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ABSTRACT The fact that ensemble methods enhance the prediction performance. Therefore, we focused
on developing a weighted ensemble method using a novel combination of Cerebrospinal Fluid (CSF)
protein biomarkers to predict AD’s earlier stages with greater accuracy than the state-of-the-art CSF protein
biomarkers. In this regard, two feature selection methods, namely the Recursive Feature Elimination (RFE)
and L1 regularization method were used to screen the most important subset of features for building a
classification model using the Mild Cognitive Impairment (MCI) dataset. A novel combination of three
biomarkers, namely Cystatin C, Matrix metalloproteinases (MMP10), and tau protein, was screened using
the linear Support Vector Machine (SVM) and Logistic Regression (LR) classifier based RFE method.
Two-tailed unpaired t-test analysis at a 5% significance level showed a significant difference between the
mean levels of Cystatin C, MMP10, and tau protein between cognitive normal and cognitively impaired
groups. An ensemble model using a weighted average of two best performing classifiers (LR and Linear
SVM) was created using a novel subset of three most informative features. Our ensemble model’s weighted
average results performed significantly better than LR and Linear SVM base classifiers’ performance. The
Receiver Operating Characteristic Curve (ROC_AUC) and Area under Precision-Recall values (AUPR) of
our proposed model were observed to be 0.9799 ± 0.055 0.9108 ± 0.015, respectively. The performance of
our proposed weighted averaged ensemble model built using a novel combination of CSF protein biomarkers
was significantly better (p < 0.001) than models generated using different combinations of CSF protein
biomarkers obtained from recent studies. An ensemble-learning based application was implemented and
deployed at Heroku at https://appsalzheimer.herokuapp.com.

INDEX TERMS Mild cognitive impairment (MCI), cerebrospinal fluid (CSF) protein biomarkers, classifi-
cation model, online prediction system.

I. INTRODUCTION
Alzheimer’s disease results in a neurodegenerative disorder
that causes irreversible and progressive brain cell damage,
usually affecting people during their mid-60s [1], [2]. Pre-
clinical changes in the brain associated with Alzheimer’s
begin years before the onset of the disease’s typical clinical
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symptoms. Though the onset of AD cannot be reversed
or stopped, early detection of the disease can allow treat-
ment and spontaneous care of Alzheimer’s patients in their
earlier stages before irreparable damage to the brain has
occurred [3], [4]. Therefore, studies’ on the development of
new strategies for the earlier diagnosis of AD are among the
most active research areas inAlzheimer’s science. Researches
in the past have shown that individuals with MCI or
presymptomatic Alzheimer’s have a greater risk of eventually
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converting to AD [5]–[10]. The biochemical changes in
CSF associated with AD’s progression provide a sound and
potential source of diagnostic biomarkers to study the dis-
ease’s preclinical and clinical stages. Thus, for the early
detection of AD, identifying specific biomarkers that play
a significant role in converting MCI to AD has become of
great interest in recent times [11]–[14]. In the current sce-
nario, conventional CSF biomarkers, namely tau, amyloid-
β42 (Aβ42), and phosphorylated forms of tau (p-tau), have
shown more significant potential in the screening of MCI
patients who eventually progressed to clinically diagnosable
AD [15]–[19].

AD is multifactorial by nature; therefore, a substantial
overlap of the clinical biomarkers between the cognitively
healthy and cognitively impaired individuals is observed [20].
Thus, considering the present scenario, there is an urgent
need to identify novel protein biomarkers from CSF. Iden-
tifying new CSF protein biomarkers will enhance our cur-
rent understanding of the pathophysiology of MCI and the
progression of MCI patients to AD. However, herein lies a
problem as the analysis and interpretation of multiple factors
(clinical biomarkers) involved in converting MCI to AD are
difficult and complicated. Therefore, in recent years the appli-
cations of pattern recognition and Machine Learning (ML)
algorithms in Computer-Aided Diagnostic (CAD) tools have
become invaluable. These tools are highly efficient in analyz-
ing and interpreting AD’smultifactorial nature, enabling clin-
icians and scientists to distinguish between healthy controls
and patients with MCI who convert to AD. Several machine
learning approaches have been used on a different combina-
tion of features, namely CSF biomarkers, genotypes, brain
imaging, clinical information, and demographics, to predict
MCI subjects’ conversion to AD with varying levels of pre-
cision and accuracy [11], [6], [21]–[27].

Nevertheless, only a few studies have looked for novel CSF
protein biomarkers that can augment the accuracy of current,
leading CSF protein biomarkers (Aβ42, Tau, p-tau181) in
distinguishing MCI patients from healthy subjects and, at the
same time, detecting the earlier stages of AD [11], [13].
Lately, ensembling has gained importance in classifying a
progressive form of MCI, which ultimately leads to AD from
cognitively normal individuals [23], [28], [29]. Therefore,
we propose an ensemble learning model to identify additional
CSF protein biomarkers, fitted on attributes (CSF protein
biomarker) selected using the RFE method.

The Alzheimer dataset generated by Craig Schapiro et al.
2011 [11], comprising of both demographic and CSF protein
biomarkers, was employed to build our model for predicting
the earlier stages of AD. Our proposed ensemble model can
classify MCI patients from cognitively normal subjects with
better sensitivity, specificity, and accuracy than state-of-the-
art CSF protein biomarkers’ (tau, Aβ42, p-tau) based clas-
sification models [11]. Our CSF protein biomarkers’ based
web application is the first of its kind to predict the earlier
stages of AD. The application is written in python, developed
in Flask, a micro web framework, and deployed on Heroku at

‘‘https://appsalzheimer.herokuapp.com.’’ The paper onwards
is divided into the following sections: 1) The Material and
Methods section provides information about Alzheimer’s
clinical datasets’ source and contents. It also provides a
detailed description of the data preprocessingmethods, super-
vised learning algorithms, and model evaluation metrics
employed for assessing the performance of various models
built using Alzheimer’s clinical data. 2) The Result section
briefly explains the results of various methods employed
to generate an efficient predictive model for predicting the
earlier stages of AD 3) The Discussion section describes our
model efficiency in differentiating cognitively impaired sub-
jects from cognitively normal subjects. 4) Finally, the Con-
clusion section provides the concluding remarks and scope
of our model and its implementation in predicting the earlier
stages of AD. A pictorial representation of the methodology
adopted in our study to develop an ensemble-learning-based
web application for predicting the earlier stages of AD is
depicted in Fig. 1.

II. MATERIAL AND METHODS
A. DATA SOURCE AND DESCRIPTION
TheMCI clinical dataset was downloaded fromFigshare [30].
The cognitive status of the 333 subjects involved in the clin-
ical study was, according to the Clinical Dementia Rating
Scale (CDR). The clinical dataset consisted of 91 mildly
cognitive impaired subjects (CDR 0.5 and CDR 1) and
242 cognitively normal subjects (CDR 0). The MCI clinical
dataset consisted of features including 124 credible CSF
protein biomarkers, demographic features, namely age and
gender, and a set of non-imaging protein biomarkers, namely,
amyloid proteins, native tau, phosphorylated form of Tau
(pTau), Aβ42, β42, and also allelic variants of Apolipopro-
tein E genotype (E2, E3, and E4). The Apolipoprotein E
variant E4 is themost significant among all other Apolipopro-
tein E genotype variants because of its association with
AD [31], [32].

B. PREPROCESSING OF THE MCI CLINICAL DATASET
In a Machine Learning process, preprocessing of the data
is that step in which the data gets cleaned, transformed, or
Encoded, and reduced to process the data to such a state
that the machine algorithms can easily learn and analyze the
preprocessed data to build a better predictive model.

The current section discusses the type of data processing
steps involved in the present study, as illustrated in Fig. 1.
Further, a one-hot encoded technique was used to transform
the categorical features into a binary representation. The
Z-score normalization was used for performing the stan-
dard scaling of the numerical features present in the MCI
dataset. The correlation between the numerical-numerical
and numerical-categorical features was checked using the
Pearson Correlation Coefficient (PCC) to screen out the
correlated features from the MCI dataset. In the current
study, two hundred copies of the MCI dataset were generated
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FIGURE 1. A pictorial representation of the methodology implemented in this study for data processing, feature selection, model building & validation,
and implementation.

using stratified splitting with the replacement for building
a statistically meaningful model. Finally, each copy of the
randomly generated two-hundred copies of the dataset was
segmented into 80% training-cum-validation data and 20%
testing data. Feature selection was performed using the dif-
ferent methods, namely the wrapper method and the embed-
ded method. The feature selection methods mentioned above
select the best subset of features based on feature impor-
tance/information, thereby selecting the best set of predic-
tors and ignoring the redundant and less important features
for building a better predictive model. In the present study,
we have focused on the RFE, an important example of a
wrapper based feature selection process and L1 regularization
with an L1 penalty to screen the most important subset of
features, an example of an embedded based feature selection
method. A detailed description of the different preprocessing
techniques employed in the present study mentioned above is
discussed below in the following subsections.

1) ENCODING OF CATEGORICAL FEATURES
The non-continuous categorical features of the MCI dataset
were one-hot encoded, which essentially transforms each
categorical feature with ‘‘n’’ categories into ‘‘n-1’’ binary
categories, a format suitable for downstream estimators.

2) DATA NORMALIZATION
The Z-score normalization was used to normalize the numer-
ical attribute data points. Normalization assists in scaling the

data within a range to avoid training and building incorrect
Machine learning-based predictive models. In Z-score nor-
malization, the dataset’s scaling was performed using µ and
σ computed on the MCI dataset.

Value′ =
value− X ′

s
(1)

Refer to ‘‘equation 1’’ shown above for calculating the
z-score normalization of the numerical variable in the MCI
dataset.

3) FEATURES CORRELATION
Features having a Pearson coefficient of correlation
>0.99 were checked using Person Correlation. Pearson cor-
relation measures the linear relationship between the two
predictors X and Y. A value close to one indicates the highest
correlation between the two predictors, while a correlation
coefficient of zero indicates no linear correlation between
the two predictors. As no predictors were highly correlated
(>0.99), therefore none of the predictors were deleted.

4) STRATIFIED FEATURE SAMPLING
As the number of instances in the negative class, i.e., the cog-
nitively normal subjects (CDR 0), is significantly higher than
the positive class (CDR > 0), it leads to an imbalance in the
dataset. Thus to have an adequate representation of the rarer
class during the training cum validation process, a stratified
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FIGURE 2. Wrapper method of variables selection.

sampling method with replacement was used for feature
sampling.

A random 200 copies of the dataset were generated to
average out results and get a more realistic estimate for
the small MCI dataset. Two hundred copies of the dataset
were created, and within each copy, a random train-test split
of 80-20% was performed as the MCI dataset has a limited
number of samples for building a statistically meaningful
model.

5) FEATURE SELECTION
Feature reduction was applied to the training dataset in order
to select an optimal subset of the attributes. Feature reduction
was performed because the MCI clinical dataset’s feature
space is quite large, and not all attributes contribute effec-
tively in predicting the dependent variable (class). Removing
features having minimal importance reduces model variance
while also improving training and inference time.

In this regard, two different types of Feature Selec-
tion Methods have been applied in this study, namely,
the wrapper-based method and embedded method. Wrap-
per methods employ a greedy approach to iteratively look
through the space of possible feature subsets, evaluating
each subset of attributes based on a given machine learning
algorithm performance. The wrapper-based feature selec-
tion method evaluates the possible interaction between the
attributes to look for the best possible combinations of
attributes that result in the best performing model, as shown
in Fig. 2. Besides, testing all possible combinations of fea-
tures can be computationally expensive. However, if the
dataset is small, particularly when the number of attributes
is small, each run would be computationally cheap.

In this study, we have used the RFE method, a popular
example of the wrapper method of feature selection. The RFE
method [33] was used to automatically prune the least essen-
tial attributes from the given set of features in the dataset.
As the name suggests, RFE recursively eliminates the fea-
ture with the smallest coefficient on every iteration until the
desired number of attributes is eventually reached. The RFE
based feature selection method removes large correlations
among features while also providing the best combination of
the desired number of informative attributes for the effective
prediction of the dependent variable.

Since there is a class imbalance in the dataset, and the
minority class CDR > 0 is of importance to us, even at the
cost of some misclassification for CDR 0 (majority class),

RFE utilizing cost-sensitive estimators with weights, 0.2 for
class ‘‘0’’ and 0.8 for class ‘‘1’’ was used. Practically with
the Scikit-learn library, we can use any classifier (estimator)
to do the feature subset search with RFE. Therefore, the RFE
method, combined with LR, DT, RF, and Linear SVM indi-
vidually, was used to search for the best informative features
subset to build a more robust and effective classifying model.

Besides, using a combination of each ML algorithms and
the RFE method, we will know whether the feature subset
looks the same or different, or their performance in predicting
the target variable differs or remains the same. A series of
feature sets containing features ranging from 1 to (1+ n) were
selected. Here, ‘‘n’’ varies from 0 to 4. Likewise, the number
of attributes removed at each iteration in RFE was set to be
three features. After each iteration, we removed the three least
important features instead of 1 to reduce our model’s runtime
complexity. Thus after recursive elimination of the three least
important features after each loop, we reached our desired
set of informative features (i.e., subsets of feature(s) ranging
from 1 to 5).

The classifier fit the entire training data at every iteration,
and coefficients for each feature were found. The attributes
corresponding to the smallest coefficients were removed, and
this process continued until only the desired set number of
features remained. The performance metrics, namely accu-
racy, precision, recall, and ROC-AUC, were used to evaluate
each machine learning algorithm’s performance using several
sets of most informative features. A pictorial representation
of the classifier-RFE based methodology to screen the best
subset of features for predicting the earlier stages of AD is
depicted in Fig. 3.

On the other hand, the embedded methods merge the wrap-
per and filter methods’ vital points by benefitting from the
built-in feature selection process of certain machine learning
algorithms.

Additionally, in the embedded methods, the feature selec-
tion and training processes are performed concurrently,
as shown in Fig. 4. In the current study, we focus on the
Least Absolute Shrinkage and Selection Operator (LASSO)
or L1 regularization, an important example of an embedded
technique to select the best subset of features significantly
associated with the response variable. The LASSO approach
shrinks the explanatory variables’ coefficients with less or
no discriminatory power to zero while selecting a subset of
explanatory variables with non-zero coefficients [34], [35].
The selected explanatory variables represent the joint dis-
criminatory power to separate MCI patients from cogni-
tively normal subjects. Before feeding the MCI dataset to the
LASSO algorithm, all the categorical variables, namely the
explanatory and the response variable, of the MCI dataset,
were one-hot encoded.

Moreover, the LASSO is a clear case of the penal-
ized least squares regression with lambda (λ) as an L1-
penalty function. The tuning of the hyperparameter (penalty
factor lambda) was performed during the cross-validation
process. We applied the LASSO regression with 5-fold
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FIGURE 3. Pictorial representation of the classifier-RFE based Feature selection method.

FIGURE 4. Embedded method of variables selection.

cross-validation (CV) 200 times to select the optimal subset
of discriminatory attributes. A pictorial representation of the
LASSO or L1 regularization-based methodology to screen
the best subset of features is depicted in Fig. 5.

The LASSO algorithm can be mathematically defined.
Refer to equation ‘‘2’’:

β̂LASSO = argβ min

12
N∑
i=1

yi−β0− p∑
j=1

xij βj

2

+λ

p∑
j=1

∣∣βj∣∣

(2)

The above equation can also be rewritten. Refer to ‘‘3 and
4,’’ shown below:

β̂LASSO = argβ min
N∑
i=1

yi−β0− p∑
j=1

xij βj

2

(3)

Subject to the following condition:

p∑
j=1

∣∣βj∣∣ ≤ t, (4)

The LASSO method’s advantage is that it is easily
interpretable since it shrinks the coefficients of the non-
informative and correlated attributes exactly to zero. More-
over, most of the time, the LASSO method is preferred for
feature selection when the dataset has a small number of
observations and many features. Once the best subset of
features is obtained, the pruned MCI dataset with the best
subset of features was used to build the four classifiers-based
models to classify MCI patients from normal subjects. The
classifiers were evaluated based on the various performance
measures to screen the best performing model.

C. CLASSIFICATION ALGORITHMS
Four machine learning algorithms, Linear SVM, LR, DT, and
RF, were used as base classifiers for the ensembling process.

1) LINEAR SUPPORT VECTOR MACHINE (LBSVM)
The non-continuous categorical features of the MCI dataset
were one-hot encoded, which essentially transforms each
categorical feature with ‘‘n’’ categories into ‘‘n-1’’ binary
categories, a format suitable for downstream estimators.

The algorithm can output the best possible separating
hyperplane for the provided set of classes given labeled
training data. In a dataset, a sample is represented by a
p-dimensional vector, and the linear SVM algorithm tends
to find a (p-1) dimensional hyperplane that separates the
data point into a set of classes. Linear SVM is a fast, dis-
criminative classifier that works on the maximum-margin
hyperplane [36]. The maximum margin hyperplane repre-
sents the largest distance between the nearest data point
of each category or class, and SVM tends to find this
maximum-margin hyperplane to classify a sample data.
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FIGURE 5. Pictorial representation of the L1 regularization based Feature selection method.

Mathematically the maximum-margin hyperplane can be
obtained as follows:

Suppose we are given a dataset with a set of data points xi
where i= 1, 2, . . . . .n. Here ‘‘n’’ is the number of data points.
The dataset was categorized into two classes: a positive
class denoted by yi = 1 and a negative class represented by
yi = −1. We can find
A hyperplane f (x) = 0, categorizing the data points in a

dataset into the two classes. Refer to equation ‘‘5.’’

f (x) = wT x + b =
∑M

j=1wjxj
+b = 0 (5)

Herew is an n-dimensional vector, and b is a scalar constant
is used to define the hyperplane

In the linear SVM algorithm, the data points associated
with the two-classes can be separated linearly. We can do this
by two hyperplanes that separate the data points with no data
points between the planes. The two-hyperplanes are called
separating hyperplanes, and the distance between the nearest
data point of each class bounded by the two hyperplanes
is called a margin. The linear SVM tends to maximize the
margin to improve the classifier’s ability to categorize data
points into specific classes. ‘‘Equations 6-8 describe the two
separating hyperplanes as follows’’:

f (xi) = 1 if yi = 1 (6)

f (xi) = −1 if yi = −1 (7)

yif (xi) = yi(wT xi + b) ≥ 1 for i = 1, 2, . . . .M . (8)

The data points used to define the two-hyperplanes
are termed as support vectors. According to equation 7,
the margin obtained in a multidimensional framework is
given by ‖w‖−2

min imize
1
2
‖w‖−2 (9)

subject to yi(wT xi + b) ≥ 1 for i = 1, 2, . . . .M (10)

Therefore, the ideal hyperplane separating the data point
into two classes can be achieved by solving the following

optimization problem. Refer to the equation ‘‘9 and 10’’,
respectively.

2) LOGISTIC REGRESSION (LR)
The LR is a supervised classification algorithm. The LR
algorithm is based on the linear regression model. Refer to
equation ‘‘11’’:

P = α + β1X1 + β1X1 + . . . . . . . .+ βmXm (11)

The LR algorithm fits the training data to a logistic sigmoid
function, as shown in equation 9, and predicts the target cat-
egorical dependent variable’s probability [37]. The estimated
probability of the target variable in LR varies from 0 to 1.
Also, a threshold is set to classify a particular instance into a
specific target class. Depending on the threshold, the obtained
estimated probability is classified into a specific target class.
The estimated predictive value for a given xi value can be
interpreted as sample xi’s chances to be a member of a target
class variable. Let us say, if the predicted value of a sample
x1 is >0.5, then classify the sample under the ‘‘CDR > 0’’
category else under the ‘‘CDR = 0’’ category. ‘‘Equation 12,
13, and 14’’ are the main equations of the LR algorithm are
shown below’’:

Pr(Y = +1|X)∼β.X and Pr(Y=−1|X)=Pr(Y=+1|X)

(12)

↓ σ (x) :=
1

1+ e−x
∈ [0, 1] (the sigmoid function) (13)

Pr(Y = +1|X)∼σ (β.X) and Pr(Y = −1|X)

= 1− Pr(Y = +1|X) (14)

This study has two categorical dependent variables, namely
CDR > 0 and CDR = 0 groups. Here Y signifies the
dependent target variable CDR > 0 group. While X in
equation 11 represents the independent explanatory variable
in the dataset. Every independent variable, X, is assigned a
coefficient value β representing weight. Different weights
represent the different correlations between variables
X and Y .
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FIGURE 6. The basic structure of a DT algorithm-based model.

3) DECISION TREE (DT)
The DT is a supervised learning algorithm that can be applied
to solve both classification and regression problems. Imple-
menting a DT algorithm aims to build a model to predict the
target variable’s class label or value. A DT algorithm can
be used for both categorical and continuous target variables.
The DT classifies the instances in the dataset by segregating
them down the tree from the root node to some leaf node,
with the leaf node providing a decision point for the labeling
test instances with the unknown class variable. The root node
of a DT is the best performing predictor node from a set of
nodes (attribute) present in the dataset. The representation
of an atypical DT structure is shown in Fig. 6. There are
various ways to select the root node based on the percentage
of heterogeneity obtained by splitting the data using different
attributes.

The performance measures, namely Gini indexes, Entropy,
classification error, are calculated for each predictor, and a
comparison is made to select the best predictor root node to
start the splitting of the dataset. The DT algorithm recursively
generates a split (decision node) on each subset of data,
considering attributes that never have been selected before
until it reaches a terminal node (leaf node) corresponding to
a subset of data with maximum purity [38].

4) RANDOM FOREST (RF)
The RF is an ensemble learning algorithm that combines
relatively uncorrelated tree predictors. Each tree in the RF
provides a class prediction, and finally, the most voted class is
the final prediction result (class) of the ensemble. A pictorial
representation of the working of the algorithm is depicted
in Fig. 7.

RF overcomes variance and overfitting by averaging the
result of each independent tree predictors [39].

D. ENSEMBLE MODEL GENERATION
Many methods generate an ensemble of models, including
stacking, bagging, boosting, voting, and averaging. As the
dataset is small and an ensemble of strong learners is required,
methods that minimize variances such as voting and aver-
aging need to be selected. Since averaging outperforms vot-
ing [40], the trained LR and SVM classifiers were selected

FIGURE 7. Pictorial representation of the working mechanism of the RF
algorithm.

for average ensemble while the DT and RF classifiers were
left out as the latter two were outer-performed by the former.

The idea behind an average ensemble is that among two or
more models, some might perform better on certain samples
while others might perform better on the remaining ones,
and by taking their average, a single classifier is built that
can generalize to all samples. The above statement can be
empirically understood by checking the PCC of the models’
output. Lower correlation signifies that the models perform
well on different subsets of the data, while higher correla-
tions will lead to an ensemble, which is only as good as
their base predictor. Giving all models equal weightage in an
average ensemble reduces variance and increases bias as poor
performing models can have a regularization-like effect on
the output. Reducing variance while not affecting a system’s
bias, the weighted average ensemble can give more impor-
tance/weight to better performing models in the ensemble.

1) WEIGHTED AVERAGE ENSEMBLE LEARNING
The key idea behind ensemble learning is to combine weak
learning classifiers to generate a robust classifier. The final
ensemble-based model provides better stability by reducing
the individual weaker classifiers’ error (bias, noise, and vari-
ance) [40]. In this study, an ensemble-learning model was
created by training-cum-cross validating two hundred copies
of the pruned dataset (i.e., with three features), and within
each copy, a random train-test split of 80-20 is performed.
Two-hundred copies of the MCI dataset were generated to
average out results and get a more realistic estimate for the
small dataset. All training and testing datasets were reduced
to three features. Five-fold cross-validation over all of the
200 training datasets was performed, and the final results
averaged to find the best classifier. An ensemble of the two
best-performing algorithms was created by taking a weighted
average of LR and Linear SVM. Where SVM’s weight was
set to 0.9 and that of linear regression was set to 0.1.

f (x) =
1

1+ e−x
(15)

Since the output of linear SVM is not probability-based,
therefore, its soft output was converted to probability via the
logistic function. Refer to ‘‘15’’ stated above.
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E. TRAINING-CUM-VALIDATION DATASET
The MCI dataset with 333 instances were segmented into
80% training data and 20% independent test data. The 80%
data of the MCI dataset was used for performing 5-fold
training-cum-cross-validation. The four supervised machine-
learning algorithms (LibSVM, LR, Decision tree (DT), and
Random Forest (RF)) cost-sensitive estimators (classifiers)
with weights, 0.2 for class ‘‘0’’ and 0.8 for class ‘‘1’’ were
used to neutralize the bias created by the majority class
in the MCI dataset such that the false positive rate would
not exceed a threshold of 20%. The cost-sensitive classi-
fiers were trained-cum-validated on various feature subsets
obtained from theRFE and L1 regularization feature selection
method.

The total number of instances in the training data was
266, where 196 were cognitively normal samples (Negative
class), while 70 instances were MCI patients (Positive class).
Since binary classification is being performed, we need to
set an optimum threshold for our base and ensemble clas-
sifiers. A simple binary search was employed with the ini-
tial lower, intermediate and upper values set to 0, 0.5, and
1.0, respectively. The objective was to find the threshold for
which specificity was per Craig-Schapiro et al., 2012 [11].
Therefore, for each value of the middle variable, the model
was evaluated 200 times under 5-fold cross-validation, and
the average results were used to check the specificity value.
The above-described process was done until specificity was
found to be consistent with Craig-Schapiro [11]. The trained-
cum-validated prediction model’s performances were evalu-
ated by comparing their sensitivity, accuracy, Precision Area
under the curve (PR-AUC), and ROC-AUC values at speci-
ficity value in line with the earlier studies conducted by
Craig-Schapiro [11].

Finally, after calibrating themodel (s) using the best thresh-
old value, we performed predictions on the test dataset. For
brevity, other models were also trained and tested at our esti-
mated optimum threshold, and a comparative assessment was
made between our results and that of the model developed by
Craig-Schapiro et al., 2012 [11].

F. INDEPENDENT TEST DATASET
In the current study, the trained-cum-validated models
generated using the various subset of features obtained
from RFE and the L1 regularization method were re-
evaluated using five-fold cross-validation on the 200 copies
of 20% independent test data. The total number of instances
in the test data was 67. Here the positive class (MCI
patients) consisted of 21 instances, and the negative class
(Cognitively normal subjects) consisted of 46 instances.
It is recommended to do testing on independent data to
eliminate the predictive modeling bias. Five-fold cross-
validation over all of the 200 copies of 20% indepen-
dent test datasets was performed, and the final ensemble
model was created by taking a weighted average of LR and
Linear SVM.

G. MODEL EVALUATION METRICS
1) ACCURACY (ACC) AND CONFUSION MATRIX
The ACC is calculated as the total number of correct predic-
tions (TP + TN) divided by the total number of instances in
a dataset ((Positive + Negative) instances). The equation of
accuracy is shown below. Refer to equation ‘‘16’’:

(TP+ TN )
(TP+ TN + FP+ FN )

(16)

An accuracy of 1.0 is considered the best, while ‘‘0.0’’ is
considered the worst. Classification accuracy is an excellent
statistical evaluator only when both positive and negative
instances in the dataset are equal in number, i.e., the classes
are balanced. On the contrary, if the classes are imbalanced,
then classification accuracy gives us a false sense of the cor-
rectness (or accuracy) of any classification algorithm (classi-
fier) [41]. Under such circumstances, calculating a confusion
matrix [42], [43] can give us insight into the errors and the
types of errors our classification model is making. It also tells
us what predictions the model is getting right. Compared to
the confusion matrix’s actual outcomes, this breakdown of
correct and incorrect predictions overcomes the limitations
of using accuracy alone as a statistical evaluator for assess-
ing a classification model’s performance. Besides, if anyone
desires to avoid false-positive more than false negative or
vice versa, other statistical evaluators, namely Sensitivity
(Recall or True positive Rate (TPR)) and Specificity, are more
informative than accuracy [41].

2) SENSITIVITY
Sensitivity (SN) is calculated as the number of correctly
predicted positive instances divided by the total number of
positive instances in a dataset. The best SN value is 1.0, and
the worst is 0.0.

TP
TP+ FN

(17)

The equation for determining sensitivity is depicted below.
Refer to ‘‘17’’:

3) SPECIFICITY
Specificity (SP) is calculated as the number of correctly
classified negative instances divided by the total number of
negative samples in a dataset. The best specificity value is
1.0, and the worst is 0.0.

TN
TN + FP

(18)

The equation for calculating specificity is depicted below.
Refer to ‘‘18’’:

4) RECEIVER OPERATING CHARACTERISTIC CURVE (ROC)
The ROC is a curve generated by plotting the TPR
(Sensitivity/Recall) against the True Negative Rate (TNR)
(1-Specificity) at various classification or decision thresh-
olds. The Area Under the ROC-AUC Curve value measures
a classification model’s quality to distinguish between two
classes in a dataset. A random classifier has an AUC value
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TABLE 1. List of the subset of features (CSF protein biomarkers) obtained using the RFE method.

of 0.5, and a perfect classifier that can correctly discriminate
two classes in a dataset has an AUC value equal to 1 or vice
versa.

5) PRECISION-RECALL (PR) CURVES
Similar to the closely-related ROC curves, the PR curves
are an estimation tool for binary classification that helps us
visualize various machine learning algorithms’ performance
at several classification thresholds ranging between 0 and 1.
PR curves are used, particularly for imbalanced or skewed
data sets, where one class’s instances are observed more
regularly compared to the other class. Therefore, on these
skewed (imbalanced) data sets, PR curves are a suitable
alternative to ROC curves that would show quite a massive
performance difference between two algorithms that cannot
be represented appropriately using the ROC curves [44].
In addition to visual evaluation of a PR curve, the Area
under a PR curve (AUPR) is often used for assessing the
performance of a machine learning algorithm, regardless of
any particular operating point or threshold. The higher the
AUPR value, the better the model predicts positive instances
as positives (True positive (TP)). The AUPR values range
from 0 to 1with a score of 1 depicting a perfect model, i.e., the
model can predict the entire positive instances in the dataset
as True Positives with no false negatives and false-positive
predictions.

H. STUDENT T-TEST
A two-tailed unpaired student t-test [45] was performed
to estimate the significant difference (i.e., p-value < 0.05)
between the mean value of the three features (Cystatin C,
MMP10, and tau proteins) across two types of population
(CDR 0 and CDR > 0). Likewise, a one-tailed unpaired t-
test [45] was performed at a significance level of 0.5 to show
that our model’s performance is better than the model based
on traditional biomarkers and features that achieved the best
ROC_AUC result Craig-Schapiro et al. 2012 [11].

I. IMPLEMENTATION: WEB APPLICATION
The ensemble-learning based predictive model was devel-
oped using the pruned MCI dataset with three features.

The model was saved in the python pickle file format
(.pk). Flask, a light-weight micro-web framework with
Jinja2 templating, was used to develop the web application.
Later, the Flask web application was deployed on Heroku,
a cloud-based platform, to build and run web applications
exclusively in the cloud. The output of the application is
probability-based. Individuals with an output probability
score greater than 0.5 have a higher probability of being
diagnosed with AD than an individual with a score lesser or
equal to 0.5.

III. RESULTS
A. BEST INFORMATIVE FEATURES SELECTION
AND CLASSIFIER EVALUATION
The RFE employing cost-sensitive classifiers with weights
was used to select the most informative set of model building
features. The subset of features obtained using RFE based FS
method is tabulated in Table 1. The Comparative performance
evaluation of different sets of features listed in Table 1 was
trained and tested on four different cost-sensitive classifiers
(RF, LR, LibSVM, and DT), are shown in Fig. 8(a-d). Five-
fold cross-validation over all of the 200 training datasets was
performed, and the final results averaged to find the best
classifier and the best subset of features. As per the compar-
ative performance evaluation results, as shown in Fig. 8(a-
d), the LR and linear SVM model built using a subset of
three features (Cystatin C, MMP10, and tau proteins) per-
formed well in discriminating mild cognitive impaired (CDR
> 0) from cognitively normal subjects with better sensitivity
PR-AUC and ROC-AUC at specificity in line with Craig-
Schapiro et al., 2012 [11].
Further, a comparative average performance evaluation of

RFE-classifier based models built using a subset of the three
most informative features in discriminating cognitive normal
(CDR 0) from cognitively impaired (CDR > 0) subjects are
shown in Table 2.

The probability distributions of the three proteins
(Cystatin C, MMP10, and tau proteins) between the two
different populations (CDR 0 and CDR > 0) are shown via
histogram plots in Fig. 9(a-c).
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FIGURE 8. (a-d). Comparative evaluation of performance measures. (a) Accuracy. (b) Sensitivity. (c) PR_AUC. and (d) ROC-AUC in models built
using a different subset of features.

FIGURE 9. (a-c). Histogram representing the frequency distribution of protein biomarker. (a) Cytatin_C, (b) MMP 10,
and (c) tau, respectively across two population categories (CDR 0 and CDR > 0).

The p-value of the two-tailed unpaired t-test for
Cystatin C, MMP10, and tau proteins selected using the
LinearSVM classifier based RFE method is tabulated
in Table 3.

The observed p-values of the three selected protein
biomarkers were lower than the significance level of 0.05.
Therefore, the mean population of selected attributes
between cognitively impaired and cognitively normal groups
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TABLE 2. Comparative average performance evaluation of RFE-classifier based models built using a subset of the three most informative features.

TABLE 3. List of informative attributes selected from the Mild Cognitive
Impaired (MCI) clinical dataset using recursive elimination method (RFE).

TABLE 4. Estimated coefficient and the list of selected features using
LASSO or L1 regularization method.

FIGURE 10. Feature importance using LASSO model.

is significant. Additionally, the LASSO algorithm was also
applied for parameter estimation and feature selection. The
selected subset of features with their coefficient and Mean
Square Error (MSE) along with the tuned Lambda hyperpa-
rameter value is tabulated in Table 4.

The feature importance of the optimal set of features
selected using LASSO is represented in Fig. 10. A set of four
cost-sensitive classifiers (RF, LR, LibSVM, and DT) based
models built using the optimal subset of features GRO_alpha,
tau, Cystatin_c, VEGF, and Aβ42) obtained via L1 regular-
ization were evaluated based on the following performance
measures: Accuracy, ROC-AUC, PR_AUC, and sensitivity.

Comparative performance evaluation of the four classifier-
based models is represented in Fig. 11. We can observe
from Fig. 11 that the cost-sensitive LR classifier based
model with an accuracy (accuracy (0.8864 ± 0.098), sen-
sitivity (0.8663 ± 0.048), PR_AUC (0.8266 ± 0.081), and
ROC_AUC (0.8966 ± 0.054) outperform the other classifier
based models. Comparative performance evaluation of the
two best models generated using RFE and L1 regularization
at a 5% significance level is tabulated in Table 5.

It can be observed from Table 5 that the Linear
SVM-RFE based model’s performance built using a feature
subset of three features (Cystatin_C, MMP10, and Tau) per-
formed significantly better than the LR-based model built
using a subset of features generated using L1 regularization
at a 5% significance level. Finally, the MCI test dataset was
pruned based on the selected subset of informative features
(Cystatin C, MMP10, and tau proteins).

B. ENSEMBLE-LEARNING MODEL BUILDING AND
OPTIMIZATION OF THRESHOLD
The PCC score on the outputs of LR and SVM was found
to be 0.63, signifying that an average ensemble would result
in a predictor which is better than the individual models.
A weighted average of LR and Linear SVM’s soft output
obtained from the classifier-RFE method was used to create
an ensemble.When running on 5-fold cross-validation overall
200 training dataset, the ensemble model’s weighted-average
results show that the threshold value of 0.321 is optimum
for correctly classifying instances in the dataset. Finally, our
calibrated ensemble model was tested on the 200 copies
of 20% independent test datasets using the optimum threshold
value, and the weighted-average out results of each class are
shown in Table 6. Given the tested model’s overall predic-
tion, the weighted average ensemble model’s accuracy was
0.9552 ± 0.025.
The performance of the ensemble model in terms of the

confusion matrix is shown in Fig. 12. A comparative eval-
uation of the ensemble model with the base classifier is
tabulated in Table 7.

The sensitivity, PR_AUC, and ROC_AUC values of the
ensemble model were observed to be considerably better than
the individual best-performing classifiers (Linear SVM and
LR) at a 5% significance level as shown in Table 7.

C. COMPARATIVE PERFORMANCE EVALUATION
For brevity, our calibrated ensemble model was trained
and tested on datasets generated using the state-of-
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FIGURE 11. Comparative evaluation of performance measures. (a) Accuracy. (b) Sensitivity. (c) PR_AUC and (d) ROC-AUC in
models built using a subset of features generated using the LASSO or L1 Regularization method.

TABLE 5. Comparative independent two-sample t-test between model built using SVM-RFE and model built using features selected using LASSO method
at a significance level of 5%.

TABLE 6. Classification report of weighted averaged ensemble method.

FIGURE 12. Confusion matrix of the final weighted ensemble model
tested on the 20% independent test dataset.

the-art features (tau, tau, and Aβ_42) as well as fea-
tures that achieved the best ROC_AUC results for

Craig-Schapiro et al., 2012 [11]. A comparative performance
assessment of the models, as mentioned above, at a 5%
significance level, is tabulated in Table 8.

It can be observed fromTable 7 that the calibratedweighted
average ensemble model’s performance built using a feature
subset of three features (Cystatin_C, MMP10, and Tau) per-
formed significantly better than the model built using the
state-of-the-art features (tau, tau, and Aβ_42). Additionally,
our proposed ensemble model also performed significantly
better at a 5% significance level than the model built using
a combination of CSF protein biomarkers that achieved the
best ROC_AUC results for Craig-Schapiro et al., 2012 [11].
Histogram plots of the ROC_AUC scores generated from

each of the 200 runs are used to approximately depict the
difference in the probability distributions between models
built using conventional CSF biomarkers, the best ROC_AUC
biomarker proposed by Craig-Schapiro et al., 2012 and our
proposed CSF protein biomarkers are shown in Fig. 13 and
Fig. 14, respectively.
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TABLE 7. Performance evaluation of the calibrated weighted-averaged ensemble model at a 5% significance level in discriminating cognitive normal
(CDR 0) from cognitively impaired (CDR > 0) subjects.

TABLE 8. Comparative averaged out performance evaluation of models at a 5% significance level in classifying cognitive normal (class 0) from cognitively
impaired (class 1) participants.

The histogram plot is also used to estimate a statistically
significant change between the models.

A one-tailed unpaired t-test was used to estimate how
our model is better than models generated using tradi-
tional and best ROC_AUC value attributes from studies

conducted by Craig-Schapiro et al., 2012. The p-value of
the one-tailed paired t-test for the comparative evaluation
of our proposed ensemble model and models generated
using traditional CSF protein biomarkers as well as biomark-
ers which achieved higher ROC_AUC value from Craig-
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FIGURE 13. Histogram representing ROC_AUC’s frequency distribution
between the predictive models built using our proposed attributes and
traditional CSF protein biomarkers (Tau, p-tau, and Aβ42).

FIGURE 14. Histogram representing the frequency distribution of
ROC_AUC between the predictive models built using our proposed
attributes and the attributes which show the best ROC_AUC values from
studies conducted by Craig-Schapiro et al., 2012.

Schapiro et al., 2012 was observed to be 4.3002× 10-36 and
2.398 × 10-38 respectively which was much lower than the
significance level of 0.05.

D. PREDICTIVE WEB-APPLICATION IMPLEMENTATION
The web-based predictive application based on a novel com-
bination of three CSF protein biomarkers to predict the
earlier stages of AD has been made live on Heroku as
‘‘https://appsalzheimer.herokuapp.com.’’.

IV. DISCUSSION
The MCI dataset was downloaded from Figshare [30]. The
clinical dataset consisted of 91 MCI subjects and 242 cog-
nitively normal subjects. The subjects’ cognitive impairment
status in the MCI clinical dataset was as per the CDR scale
ranging from 0 to 1, where CDR 0 was considered a cog-
nitively normal subject, while CDR 0.5 and CDR 1 were
considered very mild and Mildly cognitive subjects, respec-
tively. The raw clinical dataset consisted of 124 features
encompassing CSF protein biomarkers, allelic variants of
Apolipoprotein E genotype (E2, E3, and E4), and demo-
graphic features, namely gender and age. All categorical
features were transformed into a binary-encoded format by
using the one-hot-encoding technique. All duplicate instances

were removed as well. This study focuses on the two feature
selection methods, namely, the RFE method, an important
example of the wrapper-based feature selection method, and
the LASSOmethod based on an embedded method of feature
selection. Since there is a class imbalance in the dataset,
in the RFE based method of feature selection, cost-sensitive
classifiers, namely, RF, DT, LR, and LinearSVM, with a
series of feature sets containing features ranging from 1 to
(1+ n) were selected. Here, ‘‘n’’ varies from 0 to 4. Likewise,
the number of attributes removed at each iteration in RFEwas
set to be three features.

A subset consisting of three best-performing features,
namely, Cystatin C, MMP10, and tau, were generated from
the cost-sensitive SVM-RFE and LR-RFE based feature
selection process. The Linear SVM and the LR-based model
built using three features outperformed other classifier-based
models built using the other subset of features generated
using the classifier based RFE method. The LR-based model
built using the five most important features selected using
L1 regularization performed better than the RF, DT, and
Linear SVM-based models. However, the LR-model perfor-
mance built using features screened using L1 regularization
was significantly (p < 0.5) lower than the LinearSVM based
model built using a subset of three most informative features
screened using the classifier based RFE feature selection
method. Furthermore, we observed a significant difference
between the mean of all three protein biomarkers (Cystatin
C, MMP10, and tau proteins) derived from the RFE method
among subjects belonging to cognitively normal (CDR 0) and
Mild cognitive Impaired (CDR > 0) groups at a significance
level of 0.05.

The candidate protein biomarker (Cystatin C, MMP10,
and tau proteins) screened in this study belongs to different
pathways and a functional group whose association with AD
pathophysiology has been investigated and documented, most
notably, tau protein, a traditional CSF biomarker which has
proven useful in the diagnosis and prognosis of AD. In some
individuals with a veryMCI, CSF tau levels have shown grad-
ual increase years before being ultimately diagnosed with
AD [15]–[17]. Therefore, the tau protein has been useful for
predicting AD’s onset in individuals with very mild or mild
cognitive disorders. Cystatin C has a pivotal role in AD patho-
physiology as CysC concentration modulates Aβ amyloido-
genesis and oligomerization [46], [47]. MMPs play a vital
role as an inflammatory element in AD’s disordered phys-
iological process. MMPs transcription is induced through
posttranslational modification by the inflammatorymediators
(e.g., free radicals or cytokines) and inhibitor proteins (e.g.,
Metalloproteinase inhibitors (TIMPs)). The activated MMPs
remodel the pericellular environment by regulating the extra-
cellular matrix (ECM) and the tight junction’s breakdown.
TheMMPs also interact and alter the properties of growth fac-
tors, cell surface components, and signaling molecules, lead-
ing to neuroinflammation, cell death, and neurotoxicity [48].
In this context, separate studies conducted by Duits et al.,
2015 [49] and Whelan et al., 2019 [50] showed a significant
increase in MMP-10 in AD-dementia Aβ+ MCI patients as
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compared to cognitively normal individuals. The altered level
of MMP-10 in AD and MCI patients suggest the involvement
ofMMP-10 protein in the pathology of AD and, thus, possible
use ofMMP-10 as a protein biomarker for earlier diagnosis of
AD. So, the implementation of the screened CSF biomarkers,
whose association with the pathology of AD is well studied,
may improve the reliability of models built to predict AD’s
earlier stages.

The classifiers’ comparative performance evaluation using
different subsets of features obtained using the RFE and
LASSO method generated a consistently accurate model.
However, RFE based LR and Linear SVM model achieved
the best results, with a subset consisting of the three most
informative subset features. Therefore, an ensemble model of
the two best performing classifier was generated. Since the
ensemble is probabilistic by nature, it requires a threshold for
producing binary output. Thus, the ensemble was calibrated
to obtain an optimum threshold for predicting the earlier
stages of AD. Our ensemble model’s weighted average out
results were significantly better than the individual perfor-
mance of LR and Linear SVM base classifiers tested on the
MCI dataset in terms of sensitivity, ROC_AUC, and PR_AUC
values. The weighted average result of our ensemble model
was compared to models generated using traditional combi-
nations of CSF protein biomarkers (Tau, p-tau, and Aβ-42)
and biomarkers, which achieved the best ROC_AUC result
for Craig-Schapiro et al., 2012 [11] at a 5% significance level.
Our novel combination of CSF protein biomarkers based

ensemble model performed significantly better in clas-
sifying cognitively impaired subjects (Positive instances)
from the MCI dataset compared to models generated using
the state-of-the-art and best-performing protein biomarkers
obtained from a study conducted by Craig-Schapiro et al.,
2012 [11]. Lastly, recent studies by Spellman et al. [51] and
Llano et al. [52] examined a clinical Alzheimer’s disease
Neuroimaging Initiative (ADNI) dataset and proposed a pep-
tide signature analyte-based multivariate model to predict the
earlier stages of AD. The study conducted by them found
several overlapping potential signature peptides, namely
Aldolase A, Fructose-Bisphosphate peptide (ALDOA), Fatty
Acid-Binding Protein, Heart (FABPH), Neuronal pentraxin
receptor (NPTXR), Peroxiredoxin-1 (PRDX1), and Neu-
rosecretory protein VGF (VGF), for predicting the earlier
stages of AD and future disease progression. The multivariate
modeling approaches proposed by Spellman et al. [51] and
Llano et al. [52] were able to differentiate AD from Non-
AD subjects with a ROC_AUC of 0.74 and 0.89, respec-
tively. Conversely, our ensemble model performance with
a ROC_AUC value of 0.9499 ± 0.055 performed better in
classifying cognitively impaired subjects from cognitively
normal subjects than the traditional combination of CSF
biomarkers and signature peptides from Spellman et al. [51]
and Llano et al. [52] studies, respectively.

Additionally, our ensemble model has shown consider-
ably better ROC_AUC performance than the multiple marker
studies in the past involving multiple imaging modalities,

neuropsychological testing, and APO_E genotype to pre-
dict the earlier stages of AD [24], [53]. Considering the
higher AU-PR and the AUC_ROC attained by our model,
we can say that the profiling of our novel combination
of CSF protein can be recommended for clinical tests for
predicting the earlier stages of AD. Our web-based appli-
cation to predict the earlier stages of AD has been success-
fully implemented and has been made live on Heroku at
‘‘https://appsalzheimer.herokuapp.com.’’.

V. CONCLUSION AND FUTURE SCOPE
The current proposed model uses weighted average
ensemble-based learning methods to build a predictive model
that can easily discriminate MCI subjects from healthy sub-
jects with higher sensitivity, ROC_AUC, and PR_AUC value.
On the other hand, the multiple marker studies are costly and
impractical to attain all of these biomarkers from a single
patient. Thus, our contemporary ensemble approach’s unique
benefit is its cost-effectiveness, as the profiling of our novel
combination of CSF protein can precisely classify patients
with earlier stages of AD. Also, we built a web-based live
predictive system built using a novel combination of CSF
protein biomarkers, which is the first of its kind online
service for predicting the earlier stages of AD. We believe
that such our application built using the most informative
novel combination of features will benefit researchers and
doctors in diagnosing very mild or Mild CI disorders, thereby
assisting AD’s earlier prediction.
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