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ABSTRACT As one of the most important optimization methods for process optimal control, orthogonal
collocation method has been widely used. However, this kind of optimization method is generally an
open-loop optimization frame, which makes the model disturbances greatly affect the control performance
and quality. In order to improve the optimal control performance of dynamic systems with disturbances, this
work proposed an orthogonal collocation optimization-based linear quadratic regulator (OC-LQR) control
method for process optimal control problems. Firstly, the orthogonal collocation method is derived in detail
to transform the optimal control problem so that optimal state curves can be accordingly calculated. Then,
an improved LQR controller design is proposed by using the obtained optimal state curves so as to construct
the feedback control frame. On this basis, a state planning-based LQR tracking control is established with
closed-loop control characteristics to tackle model disturbance problem. Meanwhile, the detailed Simulink
model of the proposed control method is constructed for simulation execution. Finally, the proposed control
structure is tested on a classical process optimal control problem with model disturbance (white noise)
test and Gaussian mixture noise test to verify the performance of the proposed method. Simulation studies
show that the control performance of the proposed method is excellent, where the mean absolute error of
state curve tracking averagely reduces by 34.73% and the minimal performance index improves by 64.44%
when compared with the classical orthogonal optimal control method. Simulation results demonstrate the
effectiveness of the proposed planning-based tracking control framework.

INDEX TERMS Optimal control, orthogonal collocation method, state planning, LQR tracking control,
process control.

I. INTRODUCTION
With the rapid development of optimal control theory [1],
optimal control methods have been widely used in industry
process and aerospace fields [2]–[4]. Optimal control theory
can be traced back to the 1950s, then Siebenthal [5] solved
the stirred reactor optimization control problem based on the
Pontryagin maximum principle. Generally, the objective of
an optimal control problem is to establish a performance
index function by selecting different independent variables
to find a control strategy that maximizes or minimizes the
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performance index under certain constraints [6]. According
to previous classification, optimal control methods are usu-
ally divided into indirect methods [7], direct methods [8]
and intelligent optimization algorithms [9]. Among them,
indirect methods mainly use the Pontryagin maximum prin-
ciple [10] to convert the optimal control problem into a
two-point boundary problem; alternatively, direct methods
always employ discrete strategies to transform the opti-
mal control problem into a nonlinear programming (NLP)
problem [11]; the characteristic of intelligent optimization
algorithms is to solve discrete optimization problems by
intelligent ways. Compared with the intelligent optimiza-
tion methods, direct methods have the advantages of less
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calculation amount and high calculation efficiency. Mean-
while, convergence range of direct methods is wider and does
not require a high-precision initial value when compared to
indirect methods. Therefore, direct methods become popular
numerical methods for solving optimal control problems.

In recent years, as one of the most efficient direct meth-
ods, orthogonal collocation (OC) method has been favored
by many scholars because of its advantages such as high
accuracy, low calculation, simple structure and high effi-
ciency [12]. The idea of this method is to discretize the
continuous optimal control problem at orthogonal points,
then approximate the state variables and control variables
through global interpolation polynomials [13] so as to trans-
form optimal control problem into a NLP problem. This
method has been demonstrated efficient in military and civil-
ian fields. For instance, Li et al. [14] used orthogonal col-
location (also named pseudospectral) method for trajectory
optimization of variable trust missile to intercept short-range
targets; Huang et al. [15] proposed a pk-adaptive mesh
refinement for orthogonal collocation method to improve
the computation efficiency; Zhang et al. [16] employed
the orthogonal collocation method to solve unmanned heli-
copter optimal control problems so as to obtain the optimal
trajectories.

Based on these discussions in literatures [14]–[16], it can
be found that orthogonal collocation method has good spec-
tral accuracy in differential approximation theory and owns
larger convergence region and faster convergence speed when
compared with other indirect method and direct method (such
as control vector parameterization method [17] and iterative
dynamic programming algorithm [18]. Therefore, orthogonal
collocation method becomes a terrific candidate for high
precision trajectory optimization. Theoretically, orthogonal
collocation method can obtain optimal control and state
planning, where the optimal state is guaranteed by using
the optimal control strategy under ideal optimization model.
However, it is difficult to obtain the exact models of dynamic
processes and disturbances will also make the model mis-
match. When the dynamic system is mismatch, the control
performance may be affected and the control effect is greatly
reduced as the orthogonal collocation method does not have
the characteristics of closed-loop control [19]. Thus, how
to guarantee the optimal control quality in the presence of
model parameter disturbance and unknown external distur-
bances is a key problem for orthogonal collocation method
application.

To enhance the control quality of orthogonal collocation
method under disturbances, an online re-optimization strat-
egy in two layers is proposed for handling disturbance and
uncertainty within semi batch process by Rohman et al. [20].
Furthermore, adding estimator in optimal control problem
is also a meaningful way [21]. While, these methods are
still open-loop methods, closed-loop characteristics cannot
be guaranteed under disturbances. In essence, the obtained
optimal state trajectory of OC method can be regarded as
ideal input for dynamic system. If the state trajectory can

be tracked, the performance index then will also be guaran-
teed. Correspondingly, the design of high-efficiency tracking
controller for OC optimization is another efficient solution
for tackling optimal control problem with disturbances.

In recent years, tracking control has been widely studied,
for instance, model predictive control [22], robust tracking
control [23], linear quadratic regulator (LQR) control [24],
etc. As a classical control strategy, LQR control has very
high importance and representativeness in modern control
theory [24] and has good control ability for dynamic sys-
tems with uncertainties [25]. Meanwhile, LQR controller
is a fundamental control strategy for plenty of improved
control methods and has closed-loop characteristics. LQR
controller thus becomes a potential candidate for combining
the orthogonal collocation optimization to improve the opti-
mization and control performances of dynamic systems with
disturbances.

Therefore, a Gauss distribution point reconstruction OC
method combined with LQR control is proposed to form a
closed-loop control frame so as to weaken the influence of
model disturbances for optimal control methods and further
ensure the control quality. Firstly, the formula of Legendre
Gauss distribution point is given in the framework of orthogo-
nal collocation method to discrete the process optimal control
problems so as to discretize the continuous dynamic pro-
cesses; then, the optimal state vector is obtained by solving
the transformed nonlinear programming problem. In order to
improve the control quality of the optimal control method for
dynamic systems with disturbances, the state-planning-based
LQR controller design method is proposed to establish a
closed-loop control. Meanwhile, the detailed Simulink model
of the proposed LQR tracking is also constructed for simu-
lation testing. Numerical experimental tests of a well-known
process optimal control problemwith consideringwhite noise
and Gaussian mixture noise are carried out to verify the
efficiency of the proposed method, where the classical OC
method and some literature results are employed to make
comparison.

The organizational structure of this paper is stated as
follows: Section II describes the orthogonal collocation
optimization method to obtain the optimal state curves;
Section III introduces the optimal state planning-based LQR
tracking control method; Section IV gives the specific imple-
mentation method of the proposed OC-LQR control algo-
rithm; numerical tests are carried out in Section V; between
Section V and VII, Section VI discusses the tests results in
detail; Section VII summarizes the work of this paper.

II. OPTIMAL STATE PLANNING METHOD
A. PROCESS OPTIMAL CONTROL PROBLEM
FORMULATION
In process optimal control, the objective of control is usually
to find the feasible control/state curves tominimize/maximize
the performance index. Generally, this control process can
be attributed to an optimal control problem. In this work,
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the following Bolza form process optimal control problem is
considered,

Min J = 8
(
x (t0) , t0, x

(
tf
)
, tf
)
+

∫ tf

t0
g (x (t) ,u (t) , t)dt

s.t. ẋ (t) = f (x (t) ,u (t) , t)

E
(
x (t0) , t0, x

(
tf
)
, tf
)
= 0

C (x (t) ,u (t) , t) ≤ 0, t ∈
[
t0 tf

]
(1)

where t0 and tf are the initial and the terminal time, x(t) ∈
R is the state vector, u(t) ∈ R is the control vector.
The nonlinear dynamic process ẋ (t) is described by ordi-
nary differential function f (x (t) ,u (t) , t) with the ini-
tial and terminal conditions E

(
x (t0) , t0, x

(
tf
)
, tf
)
= 0.

C (x (t) ,u (t) , t) describes the inequality path constraints.
J is the objective function (also named performance index),
where8

(
x (t0) , t0, x

(
tf
)
, tf
)
and

∫ tf
t0
g (x (t) ,u (t) , t)dt are

the terminal cost and integrand cost, respectively.
In problem (1), if an admissible control u(t) satisfies

inequality path constraints, then it can be regarded as a
feasible control. Let F denote the class of all such feasible
controls. Therefore, the goal of problem (1) is to find a
feasible control vector u(t) ∈ F over t ∈ [t0, tf ] to minimize
an objective function J and then to obtain the optimal state
planning curves.

B. ORTHOGONAL COLLOCATION OPTIMIZATION METHOD
In this work, orthogonal collocation optimization method is
applied for solving the process optimal control problem and
then to obtain the optimal state planning curves. Orthog-
onal collocation method, also known as pseudo-spectral
method [26], is a kind of approximate analytic method for
differential equations which has been widely used in recent
years [27]–[29]. The idea of orthogonal collocation method
is to approximate continuous state and control vector with
discrete points, then the optimal control problem can be
transformed into a NLP problem. The specific process of
orthogonal collocation method is stated as follows.

Firstly, transform the time interval [t0, tf ] of optimal con-
trol problem (1). In orthogonal collocation method, the new
time vector τ is introduced for scale transformation by using
the following formula:

t =
tf − t0

2
τ +

tf + t0
2

(2)

Then, it is easy to verify that time interval [t0, tf ] is trans-
formed into a new unit time interval [τ0, τf ] = [−1, 1].
By using the time interval transformation, problem (1) is
converted into the following Bolza problem:

Min J = 8
(
x (−1) , t0, x (1) , tf

)
+
tf −t0
2

∫ 1

−1
g
(
x (τ ) , u(τ ) , τ, t0, tf

)
dτ

s.t.
dx
dτ
=
tf − t0

2
f
(
x (τ ) , u (τ ) , τ, t0, tf

)
E
(
x (−1) , t0, x (1) , tf

)
= 0

C (x (τ ) , u (τ ) , τ ) ≤ 0, τ ∈ [−1 1] (3)

On this basis, the control vector and state vector are fur-
ther simultaneously approximated by Lagrange polynomials.
Suppose theN+1 group of discrete points {τ1, τ2, · · · , τN+1}
and the corresponding values {g1, g2, · · · , gN+1} are known,
the interpolation can be performed using the N -th degree
polynomial to obtain:

g (τ ) ≈ G (τ ) =
N+1∑
i=1

L̂i (τ )gi (4)

where G(τ ) is the approximation of function g (τ ) at time
point τ ; L̂i(τ ) is the N -th order Lagrange interpolation poly-
nomial, which is calculated by the follow equation:

L̂i(τ ) =
N+1∏
j=1,j6=i

τ − τj

τi − τj
(5)

Assume τs (s = 1, 2, . . . ,N + 1) is the s-th discrete
time point. It is easy to know that Eq. (5) has the following
characteristic:

L̂i(τs) =

{
1, i = s
0, i 6= s

(6)

Therefore, G (τs) = gs can be obtained at discrete point τs.
However, how to choose these discrete points is a key.

In this work, Legendre polynomial [30] (defined by the equa-
tion stated below) is employed for choosing these points in
time interval [−1, 1]:

Pn (τ ) =
1

(2n)n!
dn

dτ n

[
(τ 2 − 1)n

]
, (n = 1, 2, . . .)

P0 (τ ) = 1 (7)

By solving the N-th order Legendre polynomial of Eq. (7),
N discrete points can then be obtained in the interval (−1, 1).
These points are called Legendre Gauss (LG) collocation
points in this work and the calculation is based on Theorem 1.
Theorem 1: Assume the N-th order Legendre polynomial

is:

PN (τ ) =
1

(2N )N !
dN

dτN

[
(τ 2 − 1)N

]
(8)

It can be recursively obtained by using the equation below:

Pn+1 (τ ) =
(2n+ 1)
(n+ 1)

τPn (τ )−
n

(n+ 1)
Pn−1 (τ ) ,

n = 1, 2, . . . ,N − 1

P0 (τ ) = 1, P1 (τ ) = τ (9)

The proof of Theorem 1 please see Ref. [31].
Therefore, by solving PN (τ ) = 0, these N LG collocation

points will be obtained. Since τ0 = −1, the approximation of
state vector on these N + 1 LG collocation points can be
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obtained as follows:

x(τ ) ≈ X(τ ) =
N∑
i=0

Li(τ )X(τi) =
N∑
i=0

Li(τ )X i

Li(τ ) =
N∏

j=0,j6=i

τ − τj

τi − τj
=

b(τ )

(τ − τi)ḃ(τi)

b(τ ) =
N∏
i=0

(τ − τi) (10)

where X i is the value of state vector at discrete point τi.
Similarly, control vector can also be approximately

expressed by these LG collocation points as follows:

u(τ ) ≈ U(τ ) =
N∑
i=0

Li(τ )U(τi) (11)

Consequently, it is easy to calculate the derivation of state
vector as follows,

ẋ(τ ) ≈ Ẋ(τ ) =
N∑
i=0

L̇i(τ )X i (12)

By considering the derivative of the state vector on LG
collocation points, the derivative values of Eq. (12) then can
be expressed as follows,

ẋ(τk ) ≈ Ẋ(τk ) =
N∑
i=0

L̇i(τk )X i =

N∑
i=0

Dk,iX i (13)

where,

Dk,i = L̇i

(τk ) =


ḃ(τk )

(τk−τi)ḃ(τi)
, k 6= i

b̈(τk )

2ḃ(τk )
, k= i

0 = 1, 2, . . . ,N (14)

Thus, the equation of state can be replaced by the following
constraints:
N∑
i=0

Dk,iXi=
tf − t0

2
f (Xk ,Uk , τk ; t0, tf ), k = 1, 2, . . . ,N

(15)

Based on this, the integration of the Lagrange item can be
expressed as:∫ 1

−1
g(x(τ ),u(τ ), τ ; t0, tf )dτ

≈

N∑
k=1

wkg(x(τk ),u(τk ), τk ; t0, tf ) (16)

where wk is the integral weight in Gauss integral formula and
is stated as follows:

wk =
2

(1− τ 2k )(ṖN (τk ))
2
, k = 1, 2, . . . ,N (17)

Finally, by using the LG collocation discretization, Prob-
lem (3) is translated into the following NLP problem:

Min J = φ(X0, t0,X f , tf )

+
tf − t0

2

N∑
k=1

wkg(Xk ,Uk , τk ; t0, tf )

s.t.
N∑
i=0

Dk,iX i −
tf − t0

2
f (Xk ,Uk , τk ; t0, tf ) = 0

E(X0, t0,X f , tf ) = 0

C(Xk ,Uk , τk ; t0, tf ) ≤ 0

X f − X0 −

N∑
i=0

X i

N∑
k=1

wiDk,i=0, k=1, 2, . . . ,N

(18)

Remark 1: The convergence analysis of orthogonal col-
location optimization is omitted as which has been proved
in Ref. [32], thus this method is stable. Furthermore, it is
obvious that the goal of Problem (18) is to find a set of
variables (Xk ,Uk ), k = 1, 2, . . . ,N to minimize the per-
formance index J and the solution is the approximation of
Problem (3). Typically, gradient-based NLP methods, such
as sequential quadratic method or interior point method can
be used to solve the reformulated Problem (3) with high
precision [33]. Eventually, the optimal control curves and
corresponding state curves can be obtained.

III. STATE PLANNING-BASED LQR TRACKING CONTROL
As it is discussed in Section II, the optimal control strat-
egy and state curves are obtained after solving optimization
problem (18). Theoretically, control strategy should be used
as the control input. However, this is a kind of open-loop
control, when the dynamic system is mismatch or disturbance
occurs, the control performance may be affected. Since linear
quadratic regulator (LQR) control has good ability to tackle
disturbances and is efficient for tracking control, the optimal
state planning-based LQR tracking control method is pro-
posed in this work to tackle these disturbances. Generally,
the functional performance of LQR is to minimize the track-
ing error and control consumption [34]. Therefore, the opti-
mal state vector obtained from problem (18) is regarded as
the ideal output and LQR controller is designed to track the
route. The detailed process of the proposed method is stated
as follows.

Firstly, suppose the dynamic system of problem (1) can be
converted into linear system in state space.{

ẋ(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)

(19)

Denote the ideal output as yd (t), which is the optimal
state vector of problem (18) in time interval [t0, tf ]. Then,
the state planning-based LQR tracking control problem can
be described below.
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Giving the ideal output yd (t) and initial state x(t0) = x0,
find a feasible control strategy to minimize the functional
performance JLQR listed below in finite time interval t ∈[
t0, tf

]
.

JLQR =
1
2

∫ tf

t0
{eT (t)Qe(t)+ uT (t)Ru(t)}dt (20)

where e(t) = yd (t) − y(t), Q is the dynamic output error
weight matrix and R is the dynamic control weight matrix.

To achieve the minimal JLQR, Hamilton function is con-
structed by introducing Lagrange multiplier λ(t):

H (x(t),u(t),λ(t), t)

=
1
2

[
eT (t)Qe(t)+ uT (t)Ru(t)

]
+ λT (t) [Ax(t)+ Bu(t)]

(21)

Accordingly, by using the minimum principle, the following
equations can be correspondingly calculated:

1) Governing equation of the system:

∂H
∂u(t)

= Ru(t)+ BTλ(t) = 0

u(t) = −R−1BTλ(t) (22)

2) State equation of dynamic system:

ẋ(t) = Ax(t)+ Bu(t) = Ax(t)− BR−1BTλ(t) (23)

3) Concomitant equation of the system:

λ̇(t) = −
∂H
∂x(t)

= −CTQCx(t)+ CTQyd (t)− A
Tλ(t) (24)

4) Since the functional performance function JLQR
only contains comprehensive performance indicators,
the cross-section condition λ(tf ) = 0.

To sum up, based on Eq. (22) and Eq. (24), the optimal
control input of system can be described as follows:

u∗(t) = −R−1BTλ∗(t)
λ∗(t) = P̄x(t)− ḡ

(25)

where P̄ is the solution of Riccati algebraic equation and ḡ is
defined as a feedback gain vector.

Based on above definitions and derivation, the optimal
control u∗(t) can be obtained based on Inference 1 defined
below.

Inference 1. Suppose [A,B] is controllable, [A,C] is
observable andR is positive definite, the optimal control of
controlled system (19) under performance indicator (20)
is:

u∗(t) = −R−1BT P̄x(t)+ R−1BT ḡ (26)

where matrix P̄ is the positive definite solution of the
following Riccati algebraic equation:

P̄A+ AT P̄− PBR−1BT P̄+ CTQC = 0 (27)

Generally, feedback gain vector is approximately obtained
by using the follow equation:

ḡ ≈ (P̄BR−1BT − AT )−1CTQyd (t) (28)

Correspondingly, it can be seen that the optimal state trajec-
tory should satisfy the following equation:

ẋ∗(t) =
[
A− BR−1BT P̄

]
x(t)+ BR−1BT ḡ (29)

By defining K = −R−1BT P̄, the structure of state
planning-based linear quadratic regulator (LQR) tracking
control is established in Fig. 1.
Remark 2. It should be noted that the reference input of

tracking system is ideal output yd (t), which comes from the
optimal solution of problem (18). Thus, constant vector ḡ is
constituted by a sub-feedback module and the input is yd (t).
After solving the Riccati matrix differential equation, ḡ then
is uniquely calculated. Meanwhile, by adjusting Q and R,
the system output can track the expected output. In this work,
the trial and error method is employed to tune Q and R.
The computation complexity of the proposed method can

be analyzed as follows. Suppose the dimensional of state vec-
tor x(t) is xn and u(t) is a un dimensional vector. By using the
orthogonal collocation discretization, it is obvious that x(t)
and u(t) are then discretized into a set of variables (Xk ,Uk ),
k = 1, 2, . . . ,N . Furthermore, since the optimal control
problem (1) is finally transformed into a NLP problem (18).
Assume that the optimization iteration of the NLP solver is
Nopt , the computation complexity of OC optimization is,

T(OC) = O((xn + un)× N × Nopt ) (30)

Next, since OC-LQR method introduces the LQR design,
the computation complexity of LQR should be considered.
From above discussion, it can be found that the core of
LQR design is to calculate Eq. (28) and Eq. (29). Using
linear transformation strategy to obtain the ideal input yd (t)
and then to calculate feedback ḡ and matrix P̄ is the main
computation. Assume the dimensional of yd (t) is yd , the com-
putation complexity of LQR is

T(LQR) = O(xn × yd × un) (31)

Finally, the computation complexity of OC-LQR method is,

T(OC-LQR) = O(max{(xn + un)×N×Nopt , xn × yd × un})

(32)

IV. ALGORITHM IMPLEMENTATION
Based on the specific derivation of state planning-based
linear quadratic regulator (LQR) tracking control method,
the implementation of LQR tracking control design combined
with orthogonal collocation optimization is given. The flow
chart of the algorithm is shown in Fig 2. The detailed algo-
rithm steps are stated below:
Step 1: Input parameters of the Bolza optimal control

problem and assign initial values of state vector and control
vector.
Step 2:Employ the proposed orthogonal collocation opti-

mization method to solve optimal control problem so as to
obtain the optimal control vector and corresponding optimal
state vector.
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FIGURE 1. Structure of state planning-based LQR tracking control system.

FIGURE 2. Flow chart of the proposed algorithm.

Step 3: Rearrange the obtained optimal state vector and
get the ideal input yd (t). Select appropriate weight matrices
Q and R. Using the linear transformation strategy to calculate
feedback gain vector ḡ and then calculate matrix P̄ based on
Riccati algebraic Eq. (27).
Step 4: Obtain the feedback gain matrix K . Then, calculate

the state planning-based optimal control rate u∗(t) by using
Eq. (26).
Step 5: Using the obtained feedback gain matrix K to

establish the feedback control structure.
Step 6: Input the optimal control vector u∗(t) into the

dynamic model and monitor the output.

V. SIMULATION TESTING
In order to verify the effectiveness of the proposed algo-
rithm for process optimization with disturbances, the classi-
cal Nishida optimal control problem [35] is tested. In addi-
tion, results of the proposed method are also compared
with the optimal strategy obtained by orthogonal collocation
optimization control. All simulation studies are carried out
on a personal computer (Intel CORE i5/2.3GHz CPU and
DDR4/2400MHz 4GB memory) in MATLAB platform.

A. ORTHOGONAL COLLOCATION OPTIMIZATION-BASED
STATE PLANNING
Briefly, the mathematical model of Nishida problem is
arranged as follows:

min J = x21 (tf )+ x
2
2 (tf )+ x

2
3 (tf )+ x

2
4 (tf )

FIGURE 3. Optimal control vector curve.

FIGURE 4. Optimal state vector curves.

s.t. ẋ1(t) = −0.5x1(t)+ 5x2(t)

ẋ2(t) = −5x1(t)− 0.5x2(t)+ u(t)

ẋ3(t) = −0.6x3(t)+ 10x4(t)

ẋ4(t) = −10x3(t)− 0.6x4(t)+ u(t)

1 ≤ u(t) ≤ 1

tf = 4.2 (s) (33)

By calculating the roots of this system, it can be found
that all poles are located in the left half region of the
origin, thus the system is stable. During the orthogonal
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TABLE 1. Optimization results of Nishida problem.

FIGURE 5. Calculation process of feedback gain.

collocation optimization, the initial state variables are set
as x(0) = [10; 10; 10; 10] and the initial decision variable
is set to u(0) = 0. The time interval of the dynamic pro-
cess is [0, 4.2]. To verify the validity of optimization results
obtained by orthogonal collocation method, the classical
piecewise-constant control vector parameterization (CVP)
method presented in Ref. [36] and an improved DOT-CVP
method proposed in Ref. [37] are also employed to make
comparisons. The corresponding test results are shown
in Table 1. It can be seen that OC method obtains the sim-
ilar result as CVP and DOT-CVP methods. Correspondingly,
Fig. 3 the gives optimal control curve of the orthogonal
collocation method and Fig. 4 shows the optimal state curves.
Next, by using linear transformation, the optimal state vec-
tor is employed to calculate the feedback gain G. Further-
more, the OC control, which inputs the optimal control curve
obtained by OC method directly into dynamic model, is also
executed to compare the control performance with the pro-
posed state planning-based LQR tracking control.

B. OC-LQR AND OC CONTROL SIMULATION
Based on the optimization results of OCmethod, the obtained
optimal state vector is employed as input signal for LQR
control, the calculation process of feedback gain G is shown
in Fig. 5. The Simulink structures of OC-LQR control and
OC control in MATALB are given in Fig. 6 and Fig. 7,
respectively. OC control is regarded as a conventional opti-
mal controller to make comparison with OC-LQR controller.
In Fig. 6, feedback incrementG is calculated according to the
optimal state vector and then is used as the desired output.
Fig. 7 is an open-loop Simulink model of OC control, where
the optimal control vector of OC optimization is directly used
as the control signal.

In order to make the comparison of OC and OC-LQR
control methods fair, all simulation studies of the two control
methods are carried out on a same platform. Meanwhile,
the corresponding parameters, including the running time,
model parameters and simulation parameters are all set the
same.

FIGURE 6. Simulink structure of OC-LQR control.

FIGURE 7. Simulink structure of OC control.

By setting the simulation time as 4.2 seconds, test results
of the above two structures are then obtained. The numerical
results are shown in Fig. 8-10, where Fig. 8 shows the control
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FIGURE 8. OC-LQR tracking control performance.

FIGURE 9. OC control performance.

performance of state planning-based LQR tracking control
and Fig. 9 reveals the state tracking curve under OC control.
The state tracking curve comparison of the two methods is
given in Fig. 10. It is obvious that the two methods obtain the
similar and excellent tracking performance. Results show that
the vertical error of state tracking is less than 0.01, revealing
the effectiveness of the OC-LQR tracking control algorithm.

C. MODEL DISTURBANCE TEST
In Section V.B, OC-LQR and OC control methods both can
efficiently track the optimal state vector when the dynamic
model is accurate. However, since various disturbances exist
in engineering processes, it is difficult to obtain the exact
models of dynamic processes and the models will also mis-
match. In order to test the adaptability of OC-LQR track-
ing control algorithm for dynamic model disturbances. The
model disturbance test is carried out. Similarly, the OC con-
trol method is executed as a comparison. During the simu-
lation test, the same disturbances are directly added to the
model parameter module in the Simulink structures of OC
control and OC-LQR control.

Without loss of generality, 10% and 30% white noise are
inputted into each feedback gain of the Nishida dynamic
model as model disturbance in Fig. 6 and Fig. 7. The cor-
responding test results are given in Fig. 11 and Fig. 12,
respectively. It can be clearly obtained that the state track-

ing curves obtained by OC-LQR tracking control algorithm
have less fluctuation and higher stability than that of OC
control method under 10% and 30% white noise. Especially
between the 2 and 3 process time, it can be clearly observed
in Fig. 11-12 that the state tracking curves obtained by OC
control method fluctuate greatly, and the anti-interference
ability is inferior to the method proposed in this paper. These
results show that the proposed algorithm has good control sta-
bility and can reduce tracking errors caused by the dynamic
model disturbance.

Furthermore, the mean absolute error (MAE) is employed
to analyze the tracking errors (compare with the optimal state
curves) of the two methods under 10 and 30% white noise.
Table 2 shows these results. It can be found that the MAEs of
OC-LQR and OC methods are 0.8974 and 1.4039 under 10%
white noise input. Compared with OC control method, sta-
tistical analysis shows that the proposed method can reduce
36.08% MAE tracking error (0.5065). Meanwhile, when the
white noise is 30%, tracking errors of both two methods
increase, where the OC-LQR method adds 0.6461 and the
increment of OC method is 1.0171. MAE analysis results
show that the proposed method reduces 36.17% tracking
error averagely. Correspondingly, by analyzing the minimal
performance indexes (MPIs) in Table 3, it is found that distur-
bances will affect the MPI, but the MPI increasing amounts
of OC-LQR method are obviously smaller than those of OC
method under 10% and 30% white noise disturbances, which
revealing the effectiveness of the proposed OC-LQR method
in this paper.

D. GAUSSIAN MIXTURE NOISE TEST
To further verify the efficacy of the proposed approach
in practical scenario, Gaussian mixture noise [38], which
is commonly used to simulate the real-world disturbance,
is introduced for testing. Together with model disturbances
(10% and 30% white noise), Gaussian noise (mean: 1, vari-
ance: 1) is added to the system input channel of dynamic
model (see Fig. 6 and Fig. 7) as external disturbance. For
convenience, these disturbances are named as 10% and 30%
Gaussian mixture noise. The corresponding test results are
shown in Fig. 13 and Fig. 14, respectively. Based on the
simulation results, it is obvious that OC-LQR tracking control
algorithm can still track the state curves well and the stability
is better than OC control method. By comparing the state
tracking curves of two methods under 30% Gaussian mixture
noise in Fig. 14, it can be also found that oscillation amplitude
of OC-LQR tracking control method is smaller than that of
OC control method, further revealing the effectiveness of
OC-LQR method.

In addition, MAE analysis and MPI analysis are given
in Table 4 and Table 5, respectively. Results in Table 4
show that the MAEs of OC-LQR control method are
0.9501 and 1.5812 under 10% and 30% Gaussian mix-
ture noise. While, the corresponding results of OC con-
trol method are 1.3894 and 2.4035, which reveals that the
increase of Gaussian mixture noise causes smaller impact to
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FIGURE 10. State tracking curves of OC and OC-LQR methods.

FIGURE 11. State tracking curves of two methods with 10% white noise model disturbance.

FIGURE 12. State tracking curves of two methods with 30% white noise model disturbance.

OC-LQR control than that of OC control. Compared with OC
method, it is summed up that the MAE of OC-LQR averagely
decreases by 32.92%. Therefore, the proposed LQR tracking

controller design is efficient to track the state curves with
internal model disturbance and external disturbance. Mean-
while, MPI results in Table 5 also indicate that LQR-OC
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TABLE 2. Mean absolute error analysis results of model disturbance test.

TABLE 3. Minimal performance index analysis of model disturbance test.

TABLE 4. Mean absolute error analysis results of Gaussian mixture noise test.

TABLE 5. Minimal performance index analysis of Gaussian mixture noise test.

FIGURE 13. State tracking curves of two methods with 10% Gaussian mixture noise disturbance.

control can efficiently reduce the impact of Gaussian mixture
noise to MPI when compared with OC control, showing the
effectiveness of the proposed OC-LQR control frame for
handling internal and external disturbances.

VI. RESULT ANALYSIS
By analyzing the simulation testing results, it can be sum-
marized that orthogonal collocation optimization is efficient
to obtain the optimal control strategy under certain objective
function, where the computation time is less than that of CVP
method (see Table 1), which shows that OC method has good
potential for online control application. Meanwhile, by using

the obtained optimal control curve, corresponding optimal
state curves can be transformed (see Fig. 5). Thus, the LQR
control can easily employ these curves to construct feedback
control so that the OC-LQR control can be established. Simu-
lation results of Fig. 8-10 reveal that OC control andOC-LQR
control both can guarantee the state curve performance when
there is no disturbance in dynamic process. However, model
disturbance test show that state performances of OC control
and OC-LQR control are both influenced by white noise
disturbance. States curves in Fig. 11 and 12 indicate that the
fluctuation of OC control is bigger than that of OC-LQR
control. Meanwhile, by using MAE analysis to compare the
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FIGURE 14. State tracking curves of two methods with 30% Gaussian mixture noise disturbance.

TABLE 6. Statistical analysis of test results.

state curves of OC and OC-QR methods with optimal state
curves, it is found that the MAE of OC control changes from
1.4039 to 2.4210 under 10% and 30%white noise disturbance
(see Table 2 ). While, by introducing the LQR feedback
strategy, OC-LQR averagely decreases the MAE by 36.17%
when compared with OC control. Therefore, although model
disturbance will influence the control quality of OC and
OC-LQR control, the closed-loop OC-LQR can efficiently
reduce the impact.

Furthermore, MPI analysis in Table 3 indicates that the
influence of model disturbance to performance index is huge.
MPIs of OC control increase from 1.2214 to 9.3294 and
25.2590 under 10% and 30% white noise disturbance. Cor-
respondingly, MPIs of OC-LQR control change from 1.2239
to 3.4945 and 8.8165, respectively. It can be concluded that
OC-LQR control averagely reduces the MPI influence by
64.49%when compared with OC control, revealing the effec-
tiveness of the proposed OC-LQR design.

Gaussian mixture test, which inputs the internal white
noise and external Gaussian noise to the dynamic process
simultaneously, is carried out to verify the efficacy of the
proposed approach. Compared with model disturbance test,
results in Fig. 13 and 14 indicate that external Gaussian
noise disturbance has a limited influence on MAE and MPI.
The proposed OC-LQR control is efficient to handle the
internal and external disturbances (see Table 4 and Table 5).
Statistical analysis of model disturbance test and Gaussian
mixture noise test is shown in Table 6. Statistical results show
that OC-LQR control averagely decreases the MAE index
by 34.73% and improves the MPI performance by 64.44%,
demonstrating the efficacy of the proposed approach.

To sum up, by introducing LQR control design, the feed-
back control of OC-LQR can be established so that the pro-
posed method can own the closed-loop characteristics. Thus,
the control quality and performance index can be improved
under internal and external disturbances.

VII. CONCLUSION
This paper aims at combining the OC optimization with
LQR tracking control to tackle the process optimal control
problem with internal and external disturbances. The main
concept of this work is to adopt integral design in state vector
planning and tracking control for process dynamic systems.
By using OC dynamic optimization method, the optimal state
curves can be accordingly obtained and transformed into
input signal for LQR controller, so that LQR feedback track-
ing control can be easily established to strengthen the control
performance of dynamic system with internal or external
disturbances. The performance studies of model disturbance
test and Gaussian mixture noise test show that the control
quality of proposed approach is steady, the mean absolute
error of state curve tracking averagely reduces by 34.73% and
the minimal performance index improves by 64.44% when
compared with the classical orthogonal collocation optimal
control method. Thus, the proposed OC-LQR control design
is efficient to obtain the state planning and track the optimal
state with model disturbances. Simulation results indicate
that the proposed method has good application potential for
model disturbance optimal control, which provides a way to
design the state planning-based LQR controller. Currently,
the proposed method is limited to linear dynamic systems
and nonlinear systems should be linear approximated firstly,
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which is a shortcoming of the proposed method. Meanwhile,
the proposed method is mainly applicable to systems with
observability. Extensions of the proposed method can be
establishing adaptive state-planning-based control methods
for complex constrained nonlinear industrial dynamic pro-
cesses and multiple control variables optimal control.
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