP values for real part and imag-
inary part sub-band coefficients, and three direction pairs
(±15◦,±45◦,±75◦ ) in each layer will respectively produce
three MLEDP values and three PLEDP values for real part
and imaginary part sub-band coefficients. Therefore, the 28
(8+8+6+6) local pattern values obtained in each layer are
converted into histograms as features.

In order to find the pixel values in the direction of
±15◦,±45◦,±75◦, we can draw on the Radon trans-
form idea which can detect the pixel position in any
angle of the image [44]. Template images for determining
±15◦,±45◦,±75◦ direction pixel value in 11 × 11 neigh-
borhoods are shown in Fig.2.

Fig. 2 illustrates the pixel values in the direction of
±15◦,±45◦,±75◦ and in the neighborhood of P = 8, P =
24. Considering the amount of calculation and application,
only the pixel values in the range of −90◦∼90◦ are selected
for neighborhood pixel values, as shown in Fig. 3.

Fig. 3 illustrates that, the yellow area is the neighborhood
pixel of gc with R = 1, and the blue area is the neighborhood
pixel of gc with R = 2. In this article, the neighborhood pixels
of R = 1 are selected to calculate LEDP. With the increase of

FIGURE 2. Template images of ±15◦,±45◦,±75◦ direction pixel value in
11 × 11 neighborhoods.

FIGURE 3. Neighborhood pixel of gc with R = 1 and R = 2 in direction of
±15◦,±45◦,±75◦.

the radius, the direction may also increase, that is, the number
of features will increase. In the future work, we will continue
to use the neighborhood pixels of R = 2 to calculate the third-
order LEDP.

III. TEXTURE IMAGE RETRIEVAL METHOD
Texture image retrieval includes two essential parts: feature
extraction and similaritymeasurement. The feature extraction
part is used to select the features which can fully reflect
the image information. The excellent features should reflect
the global overview of the image and describe the local
image information. The performance of retrieval can be
effectively improved by fusing these two features. In this
article, we choose the same statistical model (i.e., WC dis-
tribution) for RM and RP sub-band coefficient modeling
respectively in the DTCWT domain, which can effectively
ensure the uniformity of global modeling parameter features
and corresponding similarity measurements. To compensate
for the loss of local information due to using global fea-
tures in the transform domain, we propose a new image
local descriptor (i.e., LEDP) to extract local features in
the DTCWT transform domain, and meanwhile the LBP
local feature information in the spatial domain is also used.
On the other hand, the matching similarity measurements
are selected for the extracted features. K-L divergence is
selected as the similarity measurement for the statistical
model parameter features, and the relative L1 distance is
used as the similarity measurement for both local descriptor
features.
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FIGURE 4. Statistical modeling and histogram fitting of database images.

A. SUB-BAND COEFFICIENT MODELING AND GLOBAL
FEATURE SELECTION
The global features of texture image are determined by the
statistical modeling parameters of directional sub-band coef-
ficients in the DTCWT domain in this article. To unify the
modeling form of DTCWT sub-band coefficients, both the
RM sub-band coefficient and the RP sub-band coefficient
select the WC distribution to model. In order to verify the
rationality of the selected statistical model, and considering
the limited space, two typical images are selected from each
of the DB2 and DB3 databases for DTCWT decomposition.
Then the sub-band coefficients of different directions under
different scales are modeled. The typical experimental results
are shown in Fig. 4. The first row is the images in each image
database; The second row is WC distribution modeling and
histogramfitting of RM sub-band coefficients with third scale
and 15 ◦ direction; The third row isWC distribution modeling
and histogram fitting of RP sub-band coefficients with third
scale and 15 ◦ direction. In the parentheses at the bottom of
the fitting figures, the first two numbers are the parameters of
the model (ρ,µ ), and the last one is the objective evaluation
index, namely entropy difference rate Re. Re is defined as
the ratio of the K-L distance between histogram and model
distribution or relative entropy (1H ) to entropy value (H )
of histogram distribution[15], and the smaller the value, the
better the fit.

TABLE 1. Comparison of Distance Within Class and Distance Between
Classes.

Fig.4 illustrates the fitting effect of each histogram and
the size of Re, which can be seen that the selected statistical
model can well fit the histogram of sub-band coefficients,
that is, the coefficient modeling is suitable for RM and RP
sub-bands. We observe that the model parameter values of
different classes of texture images are different, therefore the
differences between different texture images can be effec-
tively distinguished by the model parameter features.

More importantly, this can alleviate the problem that
the distance within the classes is greater than the distance
between classes using different statistical models. To verify
the advantages of this modeling scheme, the 631st and 640th
images in the DB3 image database (both belong to the same
class of image), and the 475th and 640th images (both belong
to different classes of images) in the DB3 image database are
selected to model and estimate the model parameters, and the
K-L distance within the classes and the K-L distance between
the classes are respectively calculated, and the results are
shown in Table 1.

The data from Table 1 show that the distance within the
class is larger than the distance between classes when the
RP and RM sub-band coefficients are respectively modeled
by the two models; while the distance within the class is
less than the distance between classes when the RP and RM
sub-band coefficients are respectively modeled by the same
model. Therefore, the selection of the modeling scheme in
this article can improve the performance of texture image
retrieval.

B. LEDP AND LOCAL FEATURE SELECTION
The local features in this article are mainly obtained from
the LEDP (also including MLEDP and PLEDP) histogram
of directional sub-bands in the DTCWT domain. To verify
that the proposed LEDP is multi-directional, we choose to
compare it with the same multi-directional LTrP. Select the
same test image and apply LTrP and LEDP respectively to
obtain four directions of LTrP and eight directions of LEDP.
The experimental results are shown in Fig. 5.

Fig.5 illustrates that the selected test images have obvious
multiple directionalities, which can be used to distinguish
the ability of different local descriptors to describe the direc-
tion; compared with LTrP, LEDP can represent more detailed
direction information. Therefore, LEDP is easy to capture
more local direction feature information for texture images
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FIGURE 5. Directional effect comparison of LEDP and LTrP.

with rich direction information, and can better combine with
DTCWT direction sub-bands, thus effectively improve the
effect of texture image retrieval.

C. LEDP ROBUSTNESS
The LEDP proposed in this article has many nice properties.
In order to verify these, the Tile.0001 image in DB3 database
is selected for experiments. We tested the properties of the
resistance against rotation, illumination, and scaling of LEDP
respectively, and the experimental results are shown in Fig 6.
Because there are many directional atlas produced by LEDP,
limited to space, only part of the directional spectrum of

LEDP (direction 1 and direction 8) are selected for testing.
At the same time, because some of the properties can not be
seen directly from the LEDP spectrum, the histograms of the
eight directional spectrums generated by LEDP are merged.

Our experimental scheme is to verify the robustness of
LEDP in the resistance against rotation, illumination, and
scaling by comparing LEDP spectrums and LEDP histograms
under different conditions. From Fig 6. (e)∼(i), we can see
that the LEDP spectrum of the original image under different
illumination is basically the same; when the original image
is rotated by 90◦, the LEDP spectrum obtained is also close
to the original image spectrum. From Fig 6 (m)∼(r), we can
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FIGURE 6. Image LEDP direction 1 atlas and direction 8 spectrum and LEDP histogram under different conditions.

see that the shape of LEDP histogram is very similar under
different conditions such as illumination, rotation and scaling.
In summary, the experimental results

show that the LEDP proposed in this article has good
robustness in the resistance against rotation, illumination, and
scaling of the texture images.

D. SIMILARITY MEASUREMENT
In this article, K-L divergence is used to similarity measure-
ment corresponding to the parameter features of the WC sta-

tistical distribution model. However, because this similarity
measurement does not have a closed-form, it can be estimated
by the numerical method [15]. For each direction sub-band in
DTCWT domain, the used K-L divergence is defined as

DC (p (θ; ρ1, µ1) , q (θ; ρ2, µ2))

=

∫ π

−π

p (θ; ρ1, µ1) ln
p (θ; ρ1, µ1)

q (θ; ρ2, µ2)
dθ (20)

where p (θ; ρ1, µ1) and q (θ; ρ2, µ2) are respectively WC
probability density functions of database candidate images
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and query images;ρ1, µ1 and ρ2, µ2 denote the scale and
location parameters of the statistical model of database candi-
date image and query image, respectively. Correspondingly,
the similarity measurement between each sub-band statisti-
cal model of RM and RP is expressed as DRM and DRP,
respectively.

The relative L1 distance is chosen as the similarity mea-
surement corresponding to the histogram features of LBP and
LEDP local descriptors. At the same time, the normalized
Euclidean distance (L2) is selected as the comparative exper-
iment for the similarity measurement. For each bin of the
histogram, the relative L1 distance and L2 are respectively
defined as

DL1 (A,B) =

∣∣∣∣ hl1,i − hl2,i
1+ hl1,i + hl1,i

∣∣∣∣ (21)

DL2 (A,B) =

∣∣hl1,i − hl2,i∣∣
M

(22)

where hl1,i and hl2,i denote the histogram features of the
database candidate images and the query images, respec-
tively, and i is the ith bin of the feature histogram, M is
the standard deviation of all bin values. Correspondingly, for
each bin, the similarity measurement of LBP is denoted as
DLBP; and for each sub-band and each bin, the similarity
measurement of LEDP is expressed as DLTrP.
Finally, the similarity measurements corresponding to var-

ious features are combined into a total similarity
measurement in the form of a convex linear combination.

It is defined as

D = a
M∑
m=1

DRM + b
M∑
m=1

DRP + c
K1∑
k=1

DLBP

+d
N∑
n=1

K2∑
k=1

DLEDP (23)

whereM and N are the numbers of directional sub-bands, K1
and K2 are the numbers of bins in histogram, and a + b +
c + d = 1, 0 ≤ a, b, c, d ≤ 1.In the experiment, using the
retrieval method proposed in this article, through MATLAB
simulation, traversing the numerical range of a, b and c with
the iteration step size 0.001, and according to the optimal
average retrieval rate, a = 0.018, b = 0.072, c = 0.82, and
d = 0.09 are set in the DB2 image database; a = 0.02, b =
0.08, c = 0.8, and d = 0.1 are set in the DB3 image database.

E. PROPOSED METHOD
The retrieval algorithm proposed in this article is shown as
follows

IV. EXPERIMENTS AND DISCUSSION
In order to present and compare the performance of the
method proposed in this article, three widely used texture
image databases are selected for the experiments. The fol-
lowing comparative experiments are conducted to verify the
effectiveness of this method by setting different database
combinations.

Algorithm
Input: Query image;Output: Retrieval result
1: Load the image and convert it to a grayscale image.
2: Calculate the LBP value of the image in the spatial domain,
and establish the feature histogram.
3: Decompose the image by DTCWT, and calculate the RM
and RP sub-band coefficients.
4: Model the WC distribution of RM and RP sub-band coef-
ficients.
5: Calculate the LEDP value, MLEDP value, and PLEDP
value of the image in DTCWT domain, and establish the
feature histogram.
6: Construct the feature vector.
7: Compare the query image with the image in the image
database using (23).
8: Retrieve the most matching N images.

A. EXPERIMENTAL DATABASES
All retrieval experiments in this article are carried out in
three texture image databases. The first image database used
images from the Corel database [45]. Some researchers think
that the Corel database meets all the requirements to eval-
uate an image retrieval system due to its large size and
heterogeneous content. In the experiment, 1000 images were
collected and divided into ten categories to form the large-
sized database DB1. These images come from ten differ-
ent types of domains, namely, Africans, beaches, buildings,
buses, dinosaurs, elephants, flowers, horses, mountains, and
food. Each category has 100 images with resolution of either
256 × 384 or 384 × 256. The second image database con-
tains 116 different categories of texture images with res-
olution of 512 × 512, of which 109 texture images are
from Brodatz texture image database [46] and seven texture
images are from the University of Southern California image
database [47]. Each image with resolution of 512 × 512 is
divided into 16 non-overlapping sub-images with resolution
of 128×128, thus creating the medium-sized image database
DB2 with 116 categories, 16 images per category, and a
total of 1856 (116 × 16) images. The third image database
contains 40 different types of texture images with resolution
of 512 × 512, all of which come from the MIT VisTex
texture image database [48]. Each image with resolution of
512×512 is also divided into 16 non-overlapping sub-images
with resolution of 128 × 128, thus creating the small-sized
image database DB3 with a total of 640 (40 × 16) images,
40 categories and 16 images per category. Fig.7 illustrates
sample images of three image databases. Besides, for DB2
and DB3 image databases, to reduce the correlation of gray
values among similar sub-images and maintain the fairness of
the retrieval process, all sub-category images are respectively
normalized to zero mean and unit standard deviation.

B. PERFORMANCE EVALUATION INDEX
In the experiments, each image in the image database is
treated as a query image. According to the extracted image
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FIGURE 7. Some samples of gray-scale textures in the three image
databases:(top) DB1, (middle) DB2, (bottom) DB3.

features, the similarity measurement is calculated by (23),
and finally, the top N images with the shortest distance from
the query image are selected in the database. The performance
of the retrieval system in this article is respectively evaluated
by precision, recall and average retrieval rate (ARR), which
are defined as

Precison =

∑M
i=1 si
V

(24)

Recall =

∑M
i=1 si
R

(25)

ARR =

∑M
i=1 si
MV

∣∣∣∣∣
V=16

(26)

where M is the total number of images in the database, Si is
the number of correct images retrieved for the ith time, V is
the number of images retrieved each time, andR is the number
of images of each category.

C. COMPARISON OF RETRIEVAL PERFORMANCE BASED
ON LTRP AND LEDP IN DB1 AND DB2
In order to compare the effect of two local direction descrip-
tors, namely LTrP and LEDP proposed in this article, on the
performance of texture image retrieval, the experiments are
carried out in two distinct image databases DB1 and DB2.
The experimental results are shown in Fig.8 and Table 2. Fig.8
illustrates the comparisons of the precision and the recall
between LEDP and LTrP based on the spatial domain and the
transform domain in the ten categories of images from the
DB1 image database.

Given below are the abbreviations used in the analysis of
the experimental results.

FIGURE 8. Comparison of precision and recall results for 10 categories of
images.

LBP: LBP features[31]
DTLBP: LBP in DTCWT
LDP: Local derivative patterns [17]
LTP: Local ternary patterns [18]
LTrP: Local tetra patterns [31]
GLTrP: Local tetra patterns with GT [31]
LMEBP: Local maximum edge patterns [49]
DTLTrP: LTrP in DTCWT
LEDP: Local eight direction patterns
3-6 LDTLEDP: Local eight direction patterns with three-

six layer decompositions in DTCWT
4 LDTLEDPL2: Local eight direction patterns with four

layer decompositions in DTCWT with L2 distance
Fig.8(a) illustrates that, in the spatial domain, the recall

of LEDP in 3 out of 10 categories is better than that of
LTrP for the DB1 image database; in the transform domain,
the recall of 7 out of 10 categories of DTLEDP is bet-
ter than that of DTLTrP. These results show that the local
descriptor LEDP proposed in this article has more advantages
in the DTCWT domain over LTrP. Fig.8(b) illustrates that,
compared with DTLTrP, DTLEDP has similar advantages in
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TABLE 2. ARR Comparisons for Different Descriptors in DB2.

precision, where 6 out of 10 categories of DTLEDP have bet-
ter precision than DTLTrP. When the similarity measurement
is L2, the precision and recall are lower than that of L1, which
proves the rationality of the similarity measurement selected
in this article. Besides, setting different decomposition layers
in DTCWT domain also affects the retrieval performance
of DTLEDP. When the number of decomposition layers is
appropriately increased, the retrieval performance will be
improved. However, when the number of decomposition lay-
ers is increased to some extent, the retrieval performance will
decrease instead. For this reason, in order to ensure better
retrieval performance, we selects 5-layer decompositions for
DTLEDP in this article.

Table.2 shows that, for the DB2 image database, LEDP and
DTLEDP are used to compare the ARR with other existing
local descriptors.

From the data in Table.2, we can show that, the retrieval
performances of LEDP and DTLEDP are superior to most
existing local descriptors on image database DB2. Neverthe-
less, their retrieval performance is still lower, compared with
that of LTrP. This result may be caused by the fact that some
of the eight directions of LEDP are not sensitive to random
information of a few images. Considering that the LEDP
proposed in this article is mainly applied to the DTCWT
domain, and in order to better utilize the direction informa-
tion of the sub-bands, compared with DTLBP, GLTrP and
DTLTrP, DTLEDP indeed has certain advantages. Therefore,
DTLEDP can provide more local direction information than
DTLTrP in DTCWT domain.

TABLE 3. ARR for DB2 and DB3 Image Database.

D. COMPARE RETRIEVAL PERFORMANCE OF DIFFERENT
METHODS IN DB2 AND DB3
Select some existing methods which use image database
DB2 and DB3 to compare the retrieval performance (ARR)
with the method proposed in this article, and the exper-
imental results are shown in Table 3. In Table 3, the
‘‘GGD-WC’’ and ‘‘GGD-Vonn’’ methods use the GGD
distribution parameter features of the sub-band coeffi-
cients, and the WC distribution parameter features and
the Vonn distribution parameter features of the RP sub-
band coefficients in the uniformly discrete curvelet com-
plex transform domain [15], [41]; the ‘‘LBP’’, ‘‘LMEBP’’
and ‘‘LTriDP’’ methods use the histogram features of LBP,
LMEBP and LTriDP in spatial domain [20], [31], [49]; the
‘‘SVD+LBP’’ method combines the singular value decom-
position (SVD) feature in the DTCWT domain with the LBP
histogram feature in the spatial domain[50]; the ‘‘CoALTP’’
method fuses LTP and GLCM in spatial domain[39]; the
‘‘LDPVBP-CH’’ method fuses LDPVBP and CH in spatial
domain [22]; the ‘‘LNDP+LBP’’ method fuses LNDP and
LBP in spatial domain [26]; The "RM" method uses only the
statistical features of WC distribution in DTCWT domain;
the ‘‘LBP+DP’’ method uses LBP in spatial domain and
DTLEDP in DTCWT domain; the ‘‘LBP+RM’’ method uses
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TABLE 4. Feature Vector Length and ARR in DB2 for PM and Prior
Methods.

LBP in spatial domain and statistical features of WC distri-
bution in DTCWT domain; the ‘‘RM+DP’’ method uses sta-
tistical features of WC distribution and DTLEDP in DTCWT
domain. It should be noted that the texture images of the DB2
image database used by the ‘‘LNDP+LBP’’ and ‘‘LTriDP’’
methods are all from the Brodatz texture image database
with a total of 2800 (112 × 25) texture images. In addition,
‘‘PM’’ is the method proposed in this article in Table 3.
In our retrieval experiments, from the perspective of obtaining
the best average retrieval rate, three layer decompositions
in DTCWT domain are used for extracting the statistical
modeling features; and five layer decompositions in DTCWT
domain are used for extracting DTLEDP and MLEDP and
PLEDP features; and the number of the bin is 59 for all local
pattern histogram.

From the data in Table.3, it can be seen that the
retrieval performance achieved by the method proposed
in this article is better than the best results of exist-
ing approaches, which shows that our method is effec-
tive. Besides, compared with the ARR obtained respectively
by the ‘‘LBP+DP’’, ‘‘LBP+RM’’ and ‘‘RM+DP’’ meth-
ods, the three feature fusion method exploited in this arti-
cle substantially improve the ability to characterize texture
images.

E. FEATURE VECTOR LENGTH AND PERFORMANCE
Table 4 shows feature vector length and ARR in DB2 for PM
and prior methods.We can see that from Table 4, although the
feature vector length of PM is higher than that of other meth-
ods, its retrieval performance outperforms others in terms of
ARR.

V. CONCLUSION
In image retrieval, the use of multi-feature fusion can effec-
tively enhance the ability of feature representation of images,
thus significantly improve retrieval performance. For this
reason, a newmethod of texture image retrieval is proposed in
this article based on the DTCWT domain and spatial domain,
which combines global statistical features and local pattern
features. Specifically, this method combines the LEDP fea-
tures proposed in this article, LBP features and statistical
features to characterize the texture information of the image.
Accordingly, the similarity measurement uses a convex lin-
ear optimization form, which combines the similarity mea-
surements corresponding to each feature. The results of the
retrieval experiments in Corel (DB1), Brodatz (DB2) and
VisTex (DB3) image databases verify the effectiveness and
feasibility of our method; and compared with the best results
of existing methods, the proposed approach has obvious
advantages in the retrieval performance.

In this article, the LEDP is only applied to the DTCWT
domain. In addition, it can also be applied to pyramid dual
tree directional filter bank (PDTDFB) and Gabor complex
transform domains with more flexible directionality. On the
other hand, only relative magnitude sub-bands and relative
phase sub-bands in DTCWT domain are modeled, but the
low frequency sub-bands in the DTCWT domain are not
exploited to model. In the future, we will continue to look
for statistical models suitable for all DTCWT sub-bands to
improve retrieval performance. Furthermore, because of the
effectiveness of themethod proposed in this article, it can also
be applied to the retrieval of other image databases, such as
facial image and biomedical image databases.
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