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ABSTRACT Crowd behavior refers to a collective behavior composed of two or more individuals who
influence, interact, and depend on each other for a specific goal. Compared with an ordinary crowd behavior,
the probability of a dangerous crowd behavior is much smaller. Video-based crowd behavior recognition
can be categorized as one multi-label classification task, which is characterized by complex scenes and
imbalanced samples. Aimed at tackling problems of imbalanced samples andmulti-label task, a classification
method of associative subspace is proposed. For a single category (called main category) with fewer samples,
this paper generates a special subspacewherein it is relatively easy to distinguish these samples by association
with other categories. A classifier that can weaken the main category and strengthen relationship between the
main category and other categories is designed in the subspace. Therefore, the main category can contribute
to reducing dependence on the number of samples with the above-mentioned classifier in the corresponding
subspace. In order to make full use of the relevant information concerning categories, multi-label information
is further injected into spatio-temporal features of video action representation. Experiments on a challenging
WWW dataset show that both the proposed subspace method and multi-label information fusion mechanism
are efficient.

INDEX TERMS Multi-label, subspace, imbalanced samples, associative subspace.

I. INTRODUCTION
Crowded videos of the same category may contain different
scenes, different numbers of people, different fields of vision,
making the crowded video classification task very challeng-
ing [1]–[4]. In the real world, dangerous crowd behaviors are
unlikely to occur, which makes it difficult to collect sufficient
video data. However, dangerous crowd behaviors (stampede,
riots, etc.) can cause huge loss of property and lives eas-
ily. Even more, existing crowded video data sets are very
poorly balanced [1] including numerous samples of general
crowded videos but very few dangerous ones. Therefore, it is
very important to investigate the classification of imbalanced
crowded videos.

Crowded videos often contain multiple events and behav-
iors, thus making the issue of video-based crowd behav-
ior recognition a multi-label classification task. Due to
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the emergence of the large crowd behavior video dataset
(WWW), a series of multi-label crowd behavior recognition
algorithms have been proposed [1]–[3]. Among the algo-
rithms above, Shao et al. [1] developed a multi-task deep
model for joint learning by combining appearance andmotion
features for a better crowd understanding. Besides, based
on category dependencies, the algorithm has also improved
multi-label crowded recognition performance under the guid-
ance of manually defined rules. However, the above method
does not consider the imbalance of samples, which is disad-
vantageous to the category of fewer samples in the process of
training. To enable categories with fewer samples to perform
better in classification, this paper has introduced the idea of
subspace.We construct subspaces using category association,
which can effectively solve the problem of imbalanced classi-
fication. The associative subspace principle is shown in Fig.1.
When it comes to distinguish the main category, we expect
to generate a suitable subspace in which it can be easily
distinguished by using correlation information between the
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FIGURE 1. An example of subspace (The purple circle is the main
category M0, and ellipses represent other categories). Figure (a) shows
the projections of other categories on M0, and (b) is the corresponding
subspace. The projection area of category M3 is the largest in original
space, indicating that there is a close relationship between category M3
and M0. Therefore, the subspace contains category M3. The projection
areas of categories M6 and M7 are very small (or zero), showing that
there are strong distinctions between M0 and these categories. Thus,
category M6 and M7 also serve as a part of the subspace. However, for
categories M1 and M2 and M5, the association information with the main
category during training is not easy to distinguish, so they are not
included in the subspace.

main category and the other categories. For each category
with a small number of samples, this study needs to generate
a corresponding subspace so that the main category can better
use the subordinate relationship between the categories in the
corresponding subspace.

Regarding the task of imbalanced classification, we con-
struct subspaces with category information so that categories
with fewer samples can achieve satisfying performance.
Meanwhile, we design a classifier for categories with fewer
samples. The classifier is utilized to optimize the current cat-
egory, which is different from the globally optimized classi-
fiers [3], [5], [6] utilizing the relationship between categories.
Specifically, the classifier can weaken the main category and
reduce the dependence of the main category on the number
of samples on the one hand, and enhance the relationship
between the main category and other categories for the indi-
rect classification of the main category on the other hand. In a
nut shell, the classifier designed for categories with fewer
samples can optimize the current subspace by weakening
the main category and weighting the association relationship
between categories.

Feature representation plays a pivotal role in visual classi-
fication tasks [2], [3]. At present, the mainstream video clas-
sification features are obtained through two streams (static
and dynamic). Most existing video features [1]–[3], [7]–[9],
however, are easily affected by appearance and motion noise,
due to the substantial differences in crowded scenes and great
variety of motion information. Thus, to tackle the recognition
task in crowded scenes, we choose to combine motion trend
features with dynamic evolution features. First, multi-label
information is integrated into 3D dynamic features by a
Graph ConvolutionNetwork (GCN) [10] to capture the global
motion trend. Then, along with the motion trend, a Long
Short-TermMemory (LSTM) network with memory function
is used for collecting important evolution features and erasing
dynamic and appearance noise.

The main contributions of this paper include: (1) the idea
of subspace for categories of fewer samples; (2) the classifier

based on subspace correlation and designed to address the
problem of imbalanced samples during classification; (3)
feature representation that combines motion trend features
with dynamic evolution features to enhance the description
of video change trend.

II. RELATED WORK
In this section, we will introduce and discuss the related
work towards multi-label classification in terms of sub-
space construction, subspace classifier design and feature
representation, respectively.

Subspace clustering seeks to partition the original space
into multiple subspaces within a dataset, and clustering algo-
rithms have been widely used for determining the subspaces
[11]–[13]. Among the existing subspace clustering meth-
ods, the spectral clustering methods [14]–[17] have become
increasingly popular because of easy implementation, as well
as high probability to converge to a global optimum compared
with conventional clustering algorithms. However, it still
remains a drawback that the mixed-signed result given by
eigenvalue decomposition of Laplacianmay degrade the clus-
tering performance [18]. Thus, to address this problem, lit-
erature [19] established an equivalence with spectral clus-
tering and proposed two non-negative spectral clustering
algorithms. Although spectral clustering has been achieved
in many applications, the relationship between the affinity
matrix and the labels of the data is not fully exploited, thus
there is no guarantee for an overall optimal performance.
To overcome the challenge, a new unified optimization
framework is proposed, which enforces the coherence and
discrimination of the affinity matrix as well as the labels [20].
However, it should be noted that these clustering approaches
are inherently unsupervised learning algorithms which tend
to ignore the category information. The label information in
the crowded scene appears in pairs, and category information
plays an important role in the recognition process. The spec-
tral clustering methods fail to notice the association between
categories, and are therefore not suitable for multi-label
crowd behavior recognition. In view of this, we utilize depen-
dencies among categories to construct subspaces in this paper.
For a certain category, its subspace is generated on the basis
of the association with other categories.

In this paper, crowd behavior recognition is deemed as a
multi-label classification task, and each object is represented
by a single instance when associated with multiple labels.
Multi-label learning has been extensively studied during the
past decades, and many algorithms have been proposed. For
example, the simplest method is to decompose a multi-label
task into a series of binary classification problems [21]. How-
ever, the method is essentially limited by overlooking the
label correlations. In this connection, it stimulates research
for coming up with approaches to capture and explore the
label correlations in various ways. Some approaches, based
on graph representation learning [6], [10], are proposed to
capture the label correlations for multi-label recognition.
Besides, a novel approach multi-instance multi-label fast
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FIGURE 2. An overall framework of crowd behavior recognition. Feature representation is the fusion of static
features and dynamic features with category information. The subspace classifier design exploits category
association, where M0 is main category.

learning (MIMLfast) is proposed in literature [5] to utilize
the relations among multiple labels. However, it has to be
admitted that given the imbalance of sample distribution in
our work, the categories with a small number of samples
obtain worse results in the classification process. In addi-
tion, the aforementioned methods optimize all categories
globally, which is adverse to categories with fewer samples.
Accordingly, we construct subspaces for these categories by
utilizing the category association. Meanwhile, corresponding
classifiers are designed for each category subspace.

Feature representation is an important factor for classifi-
cation. Traditional manual features [22], [23] are gradually
replaced by deep learning features. Recently, deep neural
networks have been successfully applied to action recogni-
tion [24]–[26]. Previously, 2D convolutional neural networks
[27], [28] trained by ImageNet [29] were usually exploited
for RGB image classification. However, for the task of video
classification, appearance information is not enough, and
dynamic features representation play a vital role in the pro-
cess of recognition [9], [30]. To simulate motion information,
K. Simonyan et al. proposed a two-stream ConvNet architec-
ture which incorporates spatial and temporal networks [8],
where the temporal stream is trained to recognize actions
from motion in the form of dense optical flow. Literature [7],
based on two-stream architecture, made further improvement
by introducing residual connections. Meanwhile, there are
also some other works trying to adapt existing techniques
to solve the action recognition task in videos [31]–[35].
In a nut shell, obtaining effective spatio-temporal feature
representation is essential for action recognition. However,
in our work, because even the same crowd behavior may
have different scenes, the appearance noise will be relatively
large; Meanwhile, crowd behavior is usually accompanied by
a variety of motion information resulting in relatively large
dynamic noise. Existing methods for fusing appearance and

dynamic features can be influenced by noise. To effectively
describemotion information in the video, we combinemotion
trend features with dynamic evolution features. To be spe-
cific, under the guidance of the motion trend, LSTM is used
for collecting important evolution features, and discarding
dynamic and appearance noise. Due to the limited expressive
power of optical flow in complex motion scenes, we exploit a
3D convolution network [36] to obtain dynamic information.
For the task of multi-label recognition, category information
can enhance semantic representation. Hence, we integrate
dependency relationship between categories into dynamic
information to obtain the motion trend with semantic associa-
tion. Then, dynamic features with strong semantic correlation
is fused into frame-level static features. Besides, extensive
research has shown that LSTM, as a variant of Recurrent
Neural Network (RNN), demonstrates a strong ability to
model long-term time dependency in sequencemodeling. The
LSTM network is also used for video action recognition.
In this paper, characteristics of LSTM are used for filtering
out the appearance and dynamic noise.

III. METHOD
The architecture of crowd behavior recognition is illustrated
in Fig.2. It primarily involves three stages: construction of
subspace, subspace classifier design and video feature rep-
resentation. We construct a subspace for each special cate-
gory before designing the subspace classifier to optimize the
category subspace. Afterward, during representation of video
features, we combine motion trend features with dynamic
evolution features. Coupled with the motion trend, LSTM
serves as a tool of filtering out dynamic and appearance
noise. In the following sections, we will refine the process of
subspace construction, subspace classifier design and feature
representation. In order tomake this paper easy to understand,
we add a table of symbols (shown in Table 1).
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TABLE 1. Nomenclature.

A. CONSTRUCTION OF SUBSPACE
In the real world, the probability of some crowd behaviors
is small, and it is difficult to obtain sufficient samples. The
distribution of video data samples of crowd is thus extremely
imbalanced. These categories with insufficient samples can-
not achieve a good classification effect in the training pro-
cess in spite of strong feature representation. For instance,
experiments [6] on multi-label dataset (VOC 2007 [37]) show
that the performance (mean average precision (mAP) is 92%)
of categories with fewer samples (the number of samples
is less than the average on training set) is inferior to that
(mAP is 95.1%) of categories with more samples (the num-
ber of samples is larger than the average on training set).
Simultaneously, the dataset WWW [1] is also imbalanced.
According to literature [3], the average value (mAUC) of the
area under Receiver Operating Characteristic curve is 89.3%
(categories with fewer samples) and 92.4% (categories with
more samples) respectively. In order to address the problem
of imbalanced samples classification, the idea of subspace is
proposed for crowd video categories with fewer samples.

The construction of subspace can be divided into two steps.
Firstly, some rules and conditions are applied in determining
categories with few samples according to the training set.
Secondly, a screeningmechanism is adopted to screen a series
of categories from all categories and construct a subspace
for each small sample category. The specific operation of the
aforementioned two processes is as follows.

In order to clearly describe the construction of the sub-
spaces, we first define the relevant symbols. Symbol c and

n is the number of categories and the number of samples in
the training set respectively. {Ri} is the original category set,
and Ri is the i-th category. {Rminj } refers to the set of small
sample categories and contains e(e < c) categories, and ri
is the number of each category samples in the entire training
set, and rij is the number of co-occurrence sample between
the i-th category and the j-th small sample category.

Categories with fewer samples are determined by the
following expression

Rmin = {Ri|ri <
n
c
ε}, i = 1, 2, . . . , c, (1)

where the value of ε is set 0.8.
A subspace �j based on the j-th category in the small

sample set {Rminj } is formalized as

�j
= {Ri|

rij
rj
> β1or

rij
rj
< β2},

i = 1, 2, . . . , c; j = 1, 2, . . . , e, (2)

where β1 and β2 are hyperparameters.

B. SUBSPACE CLASSIFIER
In this paper, since the crowd dataset WWW [1] is base on
multi-label, we first utilize the sigmoid activation function to
classify all categories. In the classification process, a proba-
bility value between 0 and 1 will be assigned to each category,
and the categories are independent from each other. Cate-
gories with relatively sufficient samples can achieve decent
performances by using the sigmoid activation function whilst
categories with fewer samples obtain worse results under
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the same circumstance. Thus, to overcome this problem,
we design special classifier (called subspace classifier) for
these categories via introducing the idea of subspace.

The design process of the subspace classifier is shown
in Fig.2. Firstly, the main category (M0) obtains correspond-
ing subspace through category association. The subspace
includes categories with a close relationship or strong dis-
tinction with M0, with association relationship between cat-
egories falling in the range [0, 1]. After the classification of
the main category (M0) by the subspace classifier, larger the
number is, the closer the relationship is.

The subspace category association classifier is inspired by
[3] attribute assignment (AA) and [38]. AA harnesses the
subordinate relationship between categories for multi-label
crowd behavior classification. Suppose that X ∈ Rd∗n rep-
resents a feature matrix comprising n training samples and
d-dimensional feature vectors. Meanwhile, the mapping
matrix U ∈ Rd×c bridges low-level features with categories,
andG ∈ {0, 1}n×c is employed to indicate the label matrix of
the entire training set. According to [3], AA employs a convex
optimization method with closed solutions

min
U
||XTUA−G||2F + γ ||UA||

2
F + λ||X

TU||2F + γ λ||U||
2
F ,

(3)

where || • ||2F is Frobenius (F-norm), γ and λ are
hyperpara-meters. A ∈ [0, 1]c×c is the proposed dependency
matrix which captures the interrelationship among categories.
According to [3], the closed solution of the above convex
optimization problem is formalized as

U = (XXT
+ γ I)−1XGA(AAT

+ λI)−1, (4)

where I is the identity matrix. Given the closed-form solution
to optimization problems, the solution efficiency is very high.

However, AA optimizes globally, which is not conductive
to categories with few samples. To end this, we construct a
subspace to distinguish categories with fewer samples and
design a classifier based on the idea of subspace and called
subspace classifier. In our framework, each category with
fewer samples is configured with a special subspace, which
is different from AA algorithm. For each category with few
samples, the subspace classifier is used for optimizing the
corresponding subspace. In a subspace, the category to be
distinguished is deemed as the main category.

According to [3], [38] the optimization function of the
subspace is defined as

min
U(j)
||XTU(j)S(j)W(j)

−G(j)
||
2
F +8

(j), (5)

where U(j)
∈ Rd×c

(j)
is the mapping matrix of the main

category (j) on the subspace, which establishes a bridge from
features to category information. The matrix G(j)

∈ Rn×c
(j)
is

the label matrix of main category (j) on the subspace. Symbol
c(j) represents the number of categories on the subspace for
the main category (j). The symbol S(j) ∈ Rc

(j)
×c(j) represents

correlation matrix of main category (j) on the subspace, and
W(j)

∈ Rc
(j)
×c(j) is weight matrix, and 8(j) is regularization

term. Then, we will introduce the matrices S(j),W(j) and
regularization term8(j) in turn. According to [3],the element
of matrix S(j) is formalized as

S(j)ik =
(G(j)

i )TG(j)
k

c(j)∑
l=1

G(j)
li

, (c(j) < c). (6)

In order to facilitate training, we adjust the order for cat-
egories to make the main category the first column, while
�

(j)
1 (formula (2)) is correspondingly the main category. The

proportion of the main category is adjusted by the category
correlation matrix S(j) of �(j). The matrix W(j) weakens
the main category and weights the association relationship
between categories. The element ofW(j) is formalized as

W(j)
ik =


α, i = 1
1− α, i = k and i 6= 1,
0, else

(j = 1, 2, . . . , e; k = 1, 2, . . . , c(j)) (7)

where the value range of α is between 0 and 0.3. Sym-
bol e represents the number of subspaces. The matrix W(j),
according to formula (7), is expressed as

W(j)
=


α α . . . α

0 1− α . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 1− α


c(j)×c(j)

, (8)

where each element on the main diagonal represents the pro-
portion of each category on the subspace. The value ofW(j)

11 is
α, indicating that the main category (j) is weakened because
the value of α is less than 0.3. Other element values on the
main diagonal are 1−α, implying that the proportion of other
categories is strengthened on the subspace. The relationship
between the main category and other categories is established
by setting the value of the element to α (the value of α in
the matrix W is the same). Specifically, the element W(j)

1k
is α. The element value is 0 in the matrix, suggesting that
there is no dependency between two categories. If W(j) is
an identity matrix, following formula (3), the classifier will
be attribute assignment (AA). If not, according to formula
(8), the classifier will be the subspace classifier. In addition,
the regularization term 8(j) is defined according to [3]

8(j)
= γ (j)

||U(j)S(j)W(j)
||
2
F + λ

(j)
||XTU(j)

||
2
F

+γ (j)λ(j)||U(j)
||
2
F , (9)

and U(j) is formulated as

U(j)
= (XXT

+ γ (j)I)−1XG(j)S(j)W(j)

× (S(j)W(j)W(j)TS(j)T + λ(j)I)−1. (10)

In test phase, the inference of the main category is similar
to [3]

P(j)
1 = XTU(j)S(j)1 , (11)

where S(j)1 represents the first column in S(j).
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FIGURE 3. Feature representation. (a) Two-stream architecture for video classification according to literature [8]. (b) The process of fusing of static
features and dynamic features with category information. Symbol τ and l represents the number of frames uniformly selected from the original frame
sequence. Symbol Bc represents Broadcasting.

C. FEATURE REPRESENTATION
How to effectively capture the distinct spatio-temporal fea-
tures to model the spatio-temporal evolution of different
actions is crucial for video action recognition. As shown
in Fig.3(a), in the traditional method [8], the spatial stream
captures still frame-level features, whilst the temporal stream
captures dynamic features in the form of dense optical flow.
Finally, the class score is average of static score and dynamic
score. However, joining static and dynamic features together
could easily be subject to influence of noise. In order to
obtain a discriminative feature representation in crowded
scenes, we adopt the approach of combining motion trend
features with dynamic evolution features rather than the tra-
ditional method. The overall framework of our approach is
shown in Fig.3(b), which is composed of two main modules:
dynamic evolution features and motion trend features.

1) DYNAMIC EVOLUTION FEATURES
With regard to the task of video action recognition, LSTM
network is selected to capture context information, as shown
Fig.2. The LSTM network is composed of two layers.
In detail, the first layer ‘lstm’ unit obtains each state output
of the video sequence, while the output of the second layer
‘lstm’ for the last time step is applied for classification. The
input of the LSTM network is the frame-by-frame fusion of
the motion trend features and static frame-level features

XL
t = XM

⊕ XS
t (t ∈ 1, 2, 3, . . . , l), (12)

where XS
t represents the static features of the t-th frame, and

XM represents the motion trend features. The static frame is
uniformly selected l frames from the original frame sequence,
as is shown in Fig.3(b).

We can use any CNN basic model [27], [28] to capture
the frame-level features of the video. In our experiments,
following [1], [3], the ResNet50 model [28] pre-trained on
ImageNet [29] is chosen as the backbone CNN. Therefore,
if the input video frame XI

t is a resolution of 224 × 224,
we can obtain the 7 × 7 × 2048 feature map from the last
‘conv’ layer. Then, we adopt average pooling (AP) to obtain

the frame-level feature XS
t

XS
t = fap(fcnn(XI

t ; ηcnn)) ∈ R
m, (13)

where ηcnn represents CNN neural network model, m =
2048.

2) MOTION TREND FEATURES REPRESENTATION
To effectively describe motion trend features (XM ), the global
correlation between labels is applied to the 3D dynamic
feature map to figure out dynamic features with semantic
association, with the overall framework depicted in Fig.3(b).
First, we feed τ frames into a 3D convolution network for
describing the overall motion trend. Then, category informa-
tion is employed as the input of GCN to explore semantic
association, ending up with the combination between seman-
tic association and motion trend. In our work, in line with
[10], [39], we have used stacked GCNs,

XG
= fact (fgcn(XC ,A; ηgcn)), XG

∈ Rc×z, (14)

where ηgcn is a GCN neural network model, and fact is
a activation function (We employ sigmoid function in this
research).
Category association graph containsXC andA in Fig.3(b).

XC
∈ Rc×q is the feature matrix of the category. Each

category is presented using q dimension word vector, and c
represents the number of categories.A ∈ Rc×c is an asymmet-
ric association matrix between categories. The symbol XG is
a matrix with category information, z is the dimension of the
dynamic feature map.
In our experiments, the WWW [1] dataset has been trained

using the MF-Net [36] model pre-trained on kinetics [40].
If the clip of each video input is 16 × 224 × 224, we can
obtain the 8 × 7 × 7 × 768 feature map from the ‘conv5’
layer. Then, average pooling (AP) is employed to obtain 3D
dynamic feature XD

XD
= fap(f3D(XI

1:τ , η3d )) ∈ R
z, (15)

where η3d represents 3D neural network model, z = 768.
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Thus, the motion trend feature (XM ) is obtained

XM
= XG

⊗ XD. (16)

We assume that the ground truth label of the video is
represented as G ∈ Rn×c(Gij ∈ {0, 1}). The LSTM network
is trained with the following loss function on the basis of XLt
features

L =
c∑
i=1

n∑
j=1

Gijlog(sig(G̃ij))

+(1− Gij)log(1− sig(G̃ij)), (17)

where sig(•) is the sigmoid function [29], and G̃ij repre-
sents the prediction value. In process of inference, general
categories obtain probability information through the trained
LSTM model. For small sample categories, the map of the
previous layer of sigmoid function in LSTM network is taken
as a video feature (X), and then subspace classifier is used for
class prediction.

IV. EXPERIMENT
In this section, we first describe evaluation metrics and
implementation details. Secondly, we report the experimental
results of the multi-label crowd dataset WWW. Then, sub-
space classification results are analyzed before we further
conduct ablation study to evaluate the key aspects of the
proposed approach.

A. EVALUATION METRICS AND IMPLEMENTATION
DETAILS
In all experiments, we use the area under receiver operat-
ing characteristic (ROC) curve (AUC) and average preci-
sion (AP) as the evaluation indicators. AUC is a popular clas-
sification indicator for measuring the classifier performance.
AP can be effectively used formeasuring classification results
of each category. To fairly compare with existing methods,
we also adopt AP and AUC on each category.

The parameters β1, β2 in formula (2), and γ, λ in formula
(9) of the subspace generated by the special category are set as
follows during the training process: γ ∈ (0, 5000), β2 < β1
and β1, β2 ∈ (0, 1), λ ∈ {0.3, 0.5, 5× 10−3, 5× 10−9}.

In the video feature representation branch, ResNet50 [28]
is adopted as the static feature extraction backbone, which is
pre-trained on ImageNet [29]. During training, we select 75
frames from each video (the same frame length as [3]), with
the resolution of the input video frame as 224×224. In terms
of dynamic feature representation, the 3D network MF-Net
[36] is used, which is pre-trained on kinetics [40]. The 3D
network is trained for 100 epochs, wherein input is τ = 16
frames.

We use 3D dynamic information, category feature repre-
sentation and association matrix as input to train the GCN
network. According to the trained model, the product of
the 3D dynamic feature and the output of the last layer of
GCN is used as feature with semantic information. In the
process of training, according to literature [10], we used two

GCN layers with the output dimensionality of 384 and 768,
respectively. As is depicted in Fig.3(b), the input of GCN
includes the category featurematrix and associationmatrixA.
Each category feature is represented by a q dimensional word
vector (q = 300). We get a word vector model by training
the Wikipedia dataset [41] and categories of WWW together.
For network optimization, SGD is used as the optimizer.
The momentum is set to be 0.9. Weight decay is 10−4. The
learning rate is 0.001.

Our LSTM network (in Fig.2) consists of two LSTM
layers with output dimensionality of 512 and 768, respec-
tively. In the process of training, the regular dropout is set
to 0.4 in LSTM network, thus speeding up the convergence
in experiments. Adam is used as the optimizer for network
optimization, while the binary cross entropy is adopted as the
loss function.

B. EXPERIMENTAL RESULTS
In this part, we present a comparison of our proposed method
with state-of-the-art methods on dataset WWW first. Then,
quantitative evaluation results of dataset WWW are reported.

1) A COMPARISON OF OUR METHOD WITH
STATE-OF-THE-ARTS
WWW[1] is a multi-label large-scale crowded dataset, which
contains 10, 000 video clips and 94 different categories.
According to [1], the dataset is split into training, validation,
and test sets at a ratio of 7 : 1 : 2. We use cross-validation on
the training and validation sets according to a ratio of 9 : 1.
Finally, we evaluate the accuracy of the model on the test sets.

We conduct a comparison of our proposed method
with state-of-the-art methods, including DLSF+DLMF [1],
DLF+ DLFO+AA [3], S-CNN [2], MIML [5] and CLDF
[42](shown in Table 2). In this paper, a model based on the
LSTM network (DGSF-LSTM) is proposed, and the feature
representation with category association is used as the input
of the network.

1) DLSF+DLMF [1]. A deep model is used for learn-
ing the features of each category from the appearance
and action information of each video, and the learned
model is used for identifying unknown categories in the
crowded video.

2) DLF+DLFO+AA [3]. The dependence of category
information is used for obtaining a mapping relation-
ship between categories and features to achieve bet-
ter scene classification effect, and a low-level feature
extraction mechanism is also used for obtaining more
descriptive feature information.

3) S-CNN [2]. A new sliced convolutional neural network
is proposed, which exploits 2D filters. Spatial filters
obtain appearance information, and time slices capture
dynamic clues. This method shows a strong ability to
capture spatio-temporal features.

4) MIML [5]. A simple linear model is adopted. By using
the relationship between multiple labels, the model can
learn a shared space for all labels from the original
features, and then trains a label-specific linear model
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FIGURE 4. Performance of each category in terms of AUC and AP on the WWW dataset. The circle represents the value of AUC, and the five-pointed star
represents the value of AP.

TABLE 2. Comparison between our method and other algorithms on the
WWW dataset.

from this space. This linear model reduces the number
of parameters and speeds up training. This very linear
model to multi-label crowd behavior recognition is
applied in the current paper.

5) CLDF [42]. The class-level difficulty factors for
multi-label classification are proposed in the literature.
We reproduced experiments according to the idea of
[42]. ResNet50 model [28] pre-trained on Image-Net
[29] was adopted as backbone. Then, we retrained
the network on basis of dataset WWW [1]. Finally,
classification results are 95.7% and 69.8% respectively
in terms of mAUC and mAP. Based on it, the sub-
space idea was used to predict small sample categories
(CLDF [42]+ subspace). BothmAUC andmAP results
(mAUC, 0.961, mAP, 0.699) outperformed results of
[42]. It could be concluded from experiments that
the subspace idea proposed in this paper is effective
against unbalanced sample data sets. Simultaneously,
we compared CLDF [42]+subspace method with ours
(DGSF-LSTM+subspace ) on 94 categories of
WWW-datasets. Experiments show that features

obtained by LSTM perform better in categories of
action information, such as stand, sit, walk, run, swim,
dance, photography, dining, shopping, et al. However,
CLDF [42] has more advantages in categories of scene
information, such as indoor, outdoor, airport, street,
stadium, concern, square, beach, school, et al.

2) QUANTITATIVE EVALUATION
Quantitative evaluation results are shown in Table 2, show-
ing that our model is efficient for crowded scene classifica-
tion. In particular, the performance of our subspace model
(DGSF-LSTM + subspace) in terms of the mean AUC
reaches the state-of-the-art level.

To evaluate our feature representation, other comparison
experiments are also conducted, as demonstrated in Table 2.
Under the condition that the pre-trained model is VGG-16
[27] (especially mAP), the proposed DGSF (the fusion of
static features and dynamic features with category informa-
tion) is 7% higher than SF (static features) and 6% higher
than DSF (the fusion of static features and dynamic features),
indicating that category association can facilitate the recog-
nition of video action. Meanwhile, the experiments under
ResNet50 and VGG-16 display that the ResNet50 network
is superior to VGG-16.

We are also interested in the performance of each cate-
gory. Fig.4 shows the AUC and AP values for all categories
through the DGSF-LSTM method. Some categories (like
‘‘indoor’’, ‘‘Outdoor’’, ‘‘Street’’ and ‘‘Performance’’) shown
in the line chart can obtain better classification results through
the fusion of static features and dynamic features with cat-
egory information (DGSF), which means categories with a
relatively large number of samples can converge easily in
the process of training. However, as for categories with only
a few samples, such as ‘‘police’’, ‘‘queue’’ and ‘‘disaster’’,
we cannot obtain good classification results using LSTM
network and sigmoid activation function.

C. SUBSPACE CLASSIFICATION
In this part, the subspace classification results are mainly
reported. To analyze and understand crowd behaviors, in the
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TABLE 3. The scores of AP and AUC of few samples categories are under the subspace classifier on the WWW dataset.

existing studies [1]–[3], only experiments on the dataset
WWW are conducted, so we apply the idea of subspace to
the dataset WWW in this paper. The research goal of this
paper is the crowd behavior recognition, however, the exist-
ing crowd datasets WorldExpo’10 [43], UCF-CC-50 [44],
UCF-QNRF [45] and Shanghaitech [46] being applied for
crowd counting. Other crowd datasets, such as S-Hock [47]
and Violent-Flows [48], do not refer to multi-label. From
our perspective, the dataset WWW is not enough, and the
image-based multi-label dataset VOC 2007 (an imbalanced
image dataset) is selected to illustrate the effectiveness of
the subspace idea [37]. In the following sections, we will
specify subspace classification results on the datasets WWW
and VOC 2007.

1) SUBSPACE CLASSIFIER ON THE DATASET WWW
Firstly, categories with few samples in the training set, shown
in Table 3, are determined according to formula (1). Then,
according to formula (2), a subspace for each small sample
category is constructed. For example, the subspace of cate-
gory ‘knell’ has 76 categories while the original space has
94. Finally, according to formula (5) − (11), the subspace
classifier is designed to optimize the corresponding subspace
of category ‘knell’. As demonstrated in the Table 3, the per-
formance of category ‘knell’ has been significantly improved.

In addition, we also apply the idea of subspace to the
classifier MIML [5] (MIML + subspace) and report exper-
iment results. MIML is a multi-label classifier with category
association, which can directly to integrate subspace idea.
Table 3 indicates that the performance of most categories
has shown a significant improvement by adopting the idea of
subspace. However, the experiment result of DGSF-LSTM
+ subspace is superior to that of MIML+subspace, which
shows that MIML [5] has certain limitations on categories
with fewer samples. The mAUC of these categories is
increased by 3.4%overall while themAP of those is increased
by 1.3% through the DGSF-LSTM+subspace. However,
the performance of category ‘attend classes’ has declined

after exploiting subspace. Since the category has achieved
decent performance on the DGSF-LSTM model (mAUC is
99.8%), other classifiers will not be able to play a role in
improving performance. CLDF [42] uses a variety of skills to
extract video features suitable for multi-label classification.
For the prediction of small sample categories, we use sub-
space classifier based on the features of CLDF. Experimental
results show that subspace classifier can also be applied to the
basis of CLDF features.

2) SUBSPACE CLASSIFICATION RESULTS ON THE DATASET
VOC 2007
PASCAL Visual Object Classes Challenge (VOC 2007) [37]
is another popular dataset for multi-label recognition. It con-
tains 9, 963 images from 20 object categories, which is
divided into train, val and test sets. For fair comparisons,
we use the trainval set to train our model, and evaluate the
recognition performance on the test sets.

To evaluate the subspace idea, we conduct the same exper-
iments on the dataset VOC 2007. Firstly, we select categories
with fewer samples according to formula (1). These cate-
gories are shown in Table 4. Then, according to formula (2),
we construct subspace for each category. Finally, we retrain
the model SSGRL [6] by using the generated subspace of
per category and obtain classification result. It is obvious
in Table 4 that most of categories adopting subspace have
better performance than the original model. Overall, the mAP
of these categories is increased by 0.5%.

D. ABLATION STUDIES
In this section, we perform ablation study from three different
aspects, including the number of video frames, the value of
the parameter γ and λ and the replacement of the LSTM
network structure with Gated Recurrent Unit (GRU).

1) VIDEO STATIC FRAMES
In order to fairly compare the test results, the number of static
frames for the video in the test is the same as the number of
frames in [1], [3], which are both 75. In this paper, we also
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TABLE 4. Comparison of AP and mAP of the SSGRL and SSGRL+subspace on the PASCAL VOC 2007 dataset.

FIGURE 5. The score of AUC with different values of parameter γ and λ.

report the test results of other frames. The current results
are based on the (DGSF-LSTM) model. Table 5 shows the
mAUC and mAP of 5, 15, 25, 50 and 75 frames. However,
the mAUC of 5 frames is only 0.12% less than the 95.4% of
75 frames. It shows that by reducing the number of frames
and appropriately increasing the span of the video frames,
relatively good classification results will be obtained.

However, the efficiency advantage of using fewer video
frames is greater. In the case of 2080ti GPU configuration
and 75 frames strategy, it takes 1224ms for a short video to
complete category prediction. But it only takes 94ms for a
video to complete category prediction with the strategy of 5
frames.

2) EFFECTS OF DIFFERENT PARAMETER VALUES
Results shown in Fig.5 are the average AUC of small sample
categories(obtained according to formula (1)). We varied val-
ues of parameters γ and λ at the same time and tested them
in training set, and plotted final results by a 3D mesh graph
(shown in Fig.5(a)). In order to explore changing trend of the
two parameters, we plotted cross-sections of the middle grid
in two different directions in 3D grid (shown in Fig.5(b) and
Fig.5(c)). In addition, we set empirically values of β1 and β2
(in formula (2)) to 0.05 and 0.01, respectively.

TABLE 5. The values of mAUC and mAP for different frames on the WWW
dataset.

3) GRU STRUCTURE
In our work, we also conduct some experiments under the
GRU structure. GRU is a variant of LSTM, which combines
the forget gate and the input gate into a single update gate.
The parameter of GRU is less than LSTM. The final model
is simpler than the LSTM model and is not easy to overfit.
Experiments show that the results under the GRU structure
(mAP is 67.3% and mAUC is 95.6%) are higher than the
LSTM, when the number of frames is 75. It could be down
to the fact that convergence is easier on the premise of GRU
when the number of samples is insufficient.

V. CONCLUSION
Multi-label action recognition entails prediction of labels
co-occurring in videos. Due to the imbalanced distribution of
samples, some categories with fewer samples do not converge
easily. In order to solve this problem, we introduced an idea
of subspace. The subspace method not only harness asso-
ciation among categories, but also simplify the distribution
of categories. Meanwhile, a classifier based on subspace is
also designed for better classification results. In addition,
in crowded scenes, to obtain discriminative feature represen-
tation, we injected dependence relationship among categories
into dynamic information, strengthening the latter with a
stronger semantic relationship. Then, dynamic features with
strong semantic correlation are fused into frame-level static
features.

In conclusion, the association information of categories is
utilized to compensate for the imbalance of samples. Our
method can be regarded as a fundamental technique that
shows potentials of other related applications. For example,
a new category is added in the recognition process, but the
number of samples for this new category is insufficient.
In this case, we can construct a subspace for the current
category based on the idea of subspace, and address the prob-
lem of imbalance samples under the guidance of association
relationship among categories.
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