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ABSTRACT Software defined network (SDN) is a promising technology which can reduce network
management complexity through the decoupling of the control plane and data plane. Due to large number of
switches in the data plane, distributed andmultiple controllers are necessary in the control plane formanaging
the switches. The switch controller mapping strategy for identifying the mapping relationships between the
switch and controller is crucial in order to optimize the network performance. Considering the dynamics of
the network behavior, it is quite important and challenging to develop models to reflect the network topology
dynamics and to propose method for solving the long-term network performance optimization. Inspired
by the recent advances in Artificial Intelligence (AI), in this paper, we propose a Deep Reinforcement
Learning (DRL) based strategy for solving the switch controller mapping problem. A DRL based mapping
strategy is proposed, in which Markov Decision Process (MDP) formulation is devised and DeepQ-network
(DQN) is proposed to achieve the maximization of long-term system performance by leveraging network
latency, load balancing and system stability. Extensive simulations show that the DQN based algorithm can
achieve the best system stability results while maintaining moderate switch controller latency and system
equilibrium performance comparing with the optimization which only considers current system performance
for switch controller mapping decision, and the optimization approaches which generate mapping decisions
purely based on latency or load balancing separately.

INDEX TERMS Software defined network, deep reinforcement learning, controller, switch, mapping, deep
Q-network.

I. INTRODUCTION
Software DefinedNetwork (SDN) is an emerging technology,
in which the control plane and forwarding plane are decou-
pled. In the control plane, the controllers own the overall view
of the network and can hence perform centralized control
of the network. In the forwarding plane, packet forwarding
devices (usually Openflow switches), deal with the data pack-
ets’ behavior based on the forwarding tables obtained from
the controller [1]. The controller can manage the switches’
behavior though distributing the forwarding rules into the
switches. SDN can significantly reduce the complexity for
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the control and management of the network and promote
network innovations, thus becoming popular in modern
network scenarios, such like data centers.

Due to the application of large scale of switches in the
networks, single controller mode is impossible. The large
amount of traffic and the latency between controller and
switch poses challenge for single controller design [2].
Accordingly, multiple and distributed controllers have been
proposed in the literature in order to improve the reliability
and scalability of the control plane [3]. In addition, the imple-
mentation of the physically distributed design of the logically
centralized control plane has also been investigated [4], [5].
For the distributed control plane, the basic problem is to
solve the controller placement problem of determining the
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controllers’ location. This problem has been investigated in
the literature thoroughly, in which the focus is to decide the
number of controllers required and the placement locations
of the controllers [3], [6]–[8].

Moreover, after the controllers have been placed, the prob-
lem of switch controller mapping needs to be solved. The
switch controller mapping identifies the mapping between
switch and controller based on the network environment.
Most existing works in the area of switch controller mapping
solve the mapping problem considering different objectives,
such as balancing the load [9], maximizing the controller
resource utilization [10], minimizing the response time [11],
or considering both perspectives from the controller and
switch [12]. However, the above existing research works
solve the switch controller mapping problem based on the
instantaneous network environment information, such as
the controller traffic load, working status and resources’
utilization.

However, the networks’ topology may be dynamic and
change with time. For example, the controller may leave the
system due to controller failure. Thereby, the time-varying
network dynamics may affect the mapping solution. For
example, when a switch is attached to a controller which may
have probability of failure in future, there will be additional
cost for migrating the switch. Considering this, it is better to
map this newly joint switch to a controller with less failure
probability. Therefore, the time-varying network dynamics
can affect the mapping decision. This poses challenge to
the switch controller mapping problem, since the optimiza-
tion decision for the switch controller mapping should be
devised not only based on the current system status but also
the time-varying characteristics of the network environment.
A few research works have been designed to adapt to the net-
work traffic dynamic situation [13]–[15]. However, the above
existing research work deals with the long-term time-average
performance optimization for minimizing the system’s opera-
tion cost by only considering traffic fluctuation. No dynamics
of the controller and switch, such as the joining and leaving of
the controllers and switches due to network topology dynam-
ics have been taken into consideration.

In this paper, the objective is to tackle controller switch
dynamic mapping problem for optimizing the long-term
system performance (cumulative system performance in the
long run) by considering the network topology dynamics
including both controllers’ and switches’ dynamic behavior.
The system performance in terms of switches’ response
time, controllers’ load balancing and system stability in
terms of controller’s failure impact are considered. Since the
optimization problem is a multiple-stage decision process,
we apply Markov Decision Process (MDP) for modeling
the problem. We decompose the multi-period decision pro-
cess into sub-process which is modeled by the network
environment (state), mapping decision (action) and system
performance (reward) in MDP. Then we apply deep rein-
forcement learning (DRL) approach for solving the problem.
In reinforcement learning (RL), an agent can interact with

the environment and adjustify the action policy in order to
achieve the optimal solution for maximizing the long-term
reward (cumulative reward in the long run) of the system [16].
Moreover, DRL has recently been proposed by DeepMind to
overcome the limitations of RL for solving problems with
large scale of system states [17]. Through taking advantages
of deep learning during the learning process, DRL can further
solve the problem with high dimensional input. Inspired by
the powerful tool of DRL, we aim to apply it to solve the
long-term optimization problem of dynamic switch controller
mapping. The system performance of the objective is mod-
eled as the reward in MDP and the agent can devise the
optimal mapping decision as the action policy for solving
it. Particularly, we adopt a popular DRL algorithm-Deep
Q-network (DQN) in the switch controller mapping design.
The contributions of the paper are summarized below.

• The dynamic switch controller mapping problem is pro-
posed to optimize the long-term (cumulative perfor-
mance in the long run) overall system performance in
terms of switches’ response time, controllers’ load bal-
ancing and system stability considering the dynamics
of network topology including both controllers’ and
switches’ dynamics.

• Themapping problem ismodeled as aMDP, inwhich the
state, action and reward in MDP are formulated. Then a
DQN based switch controller mapping algorithm is pro-
posed for solving the long-term optimization problem.

• A simulation platform is established to validate the
proposed strategy with different input parameters. The
proposed DQN algorithm is compared with the map-
ping method without taking the long-term system
performance into account. In addition, the mapping
approaches which consider switches’ response time
and controllers’ load balancing respectively are also
compared.

The rest of the paper is organized as follows. Section II
introduces the related work. The system model and design
objective are presented in Section III. Section IV presents the
DQN based switch controller mapping approach. Numerical
results are shown in Section V. And section VI concludes the
paper.

II. RELATED WORK
In this section, related work is introduced. We first present
the related work on controller placement and switch con-
troller mapping problem. Then the application of DQN and
Q-learning(QL) in network resource management is also
elaborated.

A. CONTROLLER PLACEMENT
The problem of controller placement is to determine the con-
trollers’ location. In multi-controller SDN system, the con-
troller system design and the controllers’ placement have
been investigated in many research works [3], [6]–[8].
In [3], the controller placement design problem has
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been investigated. The impact of network topology and the
placement of controllers on latency were analyzed. And the
paper concludes that the reaction bounds, metric choices
and network topology are the three factors which affect the
placement of controllers. In [6], the distributed design of
controller system has been investigated, which makes use of
the local algorithms in distributed computing for enhancing
SDN controller coordination. In [7], the controller placement
algorithm is proposed for solving the number and the location
of controllers’ placement while satisfying the performance
metrics, such as latency and convergence time. Particularly,
the problem is modeled as standard graph theory problems
in forms of K-median and K-center, to which the com-
plexity of the optimal solution is NP-hard. And a heuristic
K-critical algorithm has been proposed which outperforms
the traditional heuristic K-median and K-center solution.
In [8], heuristic approaches have been proposed to solve
the controller placement problem in large scale SDN net-
works. A Pareto-based optimization framework is proposed
for achieving different performance metrics.

For further improving the reliability design of SDN,
the controller placement considering reliability design are
further investigated in [18], [19]. In [18], the problem of
determining the controller placement policy is solved for
satisfying reliability requirement given links and switches’
failure probability. The problem is modeled as a NP-hard
problem and heuristic solutions are proposed to solve the
problem. Similarly, in [19], a fault tolerant controller place-
ment problem was formulated, in which the objective is to
identify the placement of controllers for minimizing the cost
while satisfying reliability requirement. Heuristic solution
has been proposed to solve the problem. However, the above
research work focusing on the placement of the controller has
not considered the dynamic mapping between controllers and
switches.

B. SWITCH CONTROLLER MAPPING
The switch controller mapping problem is to dynamically
assign the switch controller mapping relationship based on
network environment after the controllers have been placed.
For solving the switch controller dynamic mapping problem,
several research works have been proposed [9]–[15], [20].
In [9], an elastic distributed controller architecture is pro-
posed, in which the controller can be dynamically justified
based on the traffic. The proposed solution monitors the net-
work performance and dynamically migrates the switch once
the load is imbalanced. In [10], [20], the switch controller
mapping problem is proposed for maximizing the sum of
network utility of all controllers. And a distributed algorithm
has been proposed for solving the optimization problem.
In [11], the switch controller mapping was modeled for
minimizing the average response time. A genetic algorithm
has been proposed to solve the optimization problem heuris-
tically. In [12], the switch controller mapping is proposed
by considering the perspective from both the controller and
switch. The status of the controller and switch is considered

at the same time. A matching list is constructed accordingly,
from which the mapping decision is made through mutual
selection. However, the above research works only consider
the switch controller mapping problem based on the instan-
taneous network environment information and instantaneous
system performance.

More recently, a few research works have been proposed
in which long-term performance are considered. In [13],
the SDN controller assignment problem is solved for min-
imizing the long-term operating, maintenance and switch-
ing cost considering the dynamic changing of work load.
An algorithm based on randomized fixed horizon control
theory has been proposed, in which the long-term optimiza-
tion is divided into a set of short-term optimization problem.
In [14], a distributed switch controller dynamic orchestra-
tion problem including controller activation/deactivation and
switch controller mapping is solved forminimizing long-term
system cost. Stochastic optimization theory is applied to solve
the multiple timescale optimization problem for adapting
dynamic traffic variation. In [15], a dynamic control plane is
proposed to minimize the long-term flow-setup and control
plane adaptation cost for adapting dynamic traffic require-
ment and distribution. Multi-period optimization problem
is established, which is decomposed into smaller instance
solved by simulated annealing. However, the above works
only tackled the problem for minimizing the long-term sys-
tem cost considering the traffic fluctuation. Network dynam-
ics, such as the joining and leaving of the controllers and
switches due to network failure or topology dynamic have
not been considered.

C. APPLICATION OF DQN/QL IN NETWORK RESOURCE
MANAGEMENT
In the process of RL, the learner (agent) interacts with the
environment and learns the optimal policy for achieving the
maximum long-term cumulative performance. Throughout
the process, the agent intends to make decisions to maxi-
mize the expected benefit. Particularly, at each time instant,
the agent gathers the state information from the environment,
produces an action, and obtains a reward. Then the system
state is transited to the next state, which together with the
reward are used for adjustifying the action. The above process
is repeated for achieving the optimal policy which can maxi-
mize the long-term reward. The process of RL can bemodeled
as an MDP, which is a mathematical framework describing
the decision-making process of the agent. MDP contains four
parts: system status obtained from the environment, action
set, the transition probability from current system status to
the next, and the reward which is immediately obtained when
an action is performed.

The most widely used RL algorithm is the Q-learning
algorithm proposed in [21]. In Q-learning algorithm,
a two-dimensional (state and action) Q-table is used to record
the expected reward. The value of the Q-table is updated from
each iteration in the learning process. Based on the Q-table,
a certain system status can have different expected reward
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TABLE 1. A summary of applying DQN/QL in network resource management.

and the action which can maximize the expected reward is
selected and considered as the optimal policy.

DRL [17] further improves the learning time and perfor-
mance of RL by taking advantages of deep learning dur-
ing the learning process. Deep learning contains a series of
algorithm which can automatically learn the structure of the
data. Particularly, deep learning uses deep neural networks
(DNN), which is neural networks with more than one layer,
for data modeling. Deep Q learning network (DQN) is the
most popular DRL algorithm, which trains DNNs as the
Q-network. During the training process, a DNN is trained
instead of Q-table used in Q-learning. DQN contains the
benefit of both RL and deep learning. The agent can learn to
make decisions and deal with high dimensional input using
DQN.

DQN/QL has drawn increasingly attention to various appli-
cations in communications [22]. However, the application
of DQN/QL to network resource management is limited.
We here list a number of work for applying DQN/QL for net-
work resource management in Table 1. Particularly, we sum-
marize research work in terms of the scenario, system state,
action, reward, agent and the algorithm used.

The authors in [23] propose a DRL approach for managing
resource at the network edge. Particularly, a case for deter-
mining the VM placement is obtained with the consideration
of users’ mobility. The target is to minimize the operational
cost of the process. The location of the VM and the number
of users associated to each base station is set as the system
state, and the action is the base station where the VM is
going to migrate to. The communication cost of both data
transmission and VM migration are used for formulating
the reward function. The agent is assumed to be an abstract
controller in the system. DQN method is applied for solving
the problem.

In [24], DQN is applied for solving a joint task offloading
and energy allocation problem in mobile edge network. The
computation task queue at the mobile user (MU), the wireless
channel state, the energy of the MU, and MU-base station
association are used for system state. Action set includes
the task offloading decision and the energy allocation policy.
Reward is set as a combination of task completing perfor-
mance (execution and queuing delay, drop, failure) and the
economic factors. A central controller is assumed to be the
agent performing the DQN. In addition, due to large space
of the action set, the authors proposed algorithm based on
double-DQN.

In [25], a DQN based offloading scheme is proposed in
ad-hoc mobile clouds. End user acts as the agent by learn-
ing the system information including queuing information
from the users and nearby mobile cloudlets and the distance
between users and cloudlets. Then the agent determines the
number of tasks to be offloaded to each cloudlet. Reward is
set as utility minus cost in order to maximize the sum of task
rate and at the same time minimize the cost of task delay and
economic expense. AndDQN is used for solving the problem.

In [26], a DQN based controller synchronization in dis-
tributed SDN is proposed. The controller in each domain acts
as an agent for making decisions of whether to synchronize
with the controllers in other domains. Accordingly, the time
slot from the last synchronization with the controller in each
domain is used as system state. The domain which is selected
for synchronization is set as action. The objective is to mini-
mize the average path cost (APC), which is the link weight
assignment over the constructed path. DQN is applied for
solving the problem.

In [27], service placement method in SDN is investigated.
The controller runs the algorithm as an agent for determining
the service placement in switches. System state is the deci-
sion of deleting a service in a switch. Action set is defined
as installing a new service when an old service is deleted.
Reward is the benefit for replacing the old service in the
switch with a new service. QL based algorithm is developed
for generating the service replacing decision.

In [28], a QL based multi-objective resource allocation
scheme for Network Function Virtualization (NFV) orches-
tration has been proposed. The NFV controller acts as the
agent for deciding which node and link to use for performing
virtual network function (VNF) placement and route selec-
tion. Reward is a weighted function of node usage frequency,
together with node and link utilization. QL based algorithm
is used for devising the VNF and route selection strategy.

III. SYSTEM MODEL AND DESIGN OBJECTIVE
A. SYSTEM MODEL
The overall system model of switch controller mapping in
SDN is shown in Fig. 1. The physical environment consists of
a list of controllers and switches. Each controller is connected
to multiple disjoint set of switches through OpenFlow pro-
tocol. We use C = (c1, c2, · · · , ci, · · · , cn) to represent the
controller set of the network, in which n is the total number of
controllers. We use S = (s1, s2, · · · , sj, · · · , sm) to represent
the switch set of the network. The switch only connects to
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FIGURE 1. System model of switch controller mapping in SDN.

one of the controllers. And Nci is denoted as the number of
switches connected to controller ci. d

sj
ci represents the distance

for mapping the switch sj to controller ci. The controllers’
system follows a hierarchical SDN control structure [6]. The
location of the controllers has been selected and remains the
same once selected. The number of controllers in the system
is fixed. However, the controllers may encounter failures in
which the failed controller(s) belong to set C ′. In addition,
we assume that each controller has fixed capacity, which lim-
its the number of attached switches and denoted as Wci . The
switch arrives at the system due to the expanding of switch
equipment. The switch may also leave the system due to the
switch local failure. The controller can also leave the system
due to controller failure. If the controller encounters any
failure, then the switches which were originally connected to
the failed controller are remapped. Table 2 summarizes the
notations used in the model.

The mapping decision module is assumed to be executed
on a centralized management plane, e.g., a centralized con-
troller. The mapping decision module can obtain the system
state information from the network environment, i.e., the
physical network. The obtained system information includes
both switch features and controller features. Such information
is then passed to the mapping decision module for generating
mapping decision. Then, the mapping strategy is received by
the control plane of the network, based on which the switch
controller mapping relationship is established.

B. DESIGN OBJECTIVE
Based on the above system model, the dynamic mapping
strategy is performed considering the network topology
dynamic process of both switches and controllers. The objec-
tive is to devise the switch controller mapping relationship
χ (C) to achieve the optimal long-term cumulative system
performance including the switches’ response delay, the con-
trollers’ load balancing and controllers’ failure punishment.
One thing to be noted is that during the optimization pro-
cess, the mapping decision impacts not only the current
system performance, but also the future system performance.

TABLE 2. Key notations.

Accordingly, the dynamic mapping process is decomposed
into multiple stage decision process with time duration 1T
for each period. At each time slot t , we denote B1(D(t))
as the benefit of the controller response delay for each
switch, B2(U(t)) as the benefit on the controller utilization,
and B3(P(t)) as the benefit on system stability related to
controller failure. And we use F() as the overall benefit
function. Mathematically, the objective is expressed as

max

(
T∑
t=1

F(B1(D(t)),B2(U(t)),B3(P(t)))

)
. (1)

which is to maximize the accumulation of the overall benefit
function F(B1(D(t)),B2(U(t)),B3(P(t)) over a long-term
time period T . The benefit of response delay, controller
utilization and system stability denote system performance of
response delay, controller utilization and system stability with
specific numerical values, the overall benefit function F() of
which the system intends to maximize. The numerical value
of the system performance is generated as reward. The details
of the overall benefit function F() and benefit functions
B1(), B2() and B3() are illustrated in Section IV Eqn. (7),
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FIGURE 2. An example of the benefit of time average system performance consideration.

(4), (5) and (6). Particularly, the benefit function of response
delay is declared as an inverse function of delay. The benefit
function of controller utilization is an inverse function of
controller utilization. The benefit function of system stability
is an inverse function of affected switches due to controller
failure. The overall benefit function is a weighted function
of B1(), B2() and B3().
In the above problem, the network dynamics model is

unknown to the decision module. The objective is to learn the
network environment and obtain the optimal mapping control
policy. In addition, we have the constraint that the switch can
only be mapped to one controller over the process.

In the above design, we need to consider current system
performance to make decision. In addition, we also make
mapping decisions considering the future system perfor-
mance. We illustrate the advantages considering long-term
system performance in Fig. 2.

Suppose that there are two controllers A and B. At the
start of the process (time instant t1), switch c is mapped to
controller B according to the mapping strategy. Based on the
overall benefit of the system, the reward at t1 is assumed to be
2+1, which is the sum of reward of controller switch response
delay and load balancing. At time instant t2, another switch d
joins the system.Without long-term consideration, the system
decides to map the new switch based on the instant system
reward. Suppose connecting switch d to controller B can lead
to a reward as 1.5 + 1.5 = 3, which is the sum of reward of
controller switch response delay and load balancing. While
connecting switch d to controller A can lead to a reward as
0.5+0.5 = 1 (shown in orange box), since the delay between
switch d and controller A is larger and connecting to A will
lead to worse load balancing performance. With only consid-
ering the current system reward information, the system will

choose to map switch d to controller B for better reward for
the current time instant.

However, for the next time instant t3, the network situation
may change. For example, a failure may occur in controller B.
Then the newly joint switch and the original connected
switches need to reconnect to controller A. However, such
switch migration reduces the overall system performance,
leading to reduced reward of the system. Suppose at time
instant t3, no more switch arrives at the system. Due to
controller failure, switch c and d need to be remapped. The
reward now is decided by the system stability, which reflects
the cost of reconnecting the switches. Suppose the reward
is −6, since two switches need to be remapped. On the other
hand, with the consideration of long-term performance of
the system, the system can learn the network dynamics. And
at time instant t2, the system connects newly joint switch
to controller A. This leads to a smaller reward than the
former scheme with a value of 1. However, for the next time
instant t3, the failure of controller B has less impact of the
system, thus resulting in larger value of reward at time t3 with
a value of−3. Through considering the long-term cumulative
reward by summing over the three time instants, the latter
approach can lead to better performance (reward=1) than the
former approach (reward=0). As shown in Fig. 2, the orange
curve (considering the long-term system performance) can
lead to better long-term system performance than the blue
curve in the long run.

IV. DQN BASED SWITCH CONTROLLER MAPPING
APPROACH
In this section, we present the design of the DQN based
switch controller mapping approach. Firstly, we present the
MDP formulation of the switch controller mapping problem.
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Then based on the MDP model, we present the DQN
algorithm.

A. MDP FORMULATION
MDP is used for describing the optimal control problem
as in discrete stochastic version [16]. In our problem for
controller/switch mapping, the objective is to devise the
switch controller mapping relationship to achieve the opti-
mal long-term system performance. The dynamic mapping
process is decomposed into multiple stage decision process,
which is modeled as a discrete stochastic version of the
optimal control problem consisting a sequential mapping
decision. The mapping decision has an impact on the system
current performance and also the subsequent performance.
Thereby, MDP can be applied directly for modeling the
controller/switch mapping problem.

To be more specific, the mapping decision module works
as the agent in the MDP. The agent interacts with the SDN
network continuously. Then the agent makes mapping deci-
sions (actions) and accordingly, the network status changes
and new network status information is sent back to the agent.
System performance with specific numerical value is gener-
ated as rewards, which the agent intends to maximize over
time by generating mapping policy.

In the following, the details of the state S, action A and
reward R in the MDP model are presented.

Modeling of the system state S: The system state in
the framework at time instant t includes mainly two parts:
the controller features and the switch features. We use dci
to represent the distance of mapping the current switch to
each controller ci. The switch and controller are assumed
to be connected through the shortest path algorithm. The
switches which have already been connected to the controller
may leave the system due to switch failures or mobility. The
number of the left switches in controller ci is denoted as lci .
In addition, we use q to represent the number of arrived
switches to the whole system. And we use binary variable stci
to represent the working status of the controller at t . We use
1stci as the variation of the working status of the controller
at t . Particularly, we have

1stci = stci − s
t−1
ci , (2)

in which the value of 1stci can be 0, 1 or −1. 0 represents
that the status of the controller remains the same. 1 means
the controller which has failed previously becomes available.
And−1 means the controller which was available fails in the
current time instant t .
We assume that the time duration between t and t + 1 is

small enough that only at most one switch arrival exists within
the time interval. The arrival process of the switch follows
Poisson process. Therefore, q is a binary variable depending
on the arrival rate of the Poisson arrival process pt , which is
a time varying parameter. Note that the arrival rate refers to
the arrival rate of newly joint switch which is added to the
network topology. This corresponds to the network dynamics
in terms of switch. When the controller lcf is failed at time

instant t , the attached switch needs to be remapped. When
the controller lcf fails, the attached switches which are con-
nected to the failed controller need to be remapped to other
working controllers. During the remapping process, there are
still newly arrived switches joining to the whole topology.
Therefore, the mapping decision module needs to process
both the disconnected switches and newly arrived switches.
And in the proposed system, the disconnected switches which
were forced to be remapped are being processed first. Then,
mapping decisions for the newly joint switches are generated
by the mapping decision module.

The reason that we guarantee one switch arrives between
the time interval is because for Poisson arrival process, if the
sampling time is small enough, the probability that two or
more switch arrivals in the interval can be neglected. In prac-
tice, the switch arrival pattern is measured. Then the interar-
rival between the switch arrival time can be obtained, based
on which we can select the sampling time to be smaller than
the minimum value of the interarrival time for guaranteeing
that one switch arrives between the time interval.

Note that although OpenFlow has a mechanism to deal
with failed controllers that activates a secondary controller,
there are mainly two differences of the secondary controller
approach comparing with the proposed scheme. First, in the
design of secondary controllers, main controllers are respon-
sible for managing the relationship of the mapping of switch
to the secondary controllers. Secondary controller is activated
when the main controller delegates the control to the sec-
ondary controllers based on its own working information.
In the proposed approach, the mapping decision module
is a centralized module, which makes mapping decision
based on the whole system environment. Second, in our pro-
posed approach, the mapping module can learn the network
environment dynamics and generate the mapping decision
based on the interaction with the network for achieving the
long-term system performance. However, no research work
in secondary controller mapping area has been designed for
achieving this goal.

In summary, the system state which is obtained by the
agent/mapping decision module at time instant t is presented
as

st =
(
nt ,N t

ci , s
t
ci ,1s

t
ci , l

t
ci , q

t , pt , d tci
)
. (3)

The state of the system contains two parts. The first four
parameters nt ,N t

ci , s
t
ci ,1s

t
ci describe the controllers’ dynamic

state, including the number of controllers in the system,
the number of switches attached to the controller and the
working status of the controller. The last four parameters
l tci , q

t , pt , d tci are related with the switches’ dynamic state,
including the leaving and arrival status of the switches and
switches’ distance to the controllers. The above set of system
state models the dynamics of the network topology.

Modeling of the action set A: The action set of the MDP
reflects the mapping relationship between the switch and the
controller. In this case, the action set at = {c1, c2, · · · , cn}
is modeled as the controller to which the switch is mapped.
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The action set has a dimension of n, which is the total num-
ber of controllers in the system t . For easy implementation,
a fixed number of action set is used n. However, when failure
occurs, the failed controller cannot be selected so the actual
available controller set nt ≤ n.
Modeling of the reward R: The objectives of the switch

controller mapping mainly include three parts: to reduce the
response time of the switches, to balance the load for the
controllers and to enhance the system stability by reducing
the controller failure impact. In DQN design, the algorithm
aims to maximize the long-term system reward. Therefore,
the first portion of the reward which reflects the response time
of the switch is mathematically presented in Eqn. (4) as

r1 = B1(D(t)) =
1
dci
, (4)

which is an inverse function of dci . By using the above
function, the reward r1 decreases with the increasing of the
distance. This can guide the DQN module to generate the
switch controller mapping with smaller response time.

The second portion of the reward is for load balancing.
In this part, the aim is to minimize the maximum utilization
of the controller for achieving the overall balance of the
controllers’ load. Mathematically, the reward is represented
in Eqn. (5) as

r2 = B2(U(t)) =
1

γ max{
Nc1
Wc1

, · · · ,
Nci
Wci
}

, (5)

where the capacity of controller cn is denoted as Wcn . γ is
a punishment factor for the controller utilization. When the
controller utilization goes to 1, the reward is the most pun-
ished since the value of r2 decreases dramatically. By setting
this, we avoid the situation of the overloaded controller and
ensures the balance of the controllers. This is because if
the case of the extreme case of the controller utilization is
under control, the other controllers’ utilization must be under
control.

Although the switch only asks the controller for unknown
packets, there are several reasons that the flow can still cause
possible high processing delay in a controller. First, new
arrival flowmay result in high delay in a controller. It is shown
that in the worst case, a network with 100 switches can have
10M new flows arrivals per second [29]. On the other hand,
an SDN controller-NOX can handle around 30k flow initi-
ation events per second [30]. Thereby, multiple controllers
are needed to handle the spike of new traffic flow. Second,
increasing the number of switches beyond the threshold can
result in controller throughput degrading due to the increased
contention across threads of controllers, TCP dynamics, and
task scheduling overhead within the controller [31]. Third,
the advanced functions of the controllers, such as congestion
control, traffic engineering, load balancing, security and fault
tolerance [32], [33], limits the number of switches a controller
can manage.

The third portion of the reward involves the punishment
of the failed controller. If the controller fails, the switches

connected to the controller need to migrate to other con-
trollers, resulting in the migration cost and QoS violation
cost. The punishment of the migration is proportional to the
total number of attached switches for the failed controllers.
Mathematically, the reward of this portion is modeled in
Eqn. (6) as

r3 = B3(P(t)) =
∑
cn

min(0,1scn )× Ncn . (6)

Here the reward is a summation over all controllers. If the
value of 1scn equals to −1, the controller cn which was
available fails. Therefore, the number of switches Ncn which
were attached to the controller cn needs to be remapped. Thus,
the reward of r3 is negative, resulting in punishment on the
reward. When the value of 1scn equals to (0, 1), there is no
punishment on the system since this indicates the controller
status remains the same or the controllers become available.
This will not change the previous mapping switches, thus
resulting in neither punishment nor benefit.

To summarize, the overall reward function assuming con-
troller ci is selected is mathematically presented in Eqn. (7)
as

rt = F(B1(D(t)),B2(U(t)),B3(P(t)))

=

α × 1
dci
+ β ×

1

γ max{
Nc1
Wc1

, · · · ,
Nci
Wci
, · · · ,

Ncn
Wcn
}


× η(sci )+ δ ×

∑
cn

min(0,1scn )× Ncn , (7)

in which η is a function reflecting the benefit for selecting
controller ci. It is mathematically modeled in Eqn. (8) as

η =

{
η′ when sci = 1
η̃ when sci = 0

(8)

Here, we have η′ > 0 and η̃ < 0. By setting a negative
reward for the failed controller, the selection of failure con-
troller is avoided. In addition, in Eqn. (7), three adjustable
weight parameters α, β and δ are used to represent the impor-
tance of the three portions. Accordingly, based on the impor-
tance of the three portions in the system design, the reward
can be dynamically changed. This adds flexibility in the
system design since reward function can reflect the change
of the system target directly.

Based on the reward function rt , the future discounted
return R at time t is defined in Eqn. (9) as [17]

Rt =
T∑
t ′=t

µt
′
−trt

=

T∑
t ′=t

µt
′
−t (F(B1(D(t)),B2(U(t)),B3(P(t)))), (9)

which is the sum of the overall benefit rt = F(B1(D(t)),
B2(U(t)), B3(P(t))) discounted by µ at each time-step t until
the mapping process terminates at T . µ is the discount factor
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where 0 ≤ µ ≤ 1 and µ reflects the trade-off between the
current and future reward.

Then, the design objective of problem Eqn. (1) can be
achieved by generating the policy for achieving themaximum
expected return Q∗(s, a) expressed as [16], [17]

Q∗(s, a) = argπ maxE[Rt |st = s, at = a, π], (10)

which is the optimal state-action value function achieved for
system state s and action a. And π∗ is the switch controller
mapping policy for achieving the maximum expected return
Q∗(s, a).

B. DQN BASED ALGORITHM
The DQN algorithm contains two parts: offline training
part and online mapping part. In the offline training part,
the DQN algorithm obtains the network state information
with the aid of SDN controllers. The controller behavior and
switch behavior are gathered, based on which a Q-network
is trained by the DQN algorithm. Then during the online
mapping process, the trained Q-network is used for gener-
ating the online-mapping decision. For the online mapping
part, the network environment information is obtained by the
SDN controller. Then such information is modeled as state
parameter st as in MDP. Then multiple Q values correspond
to different actions are generated, from which the maximum
value is selected. The online mapping process of DQN is
fast and efficient. Therefore, it can be used for generating
real-time mapping decision.

Note that as a representative machine learning (reinforce-
ment learning) method, DQN can learn the network environ-
ment information for producing the optimal policy for solving
the MDP problem with unknown network dynamics model.
By selecting properly on the training parameters, DQN algo-
rithm can achieve the optimal policy. Therefore, the propose
DQNbased algorithm is the optimal control policy for solving
the MDP problem.

Based on the proposed MDP model, the target of solving
the switch controller mapping problem is to find the optimal
policy π∗ which can find Q∗(s, a). The optimal policy can be
generally found by repeatedly updating the Q value using the
following Bellman equation [16] as

Qt+1(s, a) = Es′ [r(s, a)+ µmax
a′

Q∗t (s
′, a′)|s, a], (11)

in which s′ is the state in the next time-step, a′ is the possi-
ble action in the next time-step t + 1. Such value iteration
converges to the optimal Q∗ when t goes to infinity.

In the proposed strategy, we propose to use DQN other
than QL for two reasons. The first reason is due to the high
system status dimension. In QL approach, Q table is trained
during the learning process. The Q table is a two-dimensional
matrix, in which the row element corresponds to the system
status and the column element represents the action space.
Q-table is fast and accurate when the state and action set
is relatively small. However, when the state and action set
is large, Q-table is impossible to use and implement. In the

problem of dynamic switch controller mapping, the system
status includes both switch and controller features, and the
size of the status grows exponentially with the size of the
controller. Thereby, it is impossible to use such large system
state in the Q-table. In DQN, a Q-network is trained through
a deep learning model. The Q-network is modeled by a deep
learning model, which can describe the data features and
provide automatic learning from data structure [22]. The
Q-network used in the DQN algorithm for switch controller
mapping is DNN, which is a neural network with two or more
hidden layers. Therefore, even the system state is large, the
Q-network can be trained by using part of the system state.
This can solve the problem of large system space.

The second reason we use DQN is because in Q learning,
the algorithm requires the agent to observe all possible system
status during the training process for generating the Q-table.
However, in the mapping problem, the system status may
be random. The switch arrival process and the controller
status are unknown. And the pattern for their performance
is unknown. Thereby, DQN is necessary since even the sys-
tem status is partially known during the training process,
action can be generated during the decision process by using
Q-network.

The overall module design of the DQN-based switch con-
troller mapping is shown in Fig. 3. In the training process
shown in the red dashed line box, the objective is to generate
a DNN based Q-network, in which the input is environment
s and action a. The output is the value of Q(s, a). The details
for generating the Q-network during the training process is
further illustrated in Algorithm 1.

Then once the Q-network is generated, it can be applied
in the switch controller mapping process as shown in the
green dashed line box. During the mapping process, by using
the trained Q-network and the input network environment
state st and available action a1t , a

2
t , · · · , a

n
t , multipleQ values

can be generated as Q(st , a1t ),Q(st , a
2
t ), · · · ,Q(st , a

n
t ). Then

the optimal mapping strategy can be found by choosing the
action a∗ which can lead to the maximum value among the
Q values.Mathematically, themapping action is chosen based
on Eqn. (12) as

a∗ = argmax
a
Q(s, a). (12)

Furthermore, the training algorithm of DQN based switch
controllermapping is illustrated inAlgorithm 1. At the start of
the algorithm, the size of the replay memory D is initialized.
In addition, the initialQ-network and targetQ-network is ini-
tialized with parameters θ and θ ′. We use DNN as the model
of Q-network. Then, the body of algorithm is repeatedly
executed for a number of T episodes. During each episode,
another loop starts with randomly generated system status.
The inner loop iterates for a number of S steps. Then, the clas-
sical ε-greedy algorithm is used for finding the action set.
That is, with the probability of ε or 1−ε, action at is randomly
chosen among the action set or chosen by maximizing the
value of Q(st , at ). Particularly, the value of ε starts at 1 at
the beginning of the training step. And it decreases with the
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FIGURE 3. Module design of the DQN-based switch controller mapping.

episode. The reason is because the agent knows little at the
beginning of the iteration. Thereby, the agent tends to search
randomly from the action set since the action leading to the
best cumulative reward is uncertain. With the increasing of
the iteration, the agent learns more of the network, thereby,
it makes more sense to select the action which can produce
the best Q value.

Then, based on the selected at , the next system state
st+1 is obtained. Accordingly, a four tuple (st , at , rt , st+1) is
generated, which is stored in the memory pool D and used
for training the Q-network. For improving the independence
of the data samples, minibatches of the four-tuple set are
randomly selected fromD. Therefore, the DNN can be trained
by using both the historical data and recently generated data,
which improves the independence of the training data. Then
such selected data are used for training DNN parameter θ
using stochastic gradient descent method throughminimizing
the loss function shown as

[r + µmax
ak+1

Q′(sk+1, ak+1; θ ′)− Q(sk , ak ; θ )]2. (14)

Then for a number of M steps, the parameter θ ′ of the target
network Q′ is adjusted with Q-network parameter θ . The
reason for updating Q′-network after M steps is the stability
consideration [17]. The parameter of Q-network is copied
to the target network Q′-network after every M steps. And
for the next M steps, the Q′-network is used for perform-
ing the stochastic gradient descent method. This reduces

the correlation between the target Q′-network and esti-
mated Q-network and increases the stability of the DQN
algorithm [22].

DQN based switch controller mapping can be applied into
the real SDN system naturally, thanks to the separation of for-
warding plane and control plane. During the training process,
the local SDN controller can collect the basic network envi-
ronment statistical information (switch statistics) through the
southbound interface. Then such information is delivered to
the mapping decision module through the northbound inter-
face. The mapping decision module can either be a central-
ized server which is connected to the SDN controllers through
northbound interface. Or it can connect to a root controller
through the controller northbound interface in the hierarchical
SDN structure [6]. In addition, the mapping decision module
can obtain local controller statistically information. Then
the mapping decision module acts as the agent in MDP for
training the Q-network.
During the mapping process, the local controllers and the

mapping decision module collect the switch and controller
behavior information respectively. Then based on the trained
Q-network, the mapping decision module acts as the agent
for generating control policy. Then the mapping policy is
distributed through the northbound interface to the local con-
trollers. Finally, themapping relationship is delivered through
the southbound interface of the local controllers. The separa-
tion of forwarding and control plane in SDN system ensures
the implementation of the proposed DQN.
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Algorithm 1 Training Algorithm of DQN Based Switch
Controller Mapping
1: Input: MDP models
2: Output: Switch controller mapping policy
3: Initialize the target Q-network as Q′ with randomly cho-

sen weight parameter θ ′

4: Initialize the Q-network as Q with randomly chosen
weight parameter θ

5: Initialize the size of the memory pool D
6: for Each episode 1, · · · ,T do
7: Randomly select an initial state s0
8: for Each step 1, · · · ,S do
9: With probability of ε, randomly choose an

action at
10: With probability of 1 − ε, choose an action at =

argmaxat Q(st , at |θ )
11: Based on the chosen action at , obtain current reward

rt and next state st+1
12: Store the (st , at , rt , st+1) into the memory pool D
13: Randomly select mini-batches from D as samples

{(sk , ak , rk , sk+1)}
14: Perform gradient descent regarding with parameter

θ for minimizing the loss function:

[r + µmax
ak+1

Q′(sk+1, ak+1; θ ′)− Q(sk , ak ; θ)]2.

(13)

15: For everyM steps, reset Q′ = Q.
16: end for
17: end for

C. ALGORITHM COMPLEXITY
The algorithm complexity of DQN contains two parts:
the off-line training part and on-line mapping part. In the
off-line training part, the algorithm complexity is expressed
as O(T ∗ S), which is proportional to the overall training
steps. We show that the algorithm can converge within a
certain number of training steps in the next section. In the
on-line mapping part, the algorithm complexity is displayed
as O(n∗m), where n is the number of controllers and m is the
number of switches.

V. NUMERICAL RESULTS
A. SIMULATION SETTINGS
A simulation platform is established for verifying the perfor-
mance of the proposed framework. The simulated network
consists of 4 controllers. In all scenarios, the settings of net-
work topology are the same. Each of the controller connects
to a number of switches. Initially, the switch number follows
Gaussian distribution with mean and variance equaling to
15 and 12. The distance between the switch and controller
distributes randomly and uniformly between [1, 15]. The
arrival probability of the newly arrived switch in the system
is assumed to be 0.8. The departure probability of each

controller domain is randomly distributed between [0.1, 0.5],
and the number of left switches is randomly selected
within the range of [1, 4]. The capacity of each controller
is randomly selected between [100, 300], considering the
newly generated flow that a controller can support [29] and
the controller performance degrading when the number of
switches exceeds the threshold [31]. The failure probabil-
ity for each controller is diverse and within the range of
[0, 0.1]. We simulate the proposed approach in two differ-
ent failure cases: Case 1 with failure probabilities set as
[0.01, 0.001, 0.0001, 0.01], and Case 2 with failure proba-
bilities set as [0.1, 0.1, 0, 0]. The weight parameters in the
reward are set to be α = 50, β = 5 and δ = 50,
which are selected through testing for guaranteeing the three
components in the reward in the same order. In addition,
we set η′ = 1 and η̃ = −10. And the punishment factor

of the controller utilization is γ = 2
max

( Nci
Wci

)
. The values of

the simulation parameters are summarized in Table 3.
Since the Q-function in DQN needs to be trained by deep

learning approach, the selection of the Q-network model
and training parameters is important for approaching the Q
network well. In our simulations, we select DNN with two
hidden layers as the Q-function model. During the training
process, the learning rate is set to be 0.001. The discount
factor µ is set as 0.9. The Q-function updating stepM is 100.
The size of memory poolD is 5000. The size of themini batch
is 24. In the ε-greedy method, the initial value of ε is set as 1,
since at the beginning of the training, the agent knows little
about the network and tends to select the action randomly.
Then the value of ε reduces by 0.001 after each training step
until it reaches 0.

To verify the proposed framework, the proposed DQN
approach is compared with four other approaches. 1) Greedy
approach. In this approach, the system selects the mapping
controller based on the instantaneous system performance
using Eqn. (7). 2)Random approach. In this approach, the sys-
tem randomly maps the switch to the controller. 3) Lowest
Latency (LL) approach. In this approach, the system gen-
erates mapping decision purely based on the distance
between switch and controller. 4) Best Equilibrium (BE)
approach. In this approach, the system generates mapping
decision purely based on the load of controllers. Switch will
select the controller which can lead to the minimum value of
max{

Nc1
Wc1

, · · · ,
Nci
Wci
}. For all the approaches, the mapping pro-

cess in the simulation is obtained by averaging over 10 time
cycles, each ofwhich contains data set of 1000mapping steps.

Based on the above simulation platform, we perform exten-
sive simulations and generate results in terms of three aspects:
controller switch response latency, system equilibrium and
system stability. The controller switch response latency is
measured using the controller switch distance. The equilib-
rium performance is measured as the maximum value of con-
troller utilization max{

Nc1
Wc1

, · · · ,
Nci
Wci
}. The system stability is

measured as the switches affected by the failed controllers∑
cn min(0,1scn ) × Ncn . In the following, results in the
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TABLE 3. Simulation parameters.

training phase of DQN approach are first plotted. Then the
simulation results during the mapping process are presented
and compared across different approaches.

B. RESULTS IN THE TRAINING PHASE
Fig. 4 plots the loss results versus the training steps during
the training process of the DQN algorithm. It is shown that
for all the cases, the loss value decreases to almost 0 with
the increasing of the training steps. This demonstrates that
DQN algorithm converges with the increasing of the training
steps for all the scenarios. In addition, it implies that the
algorithm converges within a reasonable training step. For all
the simulated scenarios, the algorithm can converge within
4 ∗ 105 decision steps.

FIGURE 4. Loss versus the total training steps in the training phase.

FIGURE 5. Average reward versus training episode in the training phase.

Fig. 5 displays the average reward results versus the train-
ing episode during the training process of the DQN algorithm.
It can be observed that the average reward results approach
to the maximum after around 150 episodes. This again indi-
cates that the training process converges after an acceptable
training episode. In addition, it can be observed that the value
of the average reward in case 2 is much smaller than that of
case 1 due to increasing value of failure probability.

C. CONTROLLER SWITCH RESPONSE LATENCY
The cumulative controller switch response delay versus time
is presented in Fig. 6. It can be observed that for both cases,
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FIGURE 6. Cumulative controller switch response latency versus time in
the mapping phase.

the proposed DQN approach presented in red solid line shows
better performance than greedy approach (green solid line),
random approach (blue solid line) and BE approach (purple
solid line). The LL approach (black solid line) shows the
smallest value in latency, since switch controller mapping is
decided purely on the controller switch latency. The DQN
approach shows slightly better latency results than Greedy
approach. The results of BE approach and random approach
perform the worst and are very close, since no controller
switch latency is considered in these schemes.

D. SYSTEM EQUILIBRIUM
The cumulative system equilibrium performance versus time
is depicted in Fig. 7. The simulation results of the BE
approach have the least value of system equilibrium, since
mapping decision is generated by only considering system
equilibrium. The Greedy approach has slightly larger sys-
tem equilibrium value. The results of random approach and
LL approach are very close and perform the worst, since
no load balancing factor is considered during the mapping
process. The results of DQN approach lies in the middle,
since the DQN approach sacrifices system equilibrium for
achieving system stability. For example, DQN approach may
map switch to controllers which has less fail probability.
Therefore, the system equilibrium performance of DQN is not
as good as BE approach and Greedy approach.

FIGURE 7. Cumulative system equilibrium performance versus time in the
mapping phase.

E. SYSTEM STABILITY
Simulation results for the cumulative system stability versus
time are plotted in Fig. 8. It can be observed that the system
stability of the DQN approach performs significantly better
than all other approaches. For example, during the running
time, the gap of the affected switches between the DQN
approach and BE approach is around 6 in case 1 and around
20 in case 2. The reason is because by generating the mapping
decision based on the system long-term performance and
learning the system status from the environment, the system
can avoid mapping switches to possible failed controllers.
This demonstrates the effectiveness of the DQN approach
in protecting overall system stability. In addition, it can be
observed that the system stability of case 2 is much lower
than that of case 1 due to the increasing value of the failure
probability in case 2.

To summarize, the compared algorithmmay perform better
than the proposed DQN in some specific task, such like equi-
librium performance and response delay. However, the main
benefit of the proposed DQN approach is to balance the over-
all consideration of response delay, controller utilization and
system stability and to improve the cumulative system perfor-
mance in the long-term consideration. The above simulation
results prove that the proposed DQN approach can achieve
the best system stability performance while maintaining an
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FIGURE 8. Cumulative system stability performance versus time in the
mapping phase.

acceptable latency and equilibrium performance comparing
with other approaches.

VI. CONCLUSION AND DISCUSSIONS
In this paper, a DRL based approach has been proposed for
solving the switch controller mapping problem in order to
optimize the long-term network performance. MDP is mod-
eled and DQN is proposed which can achieve the optimal pol-
icy for achieving long-term system performance in terms of
network latency, load balancing and system stability. Through
extensive simulation results, the proposed DQN method is
proved to achieve the best system stability performance,
while maintaining acceptable latency performance and sys-
tem equilibrium performance comparing with the optimiza-
tion method which performs optimization by considering
only the current instantaneous system performance and the
optimizationmethodwhich considers network latency or load
balancing separately.

With the developing trend of control and forwarding plane
separation of the network, SDN provides a solid and conve-
nient platform for applyingDQN in the network optimization.
The DQN based network optimization can be applied into
the SDN architecture naturally, where the SDN controller
and the mapping decision module can collect the basic
system status and acts as an agent for generating control

policy. Then the control policy can be distributed through
the south/northbound interface to the forwarding engines.
This ensures the implementation of the proposed DQN with
a relatively low complexity. Additionally, the benefit of DQN
on dealing with large and uncertain system status shed light
to solve the network optimization problem in SDN system.
The proposed DQN approach confirms the effectiveness of
the algorithm in terms of long-term system average perfor-
mance and system stability over the traditional optimization
approaches. With the development of Deep RL theory, there
are also other DRL algorithms, which can provide improved
performance than DQN. As a future work, we will consider to
apply these DRL algorithms for solving the mapping problem
in SDN.
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