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ABSTRACT Nuclear Power Plant (NPP) have increasing demand to improve safety and reliability of air
compressors with various fault diagnosis methods. Fault diagnosis methods may provide early fault warning
information for air compressors rapidly and give a reference for maintenance, especially for the serious
faults affecting security strongly. In this work, a method framework of fault diagnosis system based on the
Vibration Observation Window (VOW) for air compressors is proposed. The VOW constructs a dynamic
vibration tensor which presents the operating state of air compressors according to the real time vibration
data, strengthens the association among the monitoring data in spatial domain and time domain. Thus,
dynamic characteristic, which reflects the fault information, can be contained in the dynamic vibration
tensor explicitly. For proving the advantage of VOW method, we compare the performance between the
fault diagnosis system with VOW and the fault diagnosis system without VOW based on different hardware
environments: embedded computer, and high speed Industrial PC. The results show that the VOW method
can both improve the performance of the vibration fault diagnosis system of NPPs in different hardware
environments.

INDEX TERMS Air compressors, fault diagnosis, vibration tensor, nuclear power plants, VOW method.

I. INTRODUCTION
As critical mechanical systems in Nuclear Power Plants
(NPPs), safety is of prime importance for air compressors,
and closely related to the mechanical state. Various kinds
of faults, which may occur in any components of air com-
pressors, have a major impact on security of NPP operation
and experiment. Moreover, aged air compressors in NPPs are
more vulnerable to aging-related faults [1]. This becomes a
major concern as existing NPPs on average are over 30 years
old [2], and similar problems may happen in some special
nuclear reactors. Therefore, fault diagnosis systems are nec-
essary for air compressors operation.

Over the past few decades, various diagnosis methods,
including model-based methods [3], [4], data-driven methods
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and signal-basedmethods [5], have been applied in fault diag-
nosis. For example, Kalman filters and parameter estimation
which belong to model-based methods [6], [7], artificial neu-
ral networks and partial least squares which belong to data-
driven methods [8], [9], time-frequency analysis and wavelet
transform which belong to signal-based methods [10], etc.

Model-based method is the first method used for the fault
diagnosis of complex mechanical system, where, analyti-
cal redundancy is the core concept that most model-based
methods are based on [11]. For model-based methods, the
normal behavior of a system needs to be described by the
mathematical model. Based on the model, output variables of
the system can be estimated analytically from other correlated
measurements. The idea can be extended to analytically esti-
mate other quantities such as model parameters and system
states. The differences between the analytically estimated
quantities and the actual measurements are called residuals.
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Faults result in violations of the normal relationships repre-
sented in the model, leading to statistically abnormal changes
in the residuals, so that faults can be detected by testing these
residuals statistically [12]. However, the accurate models are
necessary, which is difficult to be built. In addition, faults that
have not been considered in the modeling stage may not be
detected at all. Further, robustness against disturbances and
modeling uncertainties has to be considered [13].

Signal-based and data-driven methods do not rely on
precise dynamic models of systems. Actually, signal-based
methods can be regarded as special data drivenmethods. They
make decisions by comparing features extracted from a signal
or state data with baseline characteristics that are considered
to be normal, where, features in both frequency domain and
time domain have been used. With the development of artifi-
cial intelligence, multivariate statistical methods are also used
for signal-based method gradually. For the fault diagnosis of
the rotating machinery based on signal-based method, anal-
ysis in time-domain, frequency-domain, and time-frequency
domain [14]. The methods like fast Fourier transform
(FFT) [15], wavelet transformation (WT) [16], empirical
mode decomposition (EMD) [17], ensemble empirical mode
decomposition (EEMD) [18], empirical wavelet transform
(EWT), wavelet packet transform (WPT) [19], variational
mode decomposition (VMD), stochastic resonance, sparse
decomposition, etc., were suggested worldwide.

However, with the continuous development of computer,
sensor and manufacturing technology, the modern mechan-
ical systems have shown a new trend of large-scale, com-
plex and distributed [20], so that traditional signal-based
methods cannot adapt to the complexity of modern mechan-
ical systems. As a typical branch of data-driven meth-
ods, machine learning method was developed during past
decades to teach machines how to handle data more effi-
ciently. some of the broadly practiced machine learning algo-
rithms are artificial neural networks (ANNs) [21], principal
component analysis (PCA) [22], support vector machines
(SVM) [23], [24], k nearest neighbors (KNNs) [25], singu-
lar value decomposition (SVD) [26]. In recent years, some
fault deep learning methods represented by convolutional
neural networks (CNNs) were also presented, for example,
the motor bearing, self-priming centrifugal pump, and axial
piston hydraulic pump fault diagnosis systems based on
CNNs [27], and the bearing and pump fault diagnosis system
based on TCNNs [28].

For air compressors of NPPs, these methods on above lead
to benefits for safe and efficient operations: assist with deci-
sion making correctly and timely; enhance safety margins;
enhance equipment reliability; optimize the maintenance
schedule. However, for the reason of complicated operational
mechanism, it is impossible to build a whole dynamic model
of air compressors for model-based fault diagnosis; mean-
while, huge amounts of state variable measured in air com-
pressors will enhance the complexity and reduce the process
rate of the signal-based fault diagnosis method. Therefore,
the data-driven method based on machine learning for air

compressors fault diagnosis of NPPs is worthy of further
research.

In this work, a method framework of fault diagnosis system
based on the Vibration Observation Window (VOW) for air
compressors is proposed. The VOW constructs a vibration
tensor which presents the operating state of air compressors
according to the real time vibration signal. Actually, the VOW
is a kind of special feature enhancement method. For differ-
ent from traditional data-driven fault diagnosis methods, the
VOW can strengthen the association among the monitoring
data in spatial domain and time domain, and simplifies the
diagnosis process of air compressors with large monitoring
data. And then, the operation state of air compressors can be
diagnosed by existing fault diagnosis methods accurately and
rapidly.

The rest of this study is organized as follows: In Section II,
the basic concepts of VOW method for data organization are
presented. Section III describes the experiment setup based
on real air compressors in NPPs, where two different hard-
ware environments are considered, one is embedded com-
puter, and the other is high speed Industrial PC. Section IV
shows the experiment result of fault diagnosis, and the result
analysis from the view of accuracy and calculation speed is
also given. At last, it has a brief conclusion in Section V.

II. VOW METHOD
A. DATA ORGANIZATION
Consider an air compressor with n vibration sensors, which
can measure the accelerated velocities under the rectangular
coordinate system. The sampling period of each sensor is
T . The data series presenting the vibration state of air com-
pressors can be shown in figure 1. Where, Vij means the
vibration data series in direction j(j = x, y, z) of ith vibration
sensor. vkijmeans the kth vibration data inVij.We introduce an
observation window with the size of 3n×m to cover the data
series, theV containing the vibration data from T0 to T0+mT
can be built.

If the data flow direction is defined as shown as the gray
arrow in figure 1, V will become a tensor. So that, at time
T0+mT , the dynamic vibration tensorVT0 can be built, which
contains the all of the vibration data from T0 to T0+mT . The
tensor VT0 will be regarded as the analytic target of the fault
diagnosis.

Fault diagnosis of air compressors can be reduced to the
classification problem about VT0 . For this purpose, the clas-
sification function of the vibration tensor can be given as:

ηi = Clf (VT0 ) (i = 1, 2, 3....) (1)

where, Clf means the classification function. ηi means the
ith classification of VT0 . Actually, Eq.1 provides a normal
form of the vibration diagnosis based on VOW method, that
is, as the sample analyzed in this work, VT0 belongs to the
sample space; as the classification of system faults, ηi belongs
to the classification space. For VT0 of each moment T0, the
fault diagnosis system based on VOW method can calculate
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FIGURE 1. Data series and observation window with the size of 3n × m.

FIGURE 2. Typical Industrial PCs.

ηi, which means the current state belongs to the normal
steady-state or fault state.

B. CLASSIFICATION
According to the equation 1, the fault diagnosis of air
compressors can be converted to the classification problem
of tensors. It is obvious that, Convolutional Neural Net-
works (CNNs) based on deep learning is one of suitable
methods for tensors classification. However, the training
and operation of CNNs may need a lot of computational
resources, so that hardware system for air compressor
vibration fault diagnosis should have a high computational
performance in real time. Contrast to deep learning meth-
ods, classical machine learning methods, such as binary
classification, K-nearest neighbor (KNN) and support vector
machine (SVM), only need fewer computational resources.

Generally, two kinds of hardware systems are used for
NPPs, one is Industrial PCs (IPCs) with high computational
performance; the other is embedded computers with little
computational performance. Therefore, an appropriate clas-
sification method needs to be chosen for different hardware
system.

1) IPC
IPCs have become a firmly established part of various indus-
trial environments. The advantages of IPCs are extremely
high arithmetic speed, excellent scalability and flexibility.
Together with associated software, IPCs are at the core of
wide range of control or calculation task, such as motion
control, processes or logistics systems, networking of sys-
tem components, data acquisition, or image processing
(figure 2 [29]). It is obvious that IPCs also have the ability
to diagnosis vibration fault based on complex CNNs in real
time.

CNN are typical feedforward deep neural networks, which
extract the characteristics of input data by constructing

FIGURE 3. The structure of VOW-CNN.

multiple filters, and then carries out convolution and pooling
processing to extract the potential topological data character-
istics. Finally, the processed information is classification by
the multi-layer perceptron, that is full connected layer.

Figure 3 shows the complete structure of VOW-CNN,
which contains VOW, convolution layer, pooling layer, and
full connected layer. The characteristics implying in the ten-
sor can be extracted by convolution layers and pooling layers.
The function of the fully connected layer is to integrate the
features after multiple convolution layers and pooling layers,
obtaining the high-level meaning of the features and then use
it for classification. The structure of VOW-CNN is similar
with the classical feed-forward neural network (figure 3),
where the detail expression can be shown as equation 2:

N l+1
n = f

(
I∑

m=1

W l+1
n,m x

l
m + b

l+1
n

)
(2)

where, N l+1
n is the output of nth neural cell in (l + 1)th layer.

x lm means the input of mth neural cell in the lth layer. W l+1
n,m

means the weight ofmth neural cell in the lth layer connected
to the nth neural cell in the (l+1)th layer. bl+1n means the bias
of nth notes in the (l + 1)th layer.

Usually, the ReLU activation function can be used for the
hidden layer of full-connected layer, which can be shown as
equation 3:

ReLU (x) =

{
x x > 0
0 x ≤ 0

(3)

where, ReLU means the ReLU activation function.
SoftMax function can be regarded as the activation func-

tion in output layer:

pi =
ezi∑k
j=1 e

zj
(4)

where, pi means the output of ith neural cell in the output
layer. zi means the input of ith neural cell in the output layer.
k means the number of the neural cells in the output layer.
Actually, the SoftMax function reflect the probability of

the classification. k neural cells in output layer means that the
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FIGURE 4. Typical embedded computer.

FIGURE 5. Process of feature extraction for vibration tensor.

vibration states need to be classified into k ICs. If the output
probability of ith neural cell is the maximum probability of all
the output probability in the output layer, the current vibration
state will be classified into ith IC.

2) EMBEDDED COMPUTER
The distributed processing units (DPUs) is a kind of classical
control-oriented embedded computer system, which are used
for NPPs widely (figure 4 [30]). DPUs have lower power
consumption, appropriate volume and lower manufacturing
cost. While, they cannot diagnose vibration faults based on
complex CNNs because of the little computational perfor-
mance. Classical machine learningmethods are more suitable
for the vibration diagnosis in DPUs.

For a classification process based on classical machine
learning method, the first step is feature extraction. As men-
tioned in section I, the VOW method associates the monitor-
ing data in special domain and time domain, so that the pixel
feature can be extracted from the tensor VT0 . For reducing
computational complexity, a method based on multiresolu-
tion histogram is used for feature extraction of vibration
tensor in this section, which can be shown as figure 5.

This method based on multiresolution histogram can
reflect the change of amplitude and vibration spatial distri-
bution of different sensors in VT0 . First, the vibration ten-
sor VT0 is processed by 2D Discrete Wavelet Transform
(DWT) [31], [32]:

WVk = DWTk (VT0 ), k = 1, 2 . . . L (5)

where,DWTk is the 2DDWToperator, k is the decomposition
level of 2D DWT, WVk is the approximation with k level

decomposition. Then an approximation sequence of VT0 in
different resolutions can be given as:

WVk =
(
WV0 WV1 · · · WVL

)
(6)

Accordingly, the multiresolution histograms(
HW0 HW1 · · · HWL

)
of WVk can be built:

HWk = ( hk1 hk2 . . . hkn0 ), k = 1, 2 . . . L (7)

Moment features of multiresolution histograms can be
extracted from HWk to represent the feature of VT0 , shown
as equation 8:

m1
ck =

1
Hk

n0∑
j=1

gjhkj

mpck =
1
Hk

n0∑
j=1

∣∣∣gj − m1
xk

∣∣∣k hkj, p = 2, 3

m1
rk =

1
n

n0∑
j=1

hkj

mprk =
1
n

n0∑
j=1

∣∣∣hkj − m1
yk

∣∣∣p, p = 2, 3

(8)

where, mpck means the pth moment feature in the column
direction of WVk . m

p
rk is the pth moment feature in the row

direction of WVk , gj is jth decomposition level. Then, the
feature vector FT0 at time T0 + mT ofWVk can be built, (9),
as shown at the bottom of the next page.

Based on the feature vector FT0 , vibration faults of air
compressors can be diagnosed by lightweight classical clas-
sifier, including KNN, SVM, and binary classification. The
performance of these classifiers with VOWwill be tested and
compared in section VI.

III. EXPERIMENTAL SETUP
The experiments are performed on a type of air compressor
used for Nuclear Power Plant. 2 vibration sensors in different
locations of the air compressor provide real time vibration
signals, which can be shown as figure 6. Vibration signals
are acquired by the distributed control system (DCS).

For testing the performance of VOW, it is realized based
on an additional IPC or embedded Distribution Process Unit
(DPU), which can be shown as figure 7. The IPC is connected
with the DCS by a special embedded DPU in the DCS. The
special DPU is also communicates with other DPUs in the
DCS, acquires vibration signals through data transmission
network based on TCP/IP, and extracts the vibration tensor.
The IPC acquires the vibration tensor through PROFIBUS-
DP. In the IPC, the method based on VOW-CNN is executed,
and the classification results are transmitted to the DPU
backward. At the same time, the DPU is also used for test
the performance of classical machine learning methods with
VOW. Timing sequence of vibration diagnosis in one period
can be shown as figure 8, which means the IPC and DPU
must make diagnosis in one period T in order to receive the
diagnosis result from the DCS in real time.
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FIGURE 6. Vibration sensors in different locations in air compressor.

FIGURE 7. Hardware architecture based on IPC and DPU.

FIGURE 8. Timing sequence of vibration diagnosis in one period.

The structure dimension of the CNNmerged in the IPC can
be shown as figure 9. In addition to the feature tensor gener-
ated by The CNN contains one convolution layer (5×49×6),
one Relu layer (5 × 49 × 6), one pool layer (4 × 48 × 12),
and two full connected layers (10 and 7 nodes respectively).
Kernels with 2 × 2 size are used for the convolution and
pooling process. The strides in the convolution and pool layer
are also set to 1.

FIGURE 9. Structure sizes and parameters in CNN used in experiment.

TABLE 1. Simulation industry conditions.

IV. RESULTS AND DISCUSSION
A. IC INTRODUCTION
In this work, 6 fault ICs and 1 normal IC are considered,
including normal (IC-1), seat wear of discharge valve (IC-2),
crack of discharge valve (IC-3), spring break of discharge
valve (IC-4), hydrops in air cylinder (IC-5), bolt looseness
(IC-6) and filter clogging (IC-7). All of the ICs are shown as
table 1. The corresponding ID of fault type of each simulation
IC is also contained.

With the vibration experiment of the air compressor, the
vibration data in less than 12 hours is acquired (figure 10-11),
which is divided into two parts: train set and validation set.
Degenerated components are installed to present failures at
different times.

According to figure 10-11, more than 240000 vibration
signals are acquired during the 12 hours. Each vibration
tensor has 50 time-domain samples based on the 0.5s sam-
pling period, and 6 signal group (vibration signals in x, y,
z direction of 2 sensors). Thus, the size of each vibration
tensor is 50 × 6. It can also be found that the state of the air
compressor changed consistently, so that the vibration fault
diagnosis in real time is necessary.

FT0 = (m2
x1 m3

x1 m1
y1 m2

y1 m3
y1 . . . m2

xL m3
xL m1

yL m2
yL m3

yL ) (9)
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FIGURE 10. Vibration signal from sensor 1.

FIGURE 11. Vibration signal from sensor 2.

B. RESULTS AND COMPARISON OF VOW-CNN
Based on the IPC, the training process of VOW-CNNmethod
can be given as figure 12. As mentioned on above, the vibra-

FIGURE 12. Training process of VOW-CNN (100 iterations).

FIGURE 13. Accuracy and loss during training and validation process.

tion data is divided into two parts: train set and validation
set. There are about 120000 normal signals and 70000 fault
signals in the training and validation set, and 30000 normal
signals and 20000 fault signals in the test set respectively.
The signal in training set is reconstructed by the VOW, and
the tensor from VOW is applied to train the proposed CNN
directly. The validation set is used to optimize parameters and
evaluate the performance of VOW-CNN.

During the training process, the predicted value is obtained
by using forward propagation firstly. Then, the chain deriva-
tive of the back-propagation algorithm is used to calculate
the partial derivative of the loss function with respect to each
weight. The weight in each neural cell is updated by using
gradient descent method. The training and validation accu-
racy can be shown as figure 13 (a), accordingly, the training
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TABLE 2. Simulation industry conditions for VOW-CNN test.

and validation loss can be shown as figure 13 (b), where,
100 iterations are implemented during the training process.
It is obvious that after 100 iterations, the accuracy and loss
converge significantly. The training and validation process
show that the fault diagnosis system based on VOW-CNN
method has the accuracy of more than 80%.

For testing the performance of VOW-CNN method in the
IPC, extra 72000 vibration signals are test online in 4 hours,
which contain about 50000 normal signals and 22000 fault
signals. For introducing faults, fault components are imple-
mented. The test results can be shown in Table 2 and 3. Take
the fault IC-7 as the example, the output of fully connected
layer is shown as figure 14 during 1 hour after the fault intro-
duction, where 7 nodes are adapted to present the different
ICs (shown as figure 15). In the initial phase, the normal
filter is replaced by the clogging filter in the air compressor.
Accordingly, the output of node 7 enhances rapidly, and
becomes greater than the output of mode 1-6. It shows that
the fault diagnosis system based on VOW-CNN method has
identified the most fault signals accurately, although some
normal signals are diagnosed as fault conditions, which may
due to the unbalanced distribution of IC classifications. Not
only for IC-7, IC-1∼IC-6 have all similar fault diagnosis
processes.

Some brief analysis can also be given as follows based on
the results of VOW-CNN method. For the most of the ICs,
the fault diagnosis system has good precision and recall rate.
However, the test recall rate of fault IC-6 (bolt looseness)
is lower than other ICs significantly. One possible reason is
that number of sensors is small, so that the classifier cannot
acquire sufficient information from original data. Moreover,
the long sampling period of the fault diagnosis system (0.5s)
may reduce the diagnosis accuracy. Beside the measurement
process, the feature of IC-6 may also be an important factor
for IC-6 diagnosis. Actually, bolt looseness is not an inde-
pendent fault. It may also be caused by other abnormal vibra-
tion, including seat wear, crack, and filter clogging. When
bolt looseness occurs, the fault diagnosis system is hard to
recognize whether the bolt looseness is independent. On the
other hand, the test precision rate of IC-2 and IC-7 are lower
than other ICs significantly, because of the unbalance samples
distribution. On the other hand, the maximum length of false-
alarm or lag time also shows the impact of diagnosis loss

FIGURE 14. Output of fully connected layer in IC-2.

FIGURE 15. Structure of output nodes in fully connected layer.

TABLE 3. Confusion matrix of VOW-CNN.

on air compressor operation. IC-2 (seat wear of discharge
valve) and IC-3 (crack of discharge valve) have longer lag
time, which means seat wear and cracking are not significant
in the initial phase of the fault (traditional machine learning
methods with VOW have also similar result, which can be
shown as section IV C).

It is well known that CNNs are very adept at extracting two-
dimensional signal features, therefore, it is necessary to com-
pare the proposed VOW-CNN method with the typical CNN
method without VOW. The typical CNNwithout VOW tested
in this section also contains convolution layer, pooling layer
and fully connected layer. The same number of the nodes in
these three layers as the VOW-CNN is configured (figure 16).
Figure 17 shows the precision on about 50000 tests of VOW-
CNN and CNN. Different from classical machine learning
methods on section IV C, CNNmethod has a better precision,
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FIGURE 16. The comparison between VOW-CNN and typical CNN.

FIGURE 17. The precision with 50000 tests among the VOW-CNN and
typical CNN.

and the performance in most of fault conditions is closed
to VOW-CNN. However, for the normal condition IC-1 and
combination fault IC-6, CNN without VOW has a lower
precision, which means CNN generates more false alarms
than VOW-CNN, and has a bad performance in combination
faults.

C. RESULTS AND COMPARISON OF TRADITIONAL
MACHINE LEARNING METHOD WITH VOW
A lot of typical machine learning method can be used for
fault classification based on the embedded DPU. For ease of
analysis, KNN, SVMand binary classification are regarded as
the candidate classification methods. Similar to VOW-CNN
in the IPC, for testing the performance of VOW-KNN,
VOW-SVM and VOW-Binary classification methods in the
DPU, extra 72000 vibration signals are introduced online
in 4 hours.

For the classical machine learning method based on the
VOW, vibration fault features need to be extracted separately.
According to the algorithm in section II B, from 0h-12h, mul-
tiresolution features of the vibration tensor in VOW, which
are regarded as features, can be shown as figure 18, which
contain 2 decomposition levels. On the other hand, for the
test of classical machine learning methods without VOW, the

FIGURE 18. Features of vibration tensor from 0h-12h in different
decomposition levels.

FIGURE 19. The moment feature extraction and classification process of
original signal.

TABLE 4. Time performance of VOW-classical machine learning test.

original 6-D vibration vector is also need to extract features
similar to the machine learning method with VOW. For this
purpose, 1-D moment features are extracted according to the
process of figure 19.

Figure 20-22 show the precision on the 72000 tests of
classical machine learning methods with VOW compared
with machine learning methods without VOW. In the table 4,
the fault diagnosis process all can be executed during one
diagnosis period of the DPU (500ms), where, VOW-SVM
has maximum average program running time (175ms). It can
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FIGURE 20. The precision comparison between VOW-KNN and KNN.

FIGURE 21. The precision comparison between VOW-SVM and SVM.

FIGURE 22. The precision comparison between VOW-Binary classification
and binary classification.

be found that in figure 20-22, the test precision of machine
learning methods without VOW has a lower precision than
machine learning methods with VOW in IC-1∼IC-7, which
means VOW can represent more information about fault
ICs effectively. For the three methods in figure 20-22, the
similar characteristic to the CNN method in section IV B
is presented: the diagnosis accuracy of IC-6 is lower than
other ICs significantly. This reason has been analyzed in
section IV B briefly. Beside on IC-1, the classical machine
learning method with VOW can acquire better diagnosis
accuracy for IC-2, IC-4 and IC-7 than other ICs, because
faults of the discharge valve and filter have striking features

than other faults, and can be recognized linearly and easily.
Moreover, the VOW-SVM has the best diagnosis accuracy
in the three classical machine learning methods with VOW,
because of the non-linear and robust characteristics.

V. CONCLUSION
In this work, a method framework of vibration fault diagnosis
system based on VOW method for air compressors has been
researched. In the VOW method, vibration tensor is used to
describe the air compressors state in current. Actually, the
VOW is a kind of special feature enhance method. Different
from classical data-driven fault diagnosis methods, the VOW
method can strengthen the association among the monitoring
data in spatial domain and time domain, and simplifies the
diagnosis process of air compressors with large monitor-
ing data. Considering the hardware characteristic in NPPs,
we compare the performance between the fault diagnosis
system with and without VOW based on different hardware
environments: the embedded DPU in DCS, and the high
speed IPC. In the high-speed IPC, the CNN is used for fault
classification, and the vibration tensor in VOW is regarded as
the input of the CNN. In the DPU, three kinds of classical
machine learning methods are used, where multiresolution
histogram can be extracted from the VOW as the feature.

The effectiveness of VOWmethod is verified by the actual
air compressor in NPPs, and the industrial field application
mode of the VOWmethod is also given. The online test show
that the fault diagnosis system based on IPC and DPU both
have good test accuracy and response speed, which indicate
that the VOW can both improve the performance of the
vibration fault diagnosis system of NPPs based on different
classification methods.

However, the experiment result also shows that the inade-
quacy of the method framework for combination faults. As a
typical example, the test accuracy of fault bolt looseness is
lower than other ICs significantly, because bolt looseness is
not an independent fault. In future work, the fault diagnosis
based on VOW method needs to be improved further:
(1) improving the feature extraction ability of combination

faults;
(2) reducing the maximum length of undetected time based

on different classification methods, including deep
learning and classical machine learning.
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