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ABSTRACT Based on the tactics of ‘‘intercepting at the furthest and resisting in steps’’ in the ground-to-air
defense, an integrated sensor/heterogeneous weapon allocation problem is proposed for the first time. It is
formulated as a dynamic sensor/heterogeneous weapon target assignment (DS/HWTA) model in continuous
time domain, including the models of the threat assessment, sensor detection probability, weapon damage
probability, decision timing, unified optimization objective and constraints. An evolutionary algorithm for
dynamic sensor/heterogeneous weapon target assignment (EA-DS/HWTA) is proposed, in which three
coding methods are designed to build the solution individuals. The de-constrained initial population is
realized based on type I coding. A modified position based crossover (MPBX) based on type II coding
is presented to maintain the sensor-weapon synergy of the solutions. Based on a greedy fitness strategy,
the type II coding individual is complemented and transformed to type III coding to calculate the solution
fitness. The extensive experiments show that the DS/HWTA model reflects the cooperation requirements of
sensor-weapon in anti-penetration operation, and the proposed solving algorithm has good convergence and
real-time performance.

INDEX TERMS Decision support system, sensor-weapon resources management, cooperative engagement,
combinatorial optimization, evolutionary algorithm.

I. INTRODUCTION
Sensors and weapons are two significant operational
resources that complement each other in modern warfare, and
their cooperative engagement capability (CEC) has a crucial
impact on the completion of operational missions. Missile
Defense Agency states that ‘‘sensor resource management
has been exhaustively studied when weapons are selected
and engagement timeline is known’’ and ‘‘individual study
has lead to a performance gap with independently optimized
weapons and sensors’’ [1]. The joint optimization approach
has not been investigated for the missile defense arena [2].
The future airstrikes has the characteristics of multi-level,
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multi-batch, and multi-directional threats, which not only
present new challenges to traditional decision-making issues
such as sensor resource management (SRM) and weapon-
target assignment (WTA), but also introduce new require-
ments for integrated sensor/ weapon operations.

With the independent development of SRM [3]–[5] and
WTA [6]–[9], the organic integration of these two problems is
crucial for defense operation. However, the integrated SRM
and WTA has not a uniform formulation. Owing to SRM
aims to track targets and guide weapons to intercept targets,
the joint optimization approach for sensors and weapons
is researched as a variant of the WTA problem, namely
Sensor/Weapon-Target Assignment (S/WTA). The S/WTA
model can be divided into two categories: the independent
S/WTA and the integrated S/WTA. The difference between
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independent S/WTA and integrated S/WTA is whether it
considers the interdependencies of sensors and weapons to
targets. The optimization objective of independent S/WTA
model is the sum of the benefits of assigning each sensor to
each target and each weapon to each target, and the sensor-
target benefit is independent of the weapon-target benefit.
For instance, Bogdanowicz et al. [10] established an inde-
pendent sensor/weapon-target pairings model and proposed
the auction algorithm to solve it. Zi-fen et al. [11] presented
an improved Swt-opt algorithm to assign the independent
S/WTA model. The integrated S/WTA model, in which the
damage efficiency of weapons depended on the accuracy
and reliability of sensors, is developed as the future direc-
tion of intelligent Command & Control (C2) system. For
instance, Bogdanowicz and Coleman [12] introduced the
S/WTA model of sensor-weapon pairs with targets at time
dimension, and designed an exact optimization based on the
Swt_opt component of auction algorithm. Chen et al. [13]
considered the weapon-target efficiency depending on the
pre-assigned sensor, and proposed a hybrid algorithm incor-
porating the particle swarm optimization (PSO) and genetic
operator. Jian and Chen [14] presented a modified genetic
algorithm to solve the integrated S/WTA model, which can
dynamically adjust in three components of the search region.
Xin et al. [15] built a S/WTA model for Network-Centric
Warfare (NCW) by modeling the probability of successful
interception as the product of the damage probability and the
detection probability, and presented a marginal-return-based
constructive heuristic (MRBCH) algorithm. Li et al. [16]
presented a modified genetic algorithm, which incorporates
the population initialization and repair operators by prior
knowledge, to solve S/WTA model. Mu et al. [17] estab-
lished the S/WTAmodel for intelligent minefield and applied
the multi-scale quantum harmonic oscillator algorithm on it.
Obviously, the integrated S/WTA model is more in line with
the task requirements of the future decision support system.
WTA problem can also be divided into two categories: the
staticWTA (SWTA) and the dynamicWTA (DWTA), and the
review of the WTA problem can refer to [18]. The difference
between SWTA and DWTA is whether the time is considered
as a dimension [19]. The above mentioned S/WTA researches
belong to the SWTA problem. However, it is difficult for
a single type of weapon to complete the defense task, and
multiple types of weapons are usually engaged in several
decision-salvo stages.

In ground-to-air defense scenario, WTA problem is the
crucial decision support in Command&Control (C2) system.
Li et al. [20] considered the layered Ballistic Missile Defense
System (BMDS) of assigning interceptors to multiple waves
of incoming ballistic missiles, and proposed a modified parti-
cle swarm optimization to solve the resource planning model.
Summers et al. [21] formulated a dynamic WTA model of
theater ballistic missile defense (TBMD) problem, and uti-
lized an approximate dynamic programming (ADP) approach
to solve it. Kim et al. [22] established the time-dependent
SWTA model for high-speed enemy missile and presented

the decentralized decision making algorithm. Hocaoğlu [23]
formulated the allocating the air defense missiles to incoming
air targets of land-based air defense systems. Nevertheless,
the major WTA researches for air defense do not consider
the integrated sensor-weapon decision system, and the CEC
of sensors and heterogeneous weapons is critical for defense
efficiency.

At present, few researches have focused on the S/WTA
problem in ground-to-air defense. The actual ground-to-
air anti-penetration operations follow the dynamic tactics
of ‘‘interception as far as possible, stepped resistance, and
layered defense’’, and adopt the configuration of ‘‘high
outside and low inside, more outside and less inside.’’
For the dynamic and heterogeneous requirements of anti-
penetration scenario, this paper establishes a dynamic sen-
sor/heterogeneous weapon-target assignment (DS/HWTA)
problem considering the interdependencies of sensors and
heterogeneous weapons, and proposes the evolutionary algo-
rithm to obtain the interception schemes for the decision-
maker. The contributions of this paper are described as
follows:

1) For the operational requirements of ground-to-air anti-
penetration, the heterogeneous sensor-weapon-target
cooperative assignment problem is presented, and is
formulated as a dynamic sensor/heterogeneous weapon
target assignment model in continuous time domain;

2) A novel evolutionary algorithm for DS/HWTA
(EA-DS/HWTA) is proposed to obtain the sequen-
tial interception schemes excellently. The modified
approaches of population initialization, crossover oper-
ator, and environment selection are designed to balance
the optimality and real-time performance;

3) The simulation framework is established by incorpo-
rating the models of two types of missiles, flight target
and state transition. The extensive experiments demon-
strate that the proposed approaches are effective and
promising.

The rest of this paper is organized as follows. Section II
gives our motivation and formulates the DS/HWTA prob-
lem. Section III establishes the optimization objective and
constraints of DS/HWTA model. Section IV presents the
EA-DS/HWTA solver in detailed. Section V verifies the pro-
posed algorithm solving DS/HWTA by experimental studies.
The conclusion and future work is finally summarized in
Section VI.

II. PROBLEM FORMULATION
A. PROBLEM ANALYSIS
First, the tactics of two typical ground-to-air anti-penetration
scenarios, which are missile defense and air defense [21],
are adopted to illustrate our motivation and introduce the
DS/HWTA cooperative combat problem.

In the missile defense scenario, the multi-layered defense
system is considered the most suitable air defense system
for large-scale incoming missiles [22]. Taking the National

227374 VOLUME 8, 2020



K. Zhang et al.: Novel Heterogeneous Sensor-Weapon-Target Cooperative Assignment for Ground-to-Air Defense

Missile Defense (NMD) as an example, it conducts early
warning and classification of incoming missiles based on
the space-based infrared system (SBIRS) and upgraded early
warning radar (UEWR). X-band radar (XBR) performs high-
precision irradiation and tracking on the targets and the
ground-based interceptors (GBI) launch for the interception.
XBR guides the medium and long-range interceptors to the
upper-level targets with the greatest threat. If the number and
coverage of interceptors are limited, the survival targets fall
to the lower layer. The defense has less time to intercept
these surviving targets with the higher speed and threat, and
requests the close-range interceptors with stronger maneu-
verability. Battle management, command, control, and com-
munications system (BM/C3) integrates the data analysis,
scheme evaluation, command control, and coordination by
data link in the whole interception process.

In the air defense combat, the main ground-based anti-
air firepower is composed of anti-air missiles, archibalds,
and sensors. The missile-gun integrated weapon system is
a complex air defense system composed of short range air
defense missile, anti-aircraft gun, missile-gun integrated fire
control system and so on. The tactics of missile-gun inte-
grated weapon system is as follows: Air defense missile
has the advantages of long-range and high precision, but it
also has the disadvantages of large lower bound of attack
zone, poor anti-saturation attack capability, and high cost.
The archibald has the advantages of rapid response, strong
anti-interference ability, intensive firepower, and low cost,
but the interception airspace is small. Therefore, the joint fire
control of the integrated missile-gun system can effectively
handle low/mid-altitude defense task and improve the overall
operational effectiveness of the defense system by unified
command and control of anti-air missiles, archibalds, and
sensors.

By refining the characteristics of the above multi-layered
defense system and missile-gun integrated system, a hetero-
geneous sensor-weapon-target cooperative assignment prob-
lem is presented: during the target penetration from far to
near, the defender has multiple weapon launch platforms,
such as missile launch vehicle, at the unified level of the deci-
sion network. Each platform has its own sensor (mainly radar)
and several interceptors, which are classified as close-range
weapons and medium-range weapons. The characteristic of
two types weapon is whether the weapon request the target
information from sensors. The close-range weapon may be
uncontrolled interceptors, such as guns, archibalds, or close-
range dogfight missiles in which the missile-borne seeker
can directly lock the target without the external radar provid-
ing target information, such as Patriot Advanced Capability-
2 (PAC-2). The medium-range weapon requests the target
information by the ground-based or air-based radar in the
midcourse guidance, and the missile-borne radar turns on to
lock the target in the terminal guidance. Hence the medium-
range weapon can only shoots the targets tracked by sensors,
such as Patriot Advanced Capability-3 (PAC-3).

FIGURE 1. Architecture of integrated sensor/heterogeneous-weapon
decision system.

All the above, the proposed DS/HWTA problem has the
following collaborations. The architecture of the proposed
decision support system is shown in Figure 1.
1) Coordination of close-range weapons and medium-

range weapons. The close-range weapons can not
attack the target in the long-distance space because
it is not designed to receive the midcourse guidance
information. The medium-range weapon has a large
interception distance and can maintain a considerable
kill probability in a wide range. However, the available
overload and maneuverability of the medium-range
weapon are weaker than the close-range weapon, and
the lower boundary of the no-escape area is large.
Hence the medium-range weapon has a much lower
damage probability than the close-rangeweapon for the
close-space target.

2) Cooperation of sensors and weapons. The medium-
range weapon is responsible for the long-distance inter-
ception. The sensors are required to capture and track
targets, and provide midcourse guidance information
for medium-range weapon. The close-range weapon is
the uncontrolled weapon, or the missile-borne seeker
directly locks the target without the tracking informa-
tion from sensors.

B. THREAT ASSESSMENT
In the anti-penetration scenario, the target threat can be
assessed by the relative situation between the penetration
target and the defender. The threat assessment model can be
established by the following track attributes.

(1) Altitude. Due to the impact of terrain factors, the lower
the target’s flight altitude, the lower the probability of detec-
tion by the sensor, and the greater the threat to the defense
side. When the flight altitude is lower than a certain value,
the threat is maximum, and when the flight altitude is higher
than the value, the threat can be presented by the descending
normal distribution function

uh(h) =
{
1, 0 < h ≤ hl
e−kh(h−hl ), h > hl

(1)

where h is the current flight altitude; hl is the highest altitude
corresponding to the maximum threat value; kh is the attenu-
ation parameter.
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(2) Velocity. The faster the target flies, the stronger the
penetration capability is, and the higher the threat to our
side will be. In particular, the hypersonic/supersonic pene-
tration target will affect the accuracy of sensor tracking and
weapon damage, thus reducing the interception probability.
The velocity threat degree can be expressed as

uv(v) =

{
0.2, 0 ≤ v < 1

0.8
(
1− ekv(v−1)

2
)
+ 0.2, v ≥ 1

(2)

where v is the target velocity; kv is the gain coefficient.
(3) Short course. The short course is also an important

indicator that reflects the intent and threat of the target. The
smaller the short course of the target to the asset, the more
significant the attack intention and threat are. The interme-
diate normal distribution can be used to evaluate the course
threat

vc(c) = e−kcc
2

(3)

where c is the distance of the asset and the short course; kc is
the attenuation parameter of target attack range.

(4) Remaining intercept time. Since ground-to-air weapons
have the limitation of the minimum/maximum attack bound-
ary, the remaining intercept time refers to the time of the
penetration target reaching the intercept boundary with the
current velocity. Generally, the shorter the remaining inter-
ception time, the lower the interception success probability,
that is, the greater the target threat degree. The reduced semi-
normal distribution function can be used to show the threat of
the target’s remaining intercept time.

vt (t) = e−kt t
2

(4)

where t is the remaining intercept time; kt is the attenuation
parameter.

In summary, the threat evaluation of penetration targets,
namely the interception value model, can be established as

uj(t) = whuhj (t)+ w
vuvj (t)+ w

cucj (t)+ w
tutj (t) (5)

where wh, wv, wc, and wt are the weight parameters of the
threat factors.

C. DETECTION PROBABILITY OF SENSOR
Considering the radar sensor, the detection probability of
the radar sensor is the signal-to-noise (SNR) ratio function
related to the false alarm probability, which is challenging
to be solved accurately due to the complicated theoretical
calculation [24], [25]. In the case of low requirement for
detection accuracy, the empirical formula used to fit the
simplified detection probability by distance.

Pd =

0.9− R/8, if R < 0.8
2.0− 1.5R, if 0.8 ≤ R < 1.0
0, otherwise

(6)

R =
D

kd · Dmax
(7)

FIGURE 2. Guidance geometry relationship between missile and target.

where D is the distance between the radar and target; kd is
the radar descent coefficient; Dmax is the maximum effective
range of radar detection.

D. INTERCEPTION PROBABILITY OF WEAPON
Different types of weapons have different probability dis-
tributions for target interception, such as uncontrolled inter-
ceptors (antiaircraft gun), simple control interceptors (rocket
projectile), guided interceptors (missile). This paper takes the
medium/close-range ground-to-air missiles as two types of
weapons. The interception probability of guided missile is
investigated in [26]–[28]. It can be concluded that the inter-
ception probability of ground-to-air missiles is related to the
guidance accuracy and the consumed energy in the flight pro-
cess. The major evaluation indicators are: (1) Miss-distance.
The smaller miss-distance indicates the higher intercep-
tion probability, which is an essential indicator for evaluat-
ing interception efficiency. (2) Remaining flight time. The
remaining flight time is the time required for the weapon
to intercept the target. Less remaining flight time represents
less flight energy consumption, which contributes to the real-
time and accuracy. (3) Line-of-sight (LOS) rate. The guidance
law of most homing weapons achieve the interception by
converging the LOS rate, and the smaller LOS rate represents
the less energy loss of the normal acceleration. Therefore,
the interception probability of weapon can be constructed by
miss-distance, remaining flight time, and LOS rate.

Derived from Figure 2 of weapon guidance geometry and
guidance system model, the miss distance, remaining flight
time and line-of-sight angular velocity can be calculated as

1S =

∣∣∣∣ψVM tgoe− tgo
τ

(
1−

tgo
τ
+

tgo
6τ 2

)∣∣∣∣
tgo ≈ −

r
VT cos(θT − q)− VM cos(θM − q)

Tgo =
r

VM + VT
(1+

sin2(θM − q)
2(2N − 1)

+
3sin4(θM − q)
8(4N − 3)

+
5sin6(θM − q)
16(6N − 5)

+
35sin8(θM − q)
128(8N − 7)

)

η = arcsin
(
VT
VM

sin(θT − 1)
)

(8)
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TABLE 1. Notation declaration.

where N is the navigation constant. In the above three indica-
tors, the miss-distance evaluates the interception efficiency,
and the remaining time and LOS rate evaluate the energy
consumed during the flight process. Negative exponential
function can be used to construct the interception probability
of weapon i against target j

P1S(i,j) = P1S0 e
−
1S(i,j)2

δ1S
2

PTgo(i,j) = P
Tgo
0 e
−
Tgo(i,j)2

δTgo
2

Pq̇(i,j) = Pq̇0e
−
q̇(i,j)2

δq̇
2
the defe

(9)

where δ1S , δTgo , and δq̇ are obtained by the mean indicators of
operational scenario. Take m weapons intercepting n targets
as an example 

δ1S =

n∑
j=1

m∑
i=1
1S(i, j)

mn

δTgo =

n∑
j=1

m∑
i=1

Tgo(i, j)

mn

δq̇ =

n∑
j=1

m∑
i=1

q̇(i, j)

mn

(10)

Interception probability of weapon i against target j can be
indicated by weighted processing

Pij = β1SP1S(i,j) + βTgoPTgo(i,j) + βq̇Pq̇(i,j) (11)

where β1S , βTgo , and βq̇ are theweight parameters of the three
indicators.

III. DYNAMIC SENSOR/HETEROGENEOUS
WEAPON-TARGET OPTIMIZATION MODEL
The operational scenario of the proposed DS/HWTA is: In the
air-defense environment, the early warning radar captures n
incoming enemy targets and detects track information such

as position and speed. The defender has s weapon launch
platforms, that is, the number of platform sensors is m,
and the number of available weapons of each platform is
mh, h = 1, 2, . . . , s. By the types of interception weapon,
weapon resources can be divided into medium-range and
close-range, in which the interception process of medium-
range weapon needs the attack guidance of sensors. Based on
the current relative situation, the defender should solve the
sensor/weapon attack decision to maximize the interception
efficiency. The notation employed in the context is listed in
Table 1.

A. DECISION TIMING MODEL
Firstly, an essential variable of the weapon launch state is
introduced

ajhi(t) =

1, l jhi(t) < d jhi(t) ≤ u
j
hi(t) and whi ∈ L

−1, l jhi(t) < d jhi(t) ≤ u
j
hi(t) and whi ∈ S

0, otherwise
(12)

where l jhi and u
j
hi respectively represent the lower and upper

boundary of the attack zone of platform h weapon i to target
j; ajhi = 1 indicates that target j is in the attack zone of
medium-range weapon whi and requires sensors cooperation
for midcourse guidance; ajhi = −1 indicates that target j is in
the attack zone of close-range weaponwhi; a

j
hi = 0 represents

that weaponwhi does not satisfy the attack condition for target
j. In actual combat, the weapon attack area is obtained by
look-up table interpolation or fitting method.

When the weapon resources are not enough to satura-
tion attack, there is a situation that the target successfully
avoids the interception of medium-range weapons and has
not entered the attack zone of close-range weapons, which is
defined as the target in the firepower vacuum zone. In order
to judge whether any target is in the fire vacuum zone, the of
firepower handover judgment variable F is presented

F(t) = sign

(
s∑

h=1

max
i,j

{
ajhi(t)

}
− n

)
·

n∑
j=1

max
h,i

{
ajhi(t)

}
(13)
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where sign(·) is the sign function, the function value is 0 when
the parameter is negative, otherwise the function value is 1.
If F(t) = n, it means that all targets can be assigned at least
one weaponmeeting the attack condition simultaneously, that
is, no target is in the firepower vacuum zone, and a decision
request can be initiated immediately. Let the lth round of
attack decision timing be t(l), and the l+ 1 round of decision
timing model is

t(l + 1) = t(l)+ max
h=1,2,...,s

{
T gh (l)

}
+ To + Ts, l ∈ N (14)

where T gh represents the weapon remaining flight time of
platform h at the launch moment; To denotes the situation
assessment time; Ts denotes the system response time (alloca-
tion decision, command transmission, weapon launch prepa-
ration, etc.).

If F(t) < n, it means there is at least one target in the
firepower vacuum zone. According to the OODA loop theory,
when any target is located in the firepower vacuum area by
the ‘‘Observe-Orient’’ phases, the Command&Control sys-
tem faces two decisions: (1) Directly execute the ‘‘Decide-
Act’’ phases to intercept as quickly as possible, but t is
not conducive to obtaining the global optimal solution; (2)
Continuing the Orient phase, wait for the target, which is in
the firepower vacuum area, entering the attack zone, but it
may delay the optimal launch time of weapons. In order to
balance the above ‘‘optimality-rapidity’’ dilemma, a delayed
decision strategy is introduced
t(l + 1) = t(l)+ max

h=1,2,...,s

{
T gh (l)

}
+ To

+min{1t, tm} + Ts, l ∈ N

1t = argmin
tw

F
(
t(l)+ max

h=1,2,...,s

{
T gh (l)

}
+To + tw

)
6= 0

(15)

where tm is the delay time parameter. Equation (15) indicates
that if any target is in the vacuum zone after the lth round
interception, the l + 1th decision is delayed for time tm. If
the target group enters the firepower coverage area within the
delay time, the l + 1th decision is initiated immediately.
In summary, the decision timing model in DS/HWTA is

established as follow.

t(l + 1) =


t(l)+ max

h=1,2,...,s

{
T gh (l)

}
+ To + Ts,

if F(t) < n
t(l)+ max

h=1,2,...,s

{
T gh (l)

}
+ To

+min{1t, tm} + Ts, otherwise

F(t) = sign
(

s∑
h=1

max
i,j

{
ajhi(t)

}
− n

)
·

n∑
j=1

max
h,i

{
ajhi(t)

}
1t = argmin

tw
F
(
t(l)+ max

h=1,2,...,s

{
T gh (l)

}
+ To + tw

)
6=0

t(0) = t0,
l ∈ N (16)

where tm is the natural time of operation initialization. The
decision-making moment is executed according to the above

model until the termination situations: (1) all targets are
successfully intercepted; (2) no weapon is available; (3) any
target has penetrated the defense system.

B. OPTIMIZATION OBJECTIVE AND CONSTRAINTS
According to the tactics described in the ground-to-air anti-
penetration scenario, the objective function of the DS/HWTA
model should cover the following situations.

(1) If target j has penetrated the close space at time t and
the defender assigns the close-range weapon i of platform h,
the interception probability of target j is

Pj(t) = 1−
∏
h,i

(
1− pjhi(t)

)
(17)

(2) If target j is in medium space, the close-range weapons
cannot directly capture target j. The defender needs sensor k
to track target j and cooperatively guide the medium-range
weapon i of platform h to intercept. At this point, the intercep-
tion probability of target j can be evaluated by the following
formula

Pj(t) = 1−
∏
h,i

(
1− pjhi(t)

(
1−

∏
k

(
1− qjk (t)

)))
(18)

Considering weapon types, launch timing, and sensor
cooperation, the optimization objective of damage efficiency
is established as

max J (t) =
n∑
j=1

uj(t)

(
1−

s∏
h=1

mh∏
i=1

(
1− pjhi(t)

∣∣∣ajhi(t)∣∣∣ ·
(
1−

s∏
k=1

(1− qjk (t))
yjk (t) + σ

)max{0,ajhi(t)}

xjhi(t)

 (19)

where σ is the model parameter, which is set to a small
positive constant.

In Equation (19), if close-range weapon whi is assigned to
intercept target j and satisfies the launch timing at time t ,
that is ajhi(t) = −1, x

j
hi(t) = 1, the decision return of

weapon whi is equivalent to Equation (17). If medium-range
weapon whi is assigned to target j and meets the launch
timing at time t , and sensor sk cooperates to guide, namely
ajhi(t) = 1, x jhi(t) = 1, the decision return of weapon whi
is equivalent to Equation (18). If weapon whi does not meet
the attack conditions on target ajhi(t) = 0, namely D, the
decision return of weapon whi is zero. It can be seen that the
objective function (19) can fully reflect the solution fitness of
DS/HWTA model in different situations.

Analysis of the DS/HWTA model shows two model con-
straints: (1) Consistency of weapon type and target state. The
solutions violating the consistency are infeasible, in which
weapons are assigned to the targets with no shoot condition.
(2) Cooperation of sensor and weapon. There is that sensors
are assigned to the target only with close-range weapons.
Therefore, the solutions waste the defense resource and are
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inefficient. The above constraints cause the redundant search
space of solving algorithms. The penalty function method is
adopted to handle the constraints, which has the advantage of
real-time and diversity.

Given the solution {X (t),Y (t)} and weapon launch state
A(t), the penalty term of the weapon-target consistency con-
straint is designed as

g1(t) =
n∑
j=1

s∑
h=1

(
x jh(t) ·max

{
0, 1−

mh∑
i=1

∣∣∣ajhi(t)∣∣∣
})

(20)

when platform h intercepts target j at time t (x jh = 1)
but has no weapon satisfying the shoot conditions
(ajhi ≤ 0∀i = 1, 2, . . . ,mh), the value of the penalty term
is greater than zeros, otherwise g1(t) = 0.

The penalty term of the sensor-weapon cooperation con-
straint is designed as

g2(t) =
n∑
j=1

(
yjh(t)−max

h

{
x jh(t) ·max

i

{
ajhi(t), 0

}})
(21)

when sensor k is employed to capture and track target j
at time t (yjk = 1), and the weapons intercepting tar-
get j are close-range and have no guidance requirement
(x jhia

j
hi ≤ 0∀h = 1, 2, . . . , s; i = 1, 2, . . . ,mh), the value

of cooperation penalty is greater than 0, otherwise g2(t) = 0.
In summary, the proposed DS/HWTA model is (22) and

(23), as shown at the bottom of the next page. where α1
and α2 are the negative weights of weapon-target consistency
and sensor-weapon cooperation respectively; lx and ly are
the upper limit of weapons and sensors allocated to a single
target in each decision. Since DS/HWTA model has a more
extensive search space than the other WTA models, setting
lx and ly is beneficial to pruning the optimization region,
improving the real-time performance, and avoiding the waste
of sensor and weapon resources.

IV. SOLVING ALGORITHM BASED ON EVOLUTIONARY
FRAMEWORK
Based on the weapon platform setting, the defender can use
up to s radars to track targets and launch up to s weapons
to intercept targets during a salvo. In a single decision of
DS/HWTA model, the scale of sensor-target decision space
is ns, and the scale of decision space of platform h is mhn,
so the scale of decision space is n2s

∏s
h=1mh. The dynamic

decision-making also involves determining multiple decision
time, weapon shoot conditions, and weapon type of platform
in the continuous-time domain. The exact algorithm is chal-
lenging to handle the DS/HWTA problem’s characteristics,
which is not conducive to expanding the algorithm as the
scenario changes. The swarm intelligence algorithm based
on the heuristic stochastic optimization does not consider
the mathematical characteristics of objective, and can realize
parallel computation, which is suitable for solving complex
engineering optimization problems [29], [30]. Considering
real-time and optimality, the swarm intelligence algorithm

is the mainstream solver for S/WTA model [31]–[34]. The
evolutionary algorithm, which is the most widely studied and
applied swarm intelligence algorithm, is proposed to solve the
DS/HWTA model. The algorithm flow of EA-DS/HWTA is
shown in Algorithm 1.

Algorithm 1Main Loop of EA-DS/HWTA
1: Population initialization: Randomly generate the initial

population Pt of size pop by the de-constraint initializa-
tion algorithm. Set t = 1;

2: Fitness evaluation: According to the greedy strategy,
generate the complement genes of individuals, and cal-
culate the fitness;

3: Termination condition: Obtain the optimal solution P∗

of the tth generation population. If P∗ has no improve-
ment in the recent s generations or t = T , set P∗ as the
output and terminate algorithm.

4: Elite population generation: Sort the solution individ-
uals of population Pt in descending order of fitness,
and select the first sep individuals to generate the elite
population EPt ;

5: Population evolutionary: Generate random number p ∈
[0, 1], and perform the following evolutionary operations
on EPt to generate the offspring population Qt of size
pop;

6: Crossover operation: If p < pc, randomly select two
solutions Pt1 and Pt1 from EPt as the parent individuals,
perform the MPBX operator to generate two offspring
individuals O1 and O2. Set the number of offspring solu-
tions k = k + 2;

7: Mutation operation: If p > pc, randomly select a solu-
tion from EPt as parent individual, and perform mutation
operator to generate the offspring individual O. Set the
number of offspring population k = k + 1;

8: Next generation population: Set Pt+1 = EPt ∪ Qt and
t = t + 1. Go to Step 2.

A. SOLUTION BUILDING
The feasibility and optimality of the initial population is
essential to the performance of GA-DS/HWTA. The initial
solutions about sensor-weapon-target should satisfy the fol-
lowing criteria as efficiently as possible.

1) At the decision moment, only one interceptor weapon
of each platform can be used;

2) The targets, which are intercepted by medium-range
weapons, is assigned at least one sensor for tracking
guidance;

3) ‘‘Target proximity situation - interception weapon type
- sensor cooperation’’ is consistent;

4) In the initial solutions, the number of sensors and
weapons assigned to each target distributes uniformly.

According to the above criteria, a hierarchical
de-constrained algorithm, which is based on ‘‘target proxim-
ity state - interception platform condition - sensor cooperation

VOLUME 8, 2020 227379



K. Zhang et al.: Novel Heterogeneous Sensor-Weapon-Target Cooperative Assignment for Ground-to-Air Defense

FIGURE 3. Type I chromosome coding of the initial population.

requirement,’’ is proposed to generate an initial population of
the type I solution coding.

In type I coding of Figure 3, each column corresponds to
target 1 to n, and {d1, d2, · · · , dn} denote the target proximity
state (position, speed, etc.) detected at the current situation.
The chromosome coding of the solution is composed of
sensor genes and platform genes. The sensor genes Y I

j =

{yI1j, y
I
2j . . . , y

I
lyj} represent the sensor set that is assigned to

capture and track target j

yI·j=
{
0, no sensor is assigned to target j at the kth gene
l, sensor l is assigned to target j at the kth gene

(24)

The platform genes X I
j = {x

I
1j, x

I
2j, . . . , x

I
lx j} represent the

platform set that is assigned to intercept target j

xI·j=
{
0, no platform is assigned to target j at the kth gene
h, platform h is assigned to target j at the kth gene

(25)

The consistency logic of the chromosome coding is as
follows: Taking the platform genes X I

j = {x
I
1j, x

I
2j, . . . , x

I
lx j}

of target j as example, if xI
·j = h, platform h should

have weapon satisfying the shoot condition for target j.
Secondly, if the platform in genes X I

j has medium-range
weapon meeting the shoot condition for target j, there should
be sensor used for cooperation guidance, namely Y I

j =

{yI1j, y
I
2j, . . . , y

I
lx j}, ∃y

I
·j = k, k ∈ {1, 2, · · · , n}. If the

platforms represented by genes X I
j have only close-range

weapons, the genes of Y I
j is 0.

From the consistency logic of type I coding, the de-
constrained population initialization algorithm is as follows:
Obtain the current weapon configuration, platform position
O, and target state U ,V ; solve the weapon launch state A =
{ajhi}, j = 1, 2, . . . , n; h = 1, 2, . . . , s; i = 1, 2, . . . ,mh by

max J (P,Q,A,X ,Y , t) = f (t)+ α1g1(t)+ α2g2(t)

=

n∑
j=1

vj(t)

1−
s∏

h=1

mh∏
i=1

1− pjhi(t)
∣∣∣ajhi(t)∣∣∣

(
1−

s∏
k=1

(
1− qjk (t)

)yjk (t)
+ σ

)max{0,ajhi(t)}

xjhi(t)


+α1

n∑
j=1

s∑
h=1

(
x jh(t) ·max

{
0, 1−

mh∑
i=1

∣∣∣ajhi(t)∣∣∣
})
+ α2

n∑
j=1

(
yjh(t)−max

h

{
x jh(t) ·max

i

{
ajhi(t), 0

}})
(22)

s.t.



yjk (t) ∈ {0, 1}, j = 1, 2, . . . , n, k = 1, 2, . . . , s
x jhi(t) ∈ {0, 1}, j = 1, 2, . . . , n, h = 1, 2, . . . , s, i = 1, 2, . . . ,mh
s∑

k=1

yjk (t) ≤ ly, j = 1, 2, . . . , n

s∑
h=1

mh∑
i=1

x jhi(t) ≤ lx , j = 1, 2, . . . , n

t(l + 1) =

 t(l)+ max
h=1,2,...,s

{
T gh (l)

}
+ To + Ts, if F(t) < n

t(l)+ max
h=1,2,...,s

{
T gh (l)

}
+ To +min{1t, tm} + Ts, otherwise

, l ∈ N

F(t) = sign

(
s∑

h=1

max
i,j

{
ajhi(t)

}
− n

)
·

n∑
j=1

max
h,i

{
ajhi(t)

}
1t = argmin

tw
F
(
t(l)+ max

h=1,2,...,s

{
T gh (l)

}
+ To + tw

)
6= 0

t(0) = t0

(23)
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launch condition model. First, available platform setW j, j =
1, 2, . . . , n for each target is obtained by launch state A

W j
=

{
h

∣∣∣∣max
i
{|ajhi|} > 0

}
(26)

By available platform set W j, j = 1, 2, . . . , n, ran-
domly generate type I chromosome platform genes X I

=

{X I
1,X

I
2, · · · ,X

I
n} which meet the following constraints{
xIkj ∈ W

j
∪ {0}, if xIkj 6= 0

X I
1 ∩ X

I
2 ∩ · · · ∩ X

I
n ⊂ {0}

(27)

where the second constraint indicates that each platform inter-
cepts at most one target at each decision-making.

The sensor requirement variable B = [bj]1×n can be
obtained by the platform genes X I

j

bj = max
l,i
{aj
xIlji
}, for j = 1, 2, . . . , n (28)

where bj = 1 represents that there is the medium-range
weapon in the platforms of intercepting target j, and the
sensor should be assigned for cooperation. bj ≤ 0 denotes
that no platform satisfies the shoot condition for target j, or
only close-range weapons of the assigned platforms satisfy
the shoot condition, so there is no sensor requirement.

According to the sensor requirement vector B, randomly
generate sensor genes satisfying the following constraints

yIlj ∈ {0, 1, · · · , s}, l = 1, 2, . . . , ly, j = 1, 2, . . . , n
ly∑
l=1

yIlj > 0, if bj = 1

ly∑
l=1

yIlj = 0, if bj ≤ 0

Y I
1 ∩ Y

I
2 ∩ · · · ∩ Y

I
n ⊂ {0}

(29)

where the fourth constraint indicates that each sensor tracks
at most one target at each decision-making.

In summary, the type I solutions generated by the de-
constrained population initialization algorithm ensure the
consistency of ‘‘target proximity state - interception plat-
form condition - sensor cooperation requirement’’ and meet
the consistency constraints of DS/HWTA model. The pseu-
docode of the de-constrained population initialization algo-
rithm is shown in Algorithm 2.

B. MODIFIED EVOLUTIONARY OPERATION
Although the type I solutions have met the consistency con-
straints, the following infeasible genes are easy to generate
when the evolutionary operations (crossover, mutation) are
directly performed on the type I solutions.

• A single platform intercepts more than one target at the
same decision-making;

• A single sensor capturesmore than one target at the same
time;

Algorithm 2 De-Constrained Population Initialization Algo-
rithm Based on Type I Coding
Require: pop: the size of population; t: the decision time;

mh: the number of platforms, h = 1, 2, . . . , s; n: the
number of penetration targets; A(t) =

{
ajhi(t)

}
: the

weapon launch state, j = 1, 2, . . . n, h = 1, 2, . . . s, i =
1, 2, . . .mh; lx : the upper limit of weapons allocated to a
single target; ly: the upper limit of sensors allocated to a
single target;

Ensure: P = {P1,P2, · · · ,Ppop}: the initial population.
1: for k = 1 to pop do
2: Pk = {X I

k ,Y
I
k},X

I
k = {xIlj}, x

I
lj = 0, l =

1, 2, . . . , lx , j = 1, 2, . . . , n;Y I
k = {y

I
lj}, y

I
lj = 0, l =

1, 2, . . . , ly, j = 1, 2, . . . , n

3: W j
=

{
h

∣∣∣∣max
i

{∣∣∣ajhi(t)∣∣∣} > 0, for i = 1, 2, . . . , lx

}
4: c = [cj]1×n, cj = 0; j = 1
5: while min{c} < lx do
6: if

∣∣Wj
∣∣ > 0 and cj < lx then

7: cj = cj + 1
8: Pr(xIcjj = r) = 1

/(
1+

∣∣Wj
∣∣), r ∈ Wj ∪ {0}

9: Wj = Wj\{xIcjj}
10: else
11: bj = max

l,i
{aj
xIljj
}

12: cj = lx
13: end if
14: j = j+ 1
15: if j > n then
16: j = 1
17: end if
18: end while
19: S = {1, 2, · · · , s}; d = [dj]1×n, dj = 0; j = 1
20: while S 6= ∅ do
21: if bj = 1 and dj < ly then
22: dj = dj + 1
23: Pr(yIdjj = r) = 1

/
|S|, r ∈ S

24: S = S\{yIdjj}
25: else
26: dj = ly
27: end if
28: j = j+ 1
29: if j > n then
30: j = 1
31: end if
32: end while
33: end for

• Platform genes conflict with target proximity state, that
is, the weapon in the platform assigned to a target does
not satisfy the launch condition;

• Sensor gene conflicts with platform gene. The sensor
intercepts a target, and the platforms assigned to this
target only remain close-range weapons.
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After the initial population is generated, it is proposed that
the type I solutions based on target index are transformed into
a type II coding based on platform index. Then the modified
evolutionary operators are designed to control the infeasible
genes in offspring individuals. The type II chromosome cod-
ing of solutions is shown in Figure 4.
In Figure 4, the columns correspond to platform 1 to s

respectively. The capture genes Py = {yII1 , y
II
2 , · · · , y

II
s } rep-

resent the intended capture target of each sensor, yIIk = j
represents that sensor k is employed to capture target j, and
yIIk = 0 represents that sensor k is not used. The interception
genesPx = {xII1 , x

II
2 , · · · , x

II
s } represent the target captured by

each platform, xIIh = j represents that platform h is to intercept
target j, and xIIh = 0 represents platform h is not employed.
The transcoding algorithm of type I to type II is shown in
Algorithm 3.

Algorithm 3 Transcoding Algorithm of Type I to Type II

Require: PI = {X I,Y I
}: the type I solution; s: the number

of platforms; lx : the upper number of platforms assigned
to single target; ly: the upper number of sensors assigned
to single target.

Ensure: PII = {X II,Y II
}: the type II solution.

1: X II
= {xIIh }, x

II
h = 0;Y II

= {yIIh }, y
II
h = 0, h =

1, 2, . . . , s
2: for j = 1 to n do
3: for i = 1 to ly do
4: yII

yIij
= j

5: end for
6: for i = 1 to lx do
7: xII

xIij
= j

8: end for
9: end for

1) MODIFIED POSITION BASED CROSSOVER
To avoid the infeasible region of the decision space in the
optimization process, a modified position based crossover
(MPBX) is presented based on the shared feasibility. The
MPBX makes the offspring individuals inherit the feasibil-
ity from the parent individuals, and has the advantage of
diversity.

The design idea of MPBX operator is as follows: Com-
pared with distance from the incoming target to the defensive
position, the platforms in the defensive position are usually
close to each other, and there is inheritance in the feasibility
of weapon types. Therefore, the crossover strategies of cap-
ture genes and interception genes in type II encoding are as
follows:

1) To limit the infeasible genes, the intended capture
targets of offspring individuals should be reorganized
based on the capture targets of parent individuals;

2) In the interception genes of type II coding, the plat-
form gene positions can be divided into three inde-
pendent sub-sets by the remaining weapon status: (1)

Algorithm 4 Algorithm of MPBX Operator
Require: P: the current population; S: the set platform set

with only close-range weapons; L: the platform set with
only medium-range weapons; E : the platform set with
two types of weapons.

Ensure: {O1,O2}: the offspring individuals.
1: Parent individuals selection: Randomly select two type II

coding solution P1 and P2 from the population P as the
parent individuals;

2: Offspring initialization: Initialize two empty offspring
individuals {O1,O2};

3: Capture genes crossover: Randomly select ky non-zeros
positions Gy1 from the capture gene positions Py1 of P1;

4: Lock the positions Gy2 of P
y
2 in which the gene codes are

the same asGy1. If a gene ofG
y
1 exists inmultiple positions

of Py2, randomly lock one of them. If a gene is not in Py2,
remove it from Gy1;

5: Let offspring individual O1 be consistent with P1 in
position Gy1, and offspring individual O2 be consistent
with P2 in position Gy2;

6: Fill the gene codes of Py2\G
y
2 into the empty positions

of O1 in sequence, and similarly, fill the gene codes of
Py1\G

y
1 into the empty position of O2 in sequence;

7: Interception genes crossover: Randomly select ks non-
zero position Gx1 from the set S of interception genes Px1
of P1;

8: Lock the positions Gx2 of P
x
2 in which the gene codes are

the same asGx1. If a gene ofG
x
1 exists inmultiple positions

of Px2, randomly lock one of them. If a gene is not in Px2,
remove it from Gx1;

9: Let offspring individual O1 be consistent with P1 in
position Gx1, and offspring individual O2 be consistent
with P2 in position Gx2;

10: Let Gx = Gx1 ∪G
x
2, fill the codes of G

x
\Gx2 in P

x
2 into the

corresponding positions ofO1 in sequence, and similarly
fill the codes of Gx\Gx1 in Px1 into the position of O2 in
sequence;

11: On position Gx , fill the codes of parent Px1 and Px2 into
the empty position of O2 and O1, respectively;

12: Offspring generation: move {O1,O2} to offspring gener-
ation Q.

the platform set S with only close-range weapons; (2)
the platform set L with only medium-range weapons;
(3) the platform set E with two types of weapons.
Theoretically, if the S genes of offspring individuals
are generated by the crossover of the S ∪ E genes of
parent individuals, it has more feasible and optimal
information than the random crossover. It is similar to
L genes.

Based on the above strategy, the MPBX operator execution
process is shown in Algorithm 4, and the example figure is
shown in Figure 5.
As shown in Figure 5, taking the solutions of nine plat-

forms and six targets as an example, the platform set S of
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FIGURE 4. Type II chromosome coding of the evolutionary solutions.

FIGURE 5. Schematic diagram of the modified position based crossover operator.

only close-range weapons is represented by the red gene
positions; the platform set L of only medium-range weapons
is represented by the blue gene positions, and the other gene
positions correspond to the full range platforms. Randomly
select two parent individuals P1 and P2, and initialize two
empty offspring individuals O1 and O2.
First, in the capture gene region, randomly lock four posi-

tionsGy1 = {4, 6, 7, 8} in P
y
1, and the corresponding codes are

{5,4,6,1}. Let the offspring individual O1 is the same as Py1
in positions Gy1. In P

y
2, lock the positions of the codes of Gy1.

Since the code 1 exists in both position 6 and 9, two groups of
offspring individuals {O1

1,O
1
2} and {O

2
1,O

2
2} can be evolved

by this capture gene. Take locking position 6 as an example,
namely Gy2 = {1, 5, 6, 7}, let offspring O

1
2 is the same as

P2 in positions Gy2. At this time, the unlocked positions of
Py2 is Py2\G

y
2 = {2, 3, 4, 8, 9}, and the corresponding codes

are 2,3,3,2,1. Fill the above codes into O1
1 in sequence to

generate the capture genes of offspring O1
1. Similarly, the

unlocked positions of P1 are Py1\G
y
1 = {1, 2, 3, 5, 9}, and

the corresponding gene code are {2,1,3,5,4}. Fill the above
codes into O1

2 in sequence to generate the capture genes of
offspring O1

2.
Secondly, in the interception gene region, randomly lock

three positions Gx1 = {1, 4, 5} of the close-range platform set
S in Px1, and the corresponding codes are {4,3,6}. In P2, the
positions of the codes of Gx1 are G′ = {1, 4, 6, 8}, in which
the code 4 exists in both position 1 and 6. Thus two groups
of offsprings can be evolved by this interception gene. Take

locking position 4 as an example, namely Gx2 = {1, 4, 8},
the crossover positions of the interception genes are Gx =
Gx1∪G

′
= {1, 4, 5, 6, 8}. The unlocked close-range positions

of P2 areGx\Gx2 = {1, 5, 6}, and the corresponding codes are
{4,2}. Fill the above codes into the empty positions Gx\Gx1
ofO1. Similarly, the unlocked close-range positions of P1 are
Gx\Gx1 = {6, 8}, and the corresponding codes are {1,2}. Fill
these codes into the empty positions Gx\Gx2 of O1

2. Finally,
in the positions Gx = {2, 3, 7}, fill the codes of parent P1
and P1 into offspring O1

2 and O
1
1 respectively to complete the

crossover operation.
Analyzing the above example, the MPBX operator has the

following advantages:
1) The MPBX operator makes the sensors only cross the

medium-range targets identified by the parent indi-
viduals, and the close/medium-range platforms mainly
cross the close/medium-range targets identified by
the parent individuals. This mechanism makes the
offspring individuals inherit the consistency informa-
tion of type I coding solutions, and can effectively con-
trol the constraint violation of population individuals;

2) Offspring individuals have different differentiation
directions, which is conducive to population diversity
and improves search efficiency;

3) Combined with the penalty function items in
Equation 22, there is no need to perform detection and
repair operations, which significantly reduces the algo-
rithm complexity and improves real-time performance.
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2) MUTATION OPERATOR
The mutation operator has less influence than the crossover
operator in evolutionary process, and the single point muta-
tion operator is adopted. Randomly select one capture gene
and interception gene, then a new gene code is generated from
the other executable target set.

C. ENVIRONMENT SELECTION BASED ON GREEDY
FITNESS
The purpose of the elite selection algorithm is to make
individuals with better fitness have a higher probability of
being retained in the next generation population, which is an
essential step in the iterative optimization of swarm intelli-
gence algorithms. In the evolutionary algorithm, the common
selection algorithms include roulette, tournaments, and elitist
selection. The binary tournament selection method is used,
that is, two individuals are randomly selected for fitness
evaluation, and the better one is moved to the elite population.
In EA-DS/HWTA, the selection algorithm for elite population
is shown as Algorithm 5.

Algorithm 5 Selection Algorithm for Elite Population
Require: P = {P1,P2, . . . ,Ppop}: the current population;

sep: the size of elite population.
Ensure: EP: the elite population.
1: EP = ∅, k = 0
2: if k < sep then
3: Randomly select two type II coding individuals Pi =
{X II

i ,Y
II
i } and Pj = {X

II
j ,Y

II
j } from population P;

4: Generate the weapon complement codes X ci and X cj
of the individual Pi and Pj respectively by a greedy
strategy;

5: Transform the completed codes Pi = {X II
i ,X

c
i ,Y

II
i }

and Pj = {X II
j ,X

c
j ,Y

II
j } to type III coding {X III

j ,Y
III
j }

and {X III
j ,Y

III
j };

6: Calculate the objective fitness J (X III
i ,Y

III
i ) and

J (X III
j ,Y

III
j ) of solution Pi and Pj;

7: if J (X III
i ,Y

III
i ) < J (X III

j ,Y
III
j ) then

8: Move the solution Pi from population P to elite
population EP;

9: else
10: Move the solution Pj from population P to elite

population EP;
11: end if
12: k = k + 1
13: end if

In Algorithm 5, lines 4∼6 denotes the fitness calcula-
tion method for type II coding solution. As described in
section IV-B, the population evolution of EA-DS/HWTA is
operated on type II coding. Type II coding inherits the feasi-
bility of type I coding and is conducive to population diver-
sity. However, type II coding does not determine specific
weapon in platforms, and cannot be directly used for solution
fitness evaluation. A complement coding method based on

the greedy strategy is presented to obtain the optimal fitness
of type II coding solution. The calculation steps of greedy
fitness are:

1) Based on the type II coding solution, generate weapon
complement code for each platform by maximizing
damage return;

2) Convert the completed type II codes into the 0-1 sparse
decision matrix X III and Y III, which are the decision
variables X and Y in Equation (22);

3) Calculate solution fitness by Equation (22).
The specific calculation method of individual fitness is

as follows. First, the weapon complement codes of type II
coding is defined as X c = {xch}, h = 1, 2, . . . , s

xch =
{
i, weapon i is used in platform h
0, no weapon is used in platform h

(30)

The greedy strategy of complement coding is the local
optimal of weapon efficiency under type II coding solution

X c = argmax
X ′

J
(
X ′
∣∣∣P,Q,A,X II,Y , t

)
(31)

Therefore, the generation method of weapon complement
codes is

xch =

argmax
i

{
a
xIIh
hi (t) · p

xIIh
hi (t)

}
, ∃a

xIIh
hi (t) 6= 0

0, otherwise,
for h = 1, 2, . . . , s (32)

where the first item denotes that when platform h has at
least one weapon satisfying shoot condition for target xIIh ,

namely ∃a
xIIh
hi 6= 0, the weapon with the highest interception

probability is used; the second item indicates that when no
weapon in platform hmeets the shoot condition for target xIIh ,
no weapon is allocated.

To directly calculate the solution fitness, {X II,X c} is con-
verted into type III coding, that is 0-1 sparse decision matrix
X III

= {x jhi} and Y III
= {yjk}, j = 1, 2, . . . , n, h =

1, 2, . . . , s, i = 1, 2, . . . ,mhx
xIIh
hxch
= 1

y
yIIh
h = 1

, for h = 1, 2, . . . , s (33)

where {X III,Y III
} is equivalent to the decision variables

({X ,Y }) in Equation (22), and can evaluate individuals
directly.

All above, the algorithm of complement codes and fitness
calculation is shown in Algorithm 6, and the flow diagram of
EA-DS/HWTA is shown in Figure 6.

V. EXPERIMENTAL STUDIES
Since the DS/HWTA model is first proposed, there is no
comparable algorithm for comparing with EA-DS/HWTA.
This section verifies the effectiveness of proposed approaches
by simulation analysis. All experiments are performed on
the Matlab 2019b with i5-2.5GHz CPU and 16GB memory
computer.
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Algorithm 6 Algorithm of Complement Codes and Fitness
Calculation
Require: t: the current time; {X II,Y II

}: the type II code of
solution {X ,Y }; s: the number of platforms; n: the num-
ber of targets; Q(t) =

{
qjk (t)

}
: the capture probability of

sensor k against target j at time t , j = 1, 2, . . . , n, k =
1, 2, . . . , s; P =

{
pjhi(t)

}
: the interception probability

of platform h’s weapon i against target j at time t , j =
1, 2, . . . , n, h = 1, 2, . . . , s, i = 1, 2, . . . ,mh; A ={
ajhi(t)

}
: the shoot condition state of platform h’s weapon

i for target j at time t , j = 1, 2, . . . , n, j = 1, 2, . . . , n, i =
1, 2, . . . ,mh.

Ensure: X c = [xch]1×s: the weapon complement codes of
solution {X ,Y }; {X III,Y III

}: the type III coding of solu-
tion {X ,Y }; J (P,Q,A,X III,Y III, t): the fitness of solu-
tion {X ,Y }.

1: X III
= [xIIIhij]s×mh×n, x

III
hij = 0

2: Y III
= [yIIIhj ]s×n, y

III
hj = 0

3: X c = [xch]1×s, x
c
h = 0

4: for h = 1 to s do
5: j = yIIh
6: yIIIhj = 1
7: j = xIIh
8: if

∑mh
i=1

∣∣∣ajhi(t)∣∣∣ 6= 0 then

9: xch = argmax
k

{
a
xIIh
hk (t) · p

xIIh
hk (t)

}
10: i = xch
11: xIIIhij = 1
12: end if
13: end for
14: Calculate the fitness J (P,Q,A,X III,Y III, t) of solution
{X ,Y } by Equation (22).

A. OPERATIONAL SCENARIO AND PARAMETER SETTING
According to the ground-to-air anti-penetration scenario, the
following initial situation is randomly generated. In the three-
dimensional coordinate system, the Y-axis represents the alti-
tude coordinates, and the X-Z plane represents the horizontal
plane coordinates.

(1) Parameter setting in weapon platform. The system
response time Ts = 0.15s; the situation assessment
time is 0.2s. The maximum detection range Dmax of
radar is set to 100km, and the descent coefficient
kd = 1.23. The weight of interception probability
β1S = 0.5, β1Tgo = βq̇ = 0.25. The performance
parameters of close-range and medium-range weapon
are respectively set as our previous work [35] and [36].
The performance parameters of the close-range missile
are set as: mm(0) = 100kg,Pm(0) = 15.6kN , tp =
5.2s, τm = 0.2s,Nm = 4, nmmax = 50, tmax =

30s, vmmin = 400m/s, rd = 12m, and1t = 0.02s. The
performance parameters of the medium-range missile

FIGURE 6. Flow diagram of evolutionary algorithm for DS/HWTA problem.

are set as: mm(0) = 130kg,Pm(0) = 13kN , tp =
9s,mm(tp) = 102kg, τm = 0.2s,Nm = 4, nmmax =

40, tmax = 120s, vmmin = 400m/s, rd = 12m, and
1t = 0.02s. The flight path angles and heading angles
of weapons are initialized as

{
θMhi = π/4+ π/15 · (1− 2 · rand)
ϕMhi = π/15 · (1− 2 · rand),

for h = 1, 2, . . . , s; i = 1, 2, . . .mh (34)

(2) Parameter setting in target. The assessment parameter
of altitude threat hl = 1km, kh = 1km−2; the gain coef-
ficient of velocity threat kv = −0.8Ma−2; the attenu-
ation parameter of short course kc = 5× 10−3km−2;
the attenuation parameter of remaining intercept time
kt = 4 × 10−6s−2. In each salvo, The state transition
of target follows the Bernoulli distribution about the
interception probability [37], which can be calculated
by Equation (19). The performance parameters of the
fighter target are also set as [35]: Tf max = 54597N ,
Sf = 27.88m2,mf = 9298kg, τf = 0.2s,
nf max = 8.5, αf min = 0◦, uf min = −180◦, uf max =

180◦, qmax = 25◦/s, α̈f max = 40◦/s2, µ̈f max =

120◦/s2, yf min = 0.5km. Whether the target is in the
weapon attack zone is determined by ballistic calcula-
tion [38]. The flight path angles and heading angles of
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FIGURE 7. Diagram of two operational scenarios.

target are initialized as{
θTj (0) = π + π/15 · (1− 2 · rand)
ϕTj (0) = −π + π/15 · (1− 2 · rand),

for j = 1, 2, . . . , n (35)

(3) Parameter setting in EA-DS/HWTA. The population
size pop = 200; themax generationmaxgen = 100; the
crossover probability pc = 0.8; the mutation probabil-
ity pm = 0.2; the elite population size ep = 0.5pop; the
constraint weight of weapon-target consistency α1 =
−1; the constraint weight of sensor-weapon coopera-
tion α2 = −1; the crossover number of capture genes
ky = ds/2e; the crossover number of interception
genes ks = d|S| /2e where |S| is the number of the
platforms with only close-range weapons; the delayed
time parameter tm = 30s.

Based on the above initial setting, the following two cases
are randomly generated to research the DS/HWTA problem
with different sizes and situations.

Case 1: Let the number of platforms be m = 4, each
platform is configured with four guided weapons, including
two medium-range weapons and two close-range weapons.
Randomly generate the initial platform positions with an
altitude of 0km, X-axis of 0∼10km, and Z-axis of 30∼50km.
The distance between each platform is not less than 4km. The
number of penetration targets is n = 8. Randomly generate
the initial target positions with an altitude of 8∼10km, X-axis
of 70∼80km, and Z-axis of 20∼60km. The distance between
each target is not less than 4km. The initial operational sce-
nario is shown as Figure 7(a).

Case 2: Let the number of platforms be m = 10, each
platform is configured with four guided weapons, including
two medium-range weapons and two close-range weapons.
Randomly generate the initial platform positions with an
altitude of 0km, X-axis of 0∼20km, and Z-axis of 20∼80km.
The distance between each platform is not less than 8km. The
number of penetration targets is n = 20. Randomly generate
the initial target positions with an altitude of 8∼12km, X-axis
of 60∼80km, and Z-axis of 10∼90km. The distance between
each target is not less than 8km. The initial operational sce-
nario is shown as Figure 7(b).

B. EXPERIMENTS ON EA-DS/HWTA
The metrics for evaluating EA-DS/HWTA is: whether the
defender can complete the interception task within a certain
timewindow. Hence EA-SHWTA is performed on case 1 over
30 independent runs, and the targets adopt the penetration
route of random maneuver. The statistics of the obtained
results is shown in Table 2, and the metric distribution data
of each indicator is shown in Figure 8.

According to Table 2 and Figure 8(a), the decision schemes
solved by EA-DS/HWTA enable the defender to complete
the interception task successfully in 30 independent runs. As
shown in Figure 8(b), the number of decision-salvo times
distribute in the interval of 2 to 6, and 50% of the salvo times
do not exceed 3. The distribution of weapon consumption
in salvoes is shown in Figure 8(c), and the values of mean
and standard deviation are 10.93±2.18. Figure 8(d) gives
the distribution of the number of intercepted targets in each
salvo. It can be seen that if the interception rate increases
in the first or second salvo, the number of decision stages
trends to decrease. The distribution of salvo time is shown
in Figure 8(e). Since the natural time is set 0s when the
simulation starts after the situation data is loaded, the 1st
salvo times of 30 simulations are the same as 1.5s through
the system response (situation assessment, algorithm deci-
sion) time. The subsequent salvo time is determined by the
ballistic flight time of the previous stage, and the second salvo
time of each simulation is close to 95s. The EA-DS/HWTA
time-consuming is stable in each decision, and the value of
mean and standard deviation is 0.9309±0.0143s, as shown in
Figure 8(f).
To intuitively illustrate the effectiveness of EA-DS/HWTA,

the critical decision stages in simulation 26 are selected to
illustrate the interception process visually. The red curve rep-
resents the weapon trajectory; the blue curve represents the
target flight; the green line represents the timing of the sensor
capturing the target. The black graphic represents the target
being killed, the weapon missing the target, or the platform
exhausted, as shown in Figure 9.
In Figure 9(a), load the situation data, let the natural time

t = 0. After the system response time 1.5s, platform I∼IV
employ the sensors to track targets {3,7,5,6} respectively,
and guide the medium-range weapons {2,1,2,2} to intercept
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TABLE 2. Statistics of operational metrics obtained by EA-DS/HWTA solving case 1 over 30 independent runs.

FIGURE 8. Metrics distribution obtained by EA-DS/HWTA solving case 1 over 30 independent runs.

targets {6,3,7,5}. The targets are intercepted successfully in
the first salvo. After damage assessment and EA-DS/HWTA
decision, the defender performs the second salvo at t =
95.68s. Platform I∼IV employ the sensors to track targets
{4,2,1,8} respectively, and guide the medium-range weapons
{1,2,1,1} to intercept targets {2,1,8,4}. Only target 1 and
4 are successfully intercepted, as shown in Figure 9(b). At
this time, the platforms have no remaining medium-range
weapons, and the surviving target 2 and 8 have not yet
entered the attack area of the close-range weapons of plat-
forms. So the flight paths of surviving targets are in the

firepower vacuum area of the defending platforms, as shown
in Figure 9(c). At t = 190.45s, it is assessed that at least
two different weapons satisfy attack condition for target 2
and 8. Then platform II selects weapon 3 to intercept target 2
and fails. Platform III and IV launch close-range weapons
{4,3} for intercepting target 8 simultaneously. Platform IV
damage target 8 firstly, and platform III loses target, as shown
in Figure 9(d). After assessment and decision, the fourth salvo
scheme is that platform II and IV use close-range weapons
{4,4} to intercept target 2 at t = 227.48s, and the weapons
of platform II and IV are consumed out. Platform II damages
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FIGURE 9. Interception trajectories of operational process in simulation 26.

target 2 firstly, and platform IV loses target. The interception
mission is completed, as shown in Figure 9(e).
Figure 10 gives the dynamic performance of the mean

and mean square deviation values of operational efficiency
and constraint violation during each decision stage when
EA-DS/HWTA solves case 1 over 30 independent runs. It can
be seen that as the defense phase advances, the fewer targets
need to be intercepted, themean square error and convergence
value of the damage efficiency decrease in the population, and
the convergence speed of the constraint violation is faster than
the previous decisions.

1) EXPERIMENTS ON CASE 2
Similarly, EA-SHWTA is executed on case 2 over 30 inde-
pendent runs, and the targets adopt the penetration route of

random maneuver. The statistics of the obtained results is
shown in Table 3, and the metric distribution data of each
indicator is shown in Figure 11. From Table 3 and Figure 11,
EA-DS/HWTA can maintain the successful interception of
the target group in 30 independent executions to case 2. The
computation time of case 2 is 0.21∼0.24s higher than that
of case 1. It is worth noting that the weapon consumption in
case 1 is 10.93∼2.18 for intercepting four targets, and the
weapon consumption in case 2 is 29.17∼3.31 for intercepting
10 targets. The weapon efficiency-cost ratio of case 1 is
higher than that of case 2. However, the interception times
of case 1 is higher than that of case 2. For illustration, the
interception numbers of case 1 and 2 are 3.63∼1.03 and
3.47∼0.63 respectively, and the maximum interception times
of case 1 and 2 are 6 and 5 respectively. It is deduced that
the average interception rate in each stage of case 1 is lower
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FIGURE 10. Mean and standard deviation values of scheme fitness and constraint violation obtained by EA-DS/HWTA solving case 1 over 30
independent runs.

TABLE 3. Statistics of operational metrics obtained by EA-DS/HWTA solving case 2 over 30 independent runs.

than that of case 2, and Table 4 gives the number of weapon
consumption and successfully intercepted targets at each
interception stage of case 1 and 2. By analyzing the results,
the case 2 is more complicated than case 1, and there is no fire
vacuum zone during the whole interception process. There-
fore, in each interception process, the defender can intercept
all surviving targets with maximum efficiency. In case 1, the
situation enters the firepower vacuum after the second round
interception. According to the firepower transfer model, the
third round interception can not be guaranteed as soon as pos-
sible and with maximum efficiency simultaneously. Hence
case 1 has a lower damage efficiency than case 2 in decision
3, and the fourth or fifth round interception is required, as
shown in Table 4.

Figure 12 gives the dynamic performance of the mean
and mean square deviation values of operational efficiency
and constraint violation during each decision stage when
EA-DS/HWTA solves case 1 over 30 independent runs. In the
first two decision stages, the defender employs the medium-
range weapons, most of which meet the launch condition.
The damage efficiency is determined by the cooperation of
weapons and sensors. In decision 4 and 5, the platforms
launch the close-range weapons. Therefore, decision 1 and
2 have a larger mean square deviation of damage efficiency
and constraint violation than decision 4 and 5.

Based on the results of case 1 and 2, EA-DS/HWTA can
effectively support the defender to complete the dynamic
autonomous firepower decision. In the early stages of inter-
ception, more weaponsmeet the launch conditions for targets,

and EA-DS/HWTA can assign weapons to intercept differ-
ent targets as much as possible. In the later stages, with
fewer penetration targets andmore threat, EA-DS/HWTA can
dynamically cooperate the medium-range and close-range
weapons as quickly as possible according to the firepower
transfer model. In addition, the numbers of sensors and
weapons assigned to a single target do not exceed the upper
limit lx and ly to maintain the weapon efficiency-cost ratio.

C. EXPERIMENTS ON DE-CONSTRAINED INITIALIZATION
To verify the proposed de-constrained initialization algo-
rithm, the following population initialization algorithm is
adopted in the comparison algorithm EA-DS/HWTA-r1:
Each gene position randomly generates the corresponding
gene code of survival target in the individuals encoded by
type II chromosomes. EA-DS/HWTA and EA-DS/HWTA-r1
are performed on case 2 over 30 independent runs. The
statistics of the optimal solutions obtained in each deci-
sion is shown in Table 5, and the distribution of damage
efficiency and constraint violation is shown in Figure 13.
By Table 5, both EA-DS/HWTA and EA-DS/HWTA-r1 can
maintain the mission completion rate and target intercep-
tion rate of 100% in 30 independent simulations. In addi-
tion, comparing the weapon consumption and decision-salvo
times, EA-DS/HWTA has a higher utilization rate of weapon
resources and can intercept targets in fewer salvoes. Consid-
ering Table 5 and Figure 13, although EA-DS/HWTA and
EA-DS/HWTA-r1 can obtain the feasible optimal solutions
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FIGURE 11. Metrics distribution obtained by EA-DS/HWTA solving case 2 over 30 independent runs.

with constraint violation of 0, the former is superior to
the latter in the damage efficiency of the obtained opera-
tional scheme. In terms of real-time performance, since there
is no need to compute the weapon-target attack condition
and sensor-weapon cooperation, EA-DS/HWTA-r1 is slightly
better than EA-DS/HWTA.

To analyze the influence of the de-constrained popu-
lation initialization algorithm on the evolutionary frame-
work, Figure 14(a)∼Figure 14(c) give the dynamic

performance of population fitness metrics of EA-DS/HWTA
and EA-DS/HWTA-r3 in the evolutionary process. In
Figure 14(a), since the proportion of infeasible solutions in
the initial population of EA-DS/HWTA-r1 is higher, themean
value of damage efficiency is lower than EA-DS/HWTA
in the evolutionary process, and the mean square devi-
ation is larger than that of EA-DS/HWTA. Analyzing
Figure 14(b)∼Figure 14(c), the de-constrained population
initialization algorithm makes the constraint violation of
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TABLE 4. Number statistics of weapon and target at each decision stage obtained by EA-DS/HWTA solving case 1 and case 2 over 30 independent runs.

FIGURE 12. Mean and standard deviation values of scheme fitness and constraint violation obtained by EA-DS/HWTA solving case 2 over 30
independent runs.

TABLE 5. Statistics of the optimal solutions obtained by EA-DS/HWTA and EA-DS/HWTA-r1 solving case 2 over 30 independent runs.

weapon-target attack condition and sensor-weapon cooper-
ation be 0 in the initial population. The infeasible solutions
generated in the second generation population are less than
10%, then the constraint violation decreases to 0 within 40
generations. In decision 1 and 2, the close-range weapons do
not satisfy the launch condition, and the interception method

is sensors guiding medium-range weapons. At this time,
each platform has complete weapons, and meet the attack
condition easily. Hence the random initialization algorithm
has less influence on weapon-target attack constraint, but
can not effectively reduce the constraint violation of sensor-
weapon cooperation. The constraint violation mainly comes
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FIGURE 13. Distribution of damage efficiency and constraint violation of the optimal solutions obtained by EA-DS/HWTA and EA-DS/HWTA-r1
solving case 2 over 30 independent runs.

FIGURE 14. Mean and standard deviation values of scheme fitness and constraint violation obtained by EA-DS/HWTA and EA-DS/HWTA-r1 solving case 2
over 30 independent runs.

from the sensor-weapon cooperation consistency in decision
1 and 2, as shown in Figure 14(b) and 14(c). In decision 3,
both two types of weapons are involved in the interception.
Compared with decision 1 and 2, the constraint violation
of two algorithms increase, and the convergence speed of
EA-DS/HWTA is faster than EA-DS/HWTA-r1, as shown
in Figure 14(b) and Figure 14(c). In decision 4 and 5, the
most platforms only remain close-range weapons, and the
launch conditions are rigor. Hence the constraint violation
of weapon-target attack condition increases compared with
decision 1 3, and the constraint violation of sensor-weapon
cooperation remains 0. Owing to the shrinkage of the feasible
regions in decision 4 and 5, the constraints convergence speed
of EA-DS/HWTA-r1 is slower than the previous decision
stages. The constraint violation of decision 4 converges to 0
in the 70 to 80 generations, and the constraint violation
of decision 5 converges to 0 in the 80 to 90, as shown in
Figure 14(b) and Figure 14(c).

In conclusion, the de-constrained population initialization
algorithm improves the proportion of feasible solutions, sup-
press the constraint violation, and enhances the convergence
performance. With the advance of the interception phase,
the effect of improving the initial population quality is more
contributes to the search efficiency.

D. EXPERIMENTS ON GREEDY FITNESS
In order to verify the greedy fitness strategy, the following
solution building is introduced in the comparison algorithm
EA-DS/HWTA-r2: After the type II chromosome code is
determined, the complement code is randomly generated by
available weapons in each platform, and the other solution
operation is the same as EA-DS/HWTA. EA-DS/HWTA and
EA-DS/HWTA-r2 are performed on case 2 over 30 indepen-
dent runs. The statistics of the optimal solutions obtained in
each decision is shown in Table 7, and the distribution of dam-
age efficiency and constraint violation is shown in Figure 15.
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FIGURE 15. Distribution of damage efficiency and constraint violation of the optimal solutions obtained by EA-DS/HWTA and EA-DS/HWTA-r2
solving case 2 over 30 independent runs.

TABLE 6. Statistics of the optimal solutions obtained by EA-DS/HWTA and EA-DS/HWTA-r2 solving case 2 over 30 independent runs.

Based on Table 7 and Figure 15, at each decision of 30 inde-
pendent runs, both EA-DS/HWTA and EA-DS/HWTA-r2 can
give the optimal solution with the constraint penalty of 0.
However, the former can maintain the completion of the
interception mission, and the latter has a completion rate of
96.67%, that is, the interception mission fails in one simula-
tion. EA-DS/HWTA-r2 has a lower mean value of damage
efficiency than EA-DS/HWTA in each decision stage, and
a higher mean square deviation of damage efficiency than
EA-DS/HWTA. Therefore, the weapon efficiency-cost ratio
of EA-DS/HWTA-r2 is lower than that of EA-DS/HWTA,
and the number of interception times and weapon consump-
tion is higher than that of EA-DS/HWTA. Two comparison
algorithms are close in computation time, and the reason
is that the greedy fitness strategy and exact fitness strat-
egy have no significant influence on algorithm computation
complexity.

Figure 16 shows the visualization of the interception failure
process of simulation 13 under EA-DS/HWTA-r2. It can be
seen that the number of salvoes is five, and the number of suc-
cessful penetration targets is one. Target 6 adopts the strategy
of following other targets to penetrate along the boundary to
reduce the weapons that meet the launch condition for it, to
improve its penetration probability.

To specifically analyze the influence of greedy fitness strat-
egy on the evolutionary algorithm, Figure 17(a)∼Figure 17(c)
show the dynamic performance of the population fitness met-
rics of EA-DS/HWTA and EA-DS/HWTA-r2 in the evolu-
tionary process. In Figure 17(a), the mean damage efficiency
of EA-DS/HWTA-r2 is lower than EA-DS/HWTA, the mean
square deviation is larger than that of EA-DS/HWTA, and the
convergence speed is slower than that of EA-DS/HWTA. The
reason is that EA-DS/HWTA adopts the greedy strategy to
maximize damage efficiency based on type II coding. While
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TABLE 7. Statistics of the optimal solutions obtained by EA-DS/HWTA and EA-DS/HWTA-r3 solving case 2 over 30 independent runs.

FIGURE 16. Interception trajectories of operational process in simulation 13 of EA-DS/HWTA-r2.

EA-DS/HWTA directly generates the type III coding solution
in the solution initialization, and the damage efficiency is

determined. From Figure 17(b) and Figure 17(c), the con-
straint violation of EA-DS/HWTA and EA-DS/HWTA-r2
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FIGURE 17. Mean and standard deviation values of scheme fitness and constraint violation obtained by EA-DS/HWTA and EA-DS/HWTA-r2 solving case 2
over 30 independent runs.

FIGURE 18. Distribution of damage efficiency and constraint violation of the optimal solutions obtained by EA-DS/HWTA and EA-DS/HWTA-r3
solving case 2 over 30 independent runs.

is 0 in the initial population. The infeasible solutions are
generated in the second generation population, and the
constraint violation value gradually converges to 0 in the
sequent evolutionary generations. EA-DS/HWTA-r2 is close
to EA-DS/HWTA in the mean values of attack constraint
violation C1 and cooperation constraint violation C2, and the
convergence of mean square deviation is obviously worse
than EA-DS/HWTA. The reason is that the initial population
fulfills the feasibility with 0 constraint violation by the de-
constraint initialization algorithm. The individual form of
EA-DS/HWTA is type II coding, and only the platform
gene codes are operated in crossover and mutation. The
offspring individuals can select the feasible weapons with
the maximum damage efficiency by greedy fitness strat-
egy, and the generated weapon complement codes do not
violate constraints. However, EA-DS/HWTA-r2 exacts the
weapon gene codes accompanied by platform gene codes.
Therefore, EA-DS/HWTA-r2 is more likely to violate the

attack constraint and cooperation constraint during evo-
lutionary generations. In decision 1 and 2, the defender
employs medium-range weapons, and EA-DS/HWTA-r2 is
slightly less adaptive to attack condition constraint than
EA-DS/HWTA. In decision 3, the defender uses heteroge-
neous weapons. Compared with the other decision stages,
EA-DS/HWTA-r2 is more likely to produce infeasible solu-
tions than EA-DS/HWTA. In decision 4 and 5, the targets
penetrate into the close space without the need for sensors
to illuminate and guide the weapon. Therefore, the val-
ues of sensor-weapon cooperation constraint violation of
EA-DS/HWTA and EA-DS/HWTA-r2 are 0, as shown in
Figure 17(b) and 17(c). According to the evolutionary mech-
anism, increasing the population size can make the optimal
fitness of EA-DS/HWTA-r2 close to that of EA-DS/HWTA.
In conclusion, the main contribution of the greedy fit-
ness strategy is to enhance the convergence performance
effectively.
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FIGURE 19. Mean and standard deviation values of scheme fitness and constraint violation obtained by EA-DS/HWTA and EA-DS/HWTA-r3 solving case 2
over 30 independent runs.

E. EXPERIMENTS ON MPBX
To verify the MPBX operator, the classic exchange crossover
(EX) operator is adopted as the comparison. EA-DS/HWTA
and the comparison algorithm EA-DS/HWTA-r3 are per-
formed on case 2 over 30 independent runs. The statistics of
the optimal solutions obtained in each decision is shown in
Table 7, and the distribution of damage efficiency and con-
straint violation is shown in Figure 18. As shown in Table 7,
EA-SHWTA-r3 fails the interception mission in eight of
the 30 independent simulations. The number of successful
penetration targets is eight, and the target penetration rate
is 1.33%. EA-DS/HWTA-r2 has higher weapon consump-
tion and decision stages than EA-DS/HWTA, indicating that
the weapon efficiency-cost ratio of the interception schemes
under MPBX operator is higher than EX operator. Because of
the lower complexity, EX operator is better thanMPBX oper-
ator in real-time performance. In Figure 18, EA-DS/HWTA
and EA-DS/HWTA-r3 can obtain the feasible solutions with
the constraint violation value of 0. The damage efficiency of
solutions under MPBX operator is higher than EX operator.

To analyze the influence of MPBX operator on the
evolutionary framework, Figure 19(a)∼Figure 19(c) give
the dynamic performance of population fitness metrics of
EA-DS/HWTA and EA-DS/HWTA-r3 in the evolutionary
process. In Figure 19(a), EA-DS/HWTA has a higher mean
value of damage efficiency and faster convergence speed of
mean square deviation than EA-DS/HWTA-r3. As shown in
Figure 19(b), EA-DS/HWTA has the lower mean and mean
square deviation of constraint violation than EA-DS/HWTA-
r3 in weapon-target consistency. In the decision 1 to 3 of
Figure 19(b), the mean andmean square deviation differences
between EA-DS/HWTA and EA-DS/HWTA-r3 increased
from 0.01 to 0.05, and decreases to 0.01 in the decision 4
and 5 of Figure 19(b). In Figure 19(c), since the decision
only involves close-range weapons and does not require sen-
sor cooperation, the constraint violation of sensor-weapon
cooperation of EA-DS/HWTA and EA-DS/HWTA-r3 is 0.
As illustrated in Figure 19(c), EA-DS/HWTA is lower than

EA-DS/HWTA-r3 in the mean and mean square deviation
of the sensor-weapon cooperation constraint violation. In the
decision 1 to 3 of Figure 19(c), the difference between two
algorithms’mean increases from 0.4 to 0.8, and the difference
between mean square deviations increases from 0.2 to 0.7.

Analyzing Figure 19(a)∼Figure 19(c), it can be seen that
MPBXoperatormakes the evolutionary operationmore likely
to be performed between the platforms with similar weapon
types, thus effectively reducing the penalty value of attack
constraint C1 and cooperation constraint C2 in population
evolution, and the repair effect of cooperation constraint C2
is more obvious than that of attack constraint C1. Therefore,
the proportion of feasible solutions or near-feasible solu-
tions in the EA-DS/HWTA population is greater than that of
EA-DS/HWTA-r3. MPBX operator improves the population
fitness and convergence speed, and EA-DS/HWTAhas higher
search efficiency. Especially with the evolution of the oper-
ational situation, the type of weapon used in decision 1 to
5 transforms from medium-range to close-range. In decision
3, the cooperation of sensors, medium-range weapons, and
close-range weapons is more complicated than in other deci-
sion stages, and the optimization effect of MPBX operator on
population fitness is more than other decision stages.

VI. CONCLUSION AND FUTURE WORK
At present, most of the researches on sensor/weapon-target
assignment are static and weak constrained. This paper
first proposes a dynamic sensor/heterogeneous weapon-
target assignment problem by refining the critical factors
of typical ground-to-air anti-penetration scenarios. Aiming
at the characteristics of the established DS/HWTA model,
a solving algorithm based on the evolutionary framework
is designed and verified by simulation. Simulation results
show that the DS/HWTA model can actually reflect the
mission requirements and constraints of ground-to-air anti-
penetration operations, and the designed EA-DS/HWTA can
obtain the optimal solution for interception scheme in real-
time. The de-constrained population initialization algorithm
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based on type I coding ensures the feasibility of the initial
population, which is conducive to the convergence of con-
straints. The MPBX operator based on type II coding makes
the offspring solutions close to the feasible region, which
improves the population quality. The greedy fitness strategy
based on type III coding effectively improves individual fit-
ness and enhances search efficiency.

Comparing the simulation results of case 1 and 2, when the
firepower vacuum zone exists, the handover ofmedium-range
and close-range weapons is an essential factor affecting the
interception times and mission completion. This paper intro-
duces the delayed decision strategy to control the firepower
handover. The smaller delay time parameter is not conducive
to searching the global optimal solution, and the larger delay
time parameter violates themission requirement of ‘‘intercept
as soon as possible.’’ How to obtain the decision time in
firepower handover is a future challenge for us.
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