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ABSTRACT Planar 3-Degree of Freedom (3-DOF) micropositioning stages are widely adopted in many
precision applications for their ability to provide in-plane rotation. However, their motion accuracy is
adversely affected by cross-couplings, model uncertainty, and external disturbances. This work proposes an
optimized robust control methodology based on disturbance estimation to address these issues. Systematic
modeling of a 3-DOF precision micropositioning stage was utilized to develop a nonlinear disturbance
observer-based sliding mode control methodology. This methodology can estimate and compensate the
unavoidable cross-couplings between the major axes of motion. A stability analysis is conducted to
prove the stability of the feedback system when the control approach is combined with the disturbance
observer. A maximum bound on the tracking error is derived through finite-time analysis, and the parameters
that affect this bound are identified. The antlion optimizer algorithm is used to optimize the control parameter
based on the mean square error cost function to eliminate the requirement for manual tuning and to achieve
the best attainable performance. The proposed control method is experimentally demonstrated to track
complex trajectory with less tracking error than the classical sliding mode approach. The main contribution
of this study is the improvement of the trajectory tracking accuracy in multi-DOF micropositioners using an
optimized disturbance observer-based robust control technique.

INDEX TERMS Sliding mode, disturbance observer, metaheuristic optimization, antlion optimizer, microp-
ositioning.

I. INTRODUCTION
Planar Three Degree of Freedom (3-DOF) micro/
nanopositioning mechanisms are essential in fields requir-
ing both translation and orientation correction. Orientation
correction is necessary to align samples with apparatus
in processes such as photolithography, manipulation under
atomic force microscope, micro-assembly, and many more
[1]–[3]. Compliant mechanisms (CM) are typically used in
the design of micro/nanopositioning mechanisms as they
offer several advantages such as monolithic configuration,
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compact structure, high precision, zero backlash, and no wear
[4]–[6]. Compliant manipulators are designed such that flexi-
ble elements’ deformation transforms loads into motions [7].

XY micromanipulators are another planar type mecha-
nisms which have been extensively studied in the literature
as they offer an extensive range of motion; a few examples
can be referred to [8]–[11]. Improving rotational stiffness
and the utilization of decoupling mechanisms are usually
employed in those mechanisms to improve the motion range
and reduce parasitic motions such as cross-coupling and
in-plane rotation. Despite the popularity of decoupling mech-
anisms that are used within XY micropositioners, in prac-
tice, cross-coupling and in-plane rotation still occur in linear
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motions due to assembly and manufacturing errors. These
induced errors severely degrade motion accuracy, and thus a
rotational compensation is required. The extra DOF offered
by the planar 3-DOF micro/nanopositioning mechanisms can
easily be used for orientation correction and manipulation to
overcome these issues [12].

Planar 3-DOFXY2mechanisms have coupled kinematics,
which makes them inherently more challenging to control
than the decoupled XY mechanisms. The strongly present
cross-axis coupling in these mechanisms has a substantial
impact on the positioning accuracy. Moreover, it can even
cause actuator damage if it was large enough [13]. The
adverse effect of coupling is not only limited to flexure-based
mechanisms; it was found that it results in mechanical
components damage and excessive wear in sliding parts in
dual-driven gantry systems. This behaviour was investigated
and resolved by synchronizing the motors motions using
advanced synchronization control schemes proposed in [14],
and [15]. In flexure-basedmechanisms, several attempts were
directed towards improving the mechanical design to tackle
the cross-coupling issues. Serial kinematics was considered
in [16] where the θ -axis was serially connected to a decoupled
XY stage. Although this configuration decouples the axes
and simplifies its control, it could result in nonhomogeneous
dynamics. Moreover, the cascaded structure results in large
inertia for the moving stage, which reduces the natural fre-
quency, and hence the maximum attainable speed of the
stage. Another attempt was made to decouple the x and y
motions in [17] using a decoupling mechanism. However,
these motions were still coupled with the θ motion, and the
use of the decoupling mechanism resulted in limited rota-
tionalmotion. Therefore research efforts were shifted towards
resolving the cross-coupling issues by improving control
strategies. Estimation and compensation of cross-coupling
were utilized to improve the motion accuracy effectively.

The intrinsic cross-coupling in parallel mechanisms have
been widely studied in the literature [13], [18]–[20], where
it was handled as unintended motions which act as external
disturbances [20]. Robust control techniques such as Sliding
Mode Control (SMC) are used to reduce these disturbances.
Moreover, SMC is adopted to guarantee a robust system
against uncertainties and unmodeled dynamics [21], [22].
The control gain in SMC is typically set to be higher than the
maximum bound of the expected disturbance to eliminate its
effect. However, this approach results in high chattering phe-
nomena, which is a major disadvantage of this type of control
methods. Several studies have investigated chattering reduc-
tion through the use of disturbance observers [23]. Where in
these methods, the demand on the control action is reduced
and in turns alleviate the chattering. Active disturbance rejec-
tion strategy was proposed in [24] and integrated with back-
stepping and extended state observer to improve tracking
control in nonlinear systems. The approach was applied to
a robotic manipulator, and the results showed improved per-
formance over traditional adaptive control methods. A linear
disturbance observer was used in [25] along with an adaptive

integral terminal third-order sliding-mode controller. The
method was applied to a single-DOF mechanism to achieve
high tracking performance with no chattering. Limited work
has been done in the direction of disturbance observer-based
control for XY2 micro/nanopositioning mechanisms due to
their actuation and sensing complexity. A control approach
was proposed in [26] to regulate a 3-PRR XY2 microposi-
tioning mechanisms; however, as in [25], a linear observer
was used. Another linear disturbance observer that utilized
Extended State Observer (ESO) was proposed in [27] to
control a VCM-based XY2 micropositioning mechanism.
However, ESOs are sensitive to the sampling rate. A high
sampling rate is required to maintain high control perfor-
mance, which sometimes is not feasible due to hardware limi-
tations. Since XY2micropositioning mechanisms are highly
coupled systems and inherently associated with non-linear
cross-coupling, the utilization of linear observers may be
unreliable.

Another issue that associated with the control of
multi-DOF mechanisms is the plethora of the control param-
eters that need manual tuning to achieve the required
performance. Manual tuning is not practical as it might
risk the safety of the system by selecting unstable
or highly-oscillatory parameter combinations. Moreover,
the maximum attainable performance is not guaranteed.
Therefore it is necessary to automate this process using an
optimization algorithm.

Optimization algorithms are categorized into local and
global search algorithms. Local search algorithms, espe-
cially the gradient-based ones, are having a high chance
of trapping in local minima solutions, and their conver-
gence is highly sensitive to initial values. In contrast, global
search algorithms do not suffer from those disadvantages
due to the derivative-free nature of those algorithms. Several
global search algorithms have been proposed in the liter-
ature, such as Genetic Algorithm (GA) [28], Differential
Evolution (DE) [29], Particle Swarm Optimization (PSO)
[30], Spider Monkey Optimization (SMO) [31], and many
others.

These algorithms try to locate the global optima of the opti-
mization problem by deploying several search agents in the
solution space. Those agents follow exploration and exploita-
tion strategies to explore their surroundings and to find an
optimal solution. These strategies are essential to avoid the
local minima, which may result in a premature convergence
in some algorithms. The Antlion Optimizer (ALO) proposed
in [32], is one of these metaheuristic optimization algorithms
that is inspired by the biological behaviour of antlions. It has a
superior advantage over other algorithms as it utilizes global
and local search for its exploration and exploitation phases.
This combination leads to a better exploration of the search
space and rapid convergence to the optimal solution. Hence,
it has been adopted in this work for optimizing the control
parameters. The local optima avoidance and simplicity of
ALO have made it successful in solving several critical opti-
mization problems [33]–[35].
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Sliding mode control method optimization by meta-
heuristic methods has been investigated in several studies.
A classical sliding mode control method with a boundary
layer hyperbolic tangent function was proposed in [36] for
tracking tasks in voltage source converter high voltage direct
current (VSC-HVDC) transmission systems. Classical Mod-
ified Genetic Algorithm (MGA) and PSO were utilized to
optimize the controller gains. However, the use of the tangent
function will cause the tracking error to approach a maximum
bound. This bound was not investigated, and the parameters
that affect it were not identified. In [37], a sliding mode con-
trol was combined with a linear quadratic regulator for trajec-
tory tracking of a helicopter system. The control gains were
optimized using metaheuristic algorithms. The total variance
of the control signal was used in the objective function to
overcome the chattering issue. However, that increased the
tracking error because of the trade-off nature of the selected
objective function. Moreover, the control signal exhibited
large chattering due to the direct use of the signum function.
A similar issue was observed in [38], where the objective
function was based on a trade-off between chattering reduc-
tion and tracking error, which resulted in high chattering in
the control signal. Apart from these studies, the vast majority
of the literature used try and error approach for selecting
sliding mode control parameters, which introduces issues
with suboptimal tracking and high chattering of the control
signal.

Based on what has been discussed, it can be summarized
that linear disturbance observers and manual tuning methods
are not practical to reduce cross-coupling and achieve optimal
performance in XY2micropositioners. Moreover, the bound
of the tracking error in sliding mode control should be iden-
tified when chattering attenuation methods are used, and this
bound should be reduced to its optimal feasible value. Thus,
these factors should be considered and investigated in more
reliable control approaches. The contributions of this work
can be summarized as:
• A disturbance observer-based sliding mode control
method is proposed for tracking tasks in microposition-
ing systems with optimized gains to reduce error bound.

• Nonlinear disturbance observer is utilized to reduce the
demand on the switching control gain to be just higher
than the disturbance estimation error. Thus, that reduces
the chattering effect on the system.

• The time convergence analysis of the robust control
method is investigated, and the error is proved to be
confined within a maximum bound ρ, which can be
reduced by designing the control parameters.

• The parameters that affect his bound are identified and
optimized in a metaheuristic optimization approach to
maximize the tracking ability of the micropositioning
system, and to overcome the chattering issues.

In this work, a slidingmode control scheme based on a non-
linear disturbance observer is proposed to handle trajectory
tracking tasks in XY2 micropositioning mechanisms. This
methodology can estimate and compensate the unavoidable

cross-couplings and reduce chattering pneumonia, as these
two represent significant disadvantages in such mechanisms.
The control parameters are obtained by the antlion optimizer
to achieve optimal performance and to reduce the demand for
manual tuning. The time convergence and stability analyses
are undertaken when this control methodology. Furthermore,
The experimental and simulation results confirm the stability,
robustness, and effectiveness of the proposed control method
in reducing cross-coupling effects and improving the tracking
performance in micropositioning systems.

II. MECHANISM MODELING AND IDENTIFICATION
The planar micropositioning mechanism used in this work is
shown in Fig. 1. It provides two translation and one rotation.
The mechanism consists of threefold rotational symmetry,
where three driving mechanisms are connected to the central
platform in parallel, as shown in Fig. 1c. Each driving mech-
anism is composed of three flexure based joints connected
in series to produce a 3-DOF motion. The first joint pro-
vides an active prismatic motion in the horizontal direction,
while the second joint offers a passive vertical prismatic
motion, and finally, the third one yields a passive rotation.
Voice Coil Motors (VCMs) induce movements in the links.
Wire electric discharge machining was used to fabricate a
monolithic mechanism, where Aluminum 7075-T6 was used
for its reliability. The motions are measured through three
heterodyne laser interferometers to track displacement and
rotation in realtime with high accuracy. Retroreflectors and
external mirrors were used to reflect the laser beams to the
interferometers and compensate for misalignment. The laser
displacements are converted into platform displacements in
realtime and feed into the control approach for control action
calculations. The cross-coupling between the axis of this
micropositioning mechanism poses challenges for tradition
control techniques. Thus an advance control method that
estimates and compensates these uncertainties is necessary.

A. SYSTEM MODELING
Flexure based micropositioners are ideally modeled as a
damped mass where the platform represented as a lumped
mass, and each flexure acts as a spring [39]. Therefore, three
damped mass systems can model the mechanism in this work
where each system corresponds to a degree of freedom. The
overall system dynamics can be described by

Mϔ + Cϒ̇ + Kϒ = F (1)

where ϒ is the displacement vector and it is given by ϒ =
[x, y, θ]T . Mass, stiffness, and damping coefficients are
described by the diagonal matrices M = diag(mx , my, Iθ ),
K = diag(kx , ky, kθ ), and C = diag(cx , cy, cθ ), respec-
tively. Finally, F is the forces and moment vector and it is
given by F =

[
fx , fy, Mz

]
. This vector is related to the VCMs

forces by

F = J−1
T
[fVCM1, fVCM2, fVCM3]T (2)

VOLUME 8, 2020 220891



A. Al-Jodah et al.: Antlion Optimized Robust Control Approach for Micropositioning Trajectory Tracking Tasks

FIGURE 1. The 3-DOF micropositioning system.

where J−1 is the inverse kinematics matrix and it is given
by [40]

J−1 =

 1 0 r
−1/2

√
3/2 r

−1/2 −
√
3/2 r

 (3)

where r is radius of the circumference circle of the stage.
The generated force of the VCM is a combination of coil
force fcoil and electrical disturbances and noise lumped into
a parameter d as follows

fVCMj = fcoilj + dj(t), j = 1− 3 (4)

The overall system can be found from Eqs. (1 - 4) as follows

ϔ = −C′ϒ̇ −K′ϒ +M′J−1
T
(
fT + dT

)
(5)

where C′ = diag( cxmx ,
cy
my
, cθ

Iθ
), K′ = diag( kxmx ,

ky
my
, kθ

Iθ
),

M′ = diag( 1
mx
, 1

my
, 1

Iθ
), f = [fcoil1, fcoil2, fcoil3], and

d =
[
dx , dy, dθ

]
.

Inverse kinematics is typically used to decouple the system,
which facilitates the control of each axis separately [41], [42].

Although this decoupling approach is not perfect, it reduces
the complexity of the control methodology. The residual
cross-couplings are augmented with the disturbance vector
under a lumped disturbance parameter. Based on this method,
the dynamics of each axis of motion can be described by

(mυ +4mυ) ϋ + (cυ +4cυ) υ̇ + (kυ +4kυ) υ

= uυ + δ(t) (6)

where υ represents a given axis (x, y, or θ); the control
action is represented by uυ ; the parameter uncertainties are
given by 4mυ , 4cυ , and 4kυ , and δ(t) represent external
disturbances that may include cross-couplings, sensing noise,
drivers noise, etc. Rearranging the above equation as

ϋ = −
cυ
mυ
υ̇ −

kυ
mυ
υ +

1
mυ

uυ

+
1
mυ

(δ(t)−4mυ ϋ −4cυ υ̇ −4kυυ) (7)

which can be rewritten as

ϋ = −
cυ
mυ
υ̇ −

kυ
mυ
υ +

1
mυ

(uυ + dυ ) (8)
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TABLE 1. Estimated system parameters.

where dυ is the lumped disturbance, and it is given by

dυ = δ(t)−4mυ ϋ −4cυ υ̇ −4kυυ (9)

The dynamics Eq. (8) can be represented as a state space
system as follows[
υ̇1
υ̇2

]
=

 0 1

−
kυ
mυ

−
cυ
mυ

[υ1
υ2

]
+

 0
1
mυ

 (uυ + dυ) (10)

where υ1 = υ and υ2 = υ̇.

B. SYSTEM IDENTIFICATION
The system dynamics were experimentally identified using
the nonlinear least-squares method. A 0.1 V amplitude sinu-
soidal signal with a frequency spectrum from 1-1000 Hz,
and a sampling frequency of 10 kHz was used in open loop,
to excite the system modes. The inverse kinematics was used
to utilize the excitation of each axis separately. The system
dynamics model is given byX (s)Y (s)

2(s)

 =
Gx1(s) Gx2(s) Gx3(s)
Gy1(s) Gy2(s) Gy3(s)
Gθ1(s) Gθ2(s) Gθ3(s)

U1(s)
U2(s)
U3(s)

 (11)

where Gx1(s), Gy2(s), and Gθ3(s) are the intended motions
transfer functions, and the rest are cross-coupling transfer
functions, and U1(s), U2(s), and U3(s) represent the compo-
nents of Eq. (2). Second order models were selected for the
transfer functions in Eq. 11, because they sufficiently repre-
sent the dynamics of the micropositioning stage as evident
from the experimental and estimated frequency responses
shown in Fig. 2. The numerical values of Eq. 11 are given in
Appendix A. The system parameters for the intended motions
were found based on Gx1(s), Gy2(s), and Gθ3(s), and they are
presented in Table 1.

III. CONTROL METHOD DESIGN
The decoupling through inverse kinematics utilized in the
open-loop scheme enabled the modeling of this 3-DOF
mechanism into three separate systems. Thus each axis can
be controlled as an independent system. However, due to
manufacturing errors, motor driver noise and disturbances,
this decoupling approach will suffer from some residual
cross-coupling in each axis which affects the motion accu-
racy. Hence, it is necessary to reduce its adverse effect. The
control method proposed here will handle residual cross-
coupling, uncertainty in parameters, and disturbances as a
lumped disturbance induced in each axis, and it will try to
estimate and compensate its effect. A nonlinear disturbance

observer was used for estimating lumped disturbances present
in each axis of motion. This observer is then augmented
with the sliding mode control approach to improve motion
accuracy. The state-space model in Eq. (10) is used for the
control methodology development.

A. SLIDING MODE CONTROL DESIGN
The design of sliding mode control involves the design
of the sliding surface, and the reaching control law [43].
The system dynamics will be reduced to the sliding surface
dynamics in the sliding mode control method [44]. Thus
the control system specification should be considered when
designing this surface. Since tracking performance is essen-
tial in micro/nanopositioning, a sliding surface that contains
an integral action is necessary. A PID surface was used in
this work to serve this purpose. The control action is devel-
oped accordingly to bring the system trajectories towards the
surface using a switching control action. Once the trajectories
reached the surface, they should be confined within a bound-
ary of the sliding function and asymptomatically approach the
origin. The sliding surface is selected as

s(t) = kd ė(t)+ kpe(t)+ ki

∫ t

0
e(τ )dτ (12)

where kd , kp, and ki are the PID coefficients, and e(t) is the
trajectory tracking error signal. Henceforth, the time param-
eter (t) will be dropped for brevity. The error is described by

e = υ1 − υ1des (13)

where υ1des is the desired signal. The control action uυ con-
sists of the equivalent control ueq, and the switching control
usw, as follows

uυ = ueq + usw (14)

The systems trajectories are maintained within the sliding
manifold by the equivalent control, while they are driven
towards that manifold through the switching control [45]. The
trajectories are successfullymaintainedwithin the sliding sur-
facewhen the sliding condition, given by Eq. (15), is satisfied.

ṡ = 0 (15)

For the sliding surface in (12), this condition is given by

ṡ = kd ë+ kpė+ kie = 0 (16)

The equivalent control is designed to ensure this condition
holds for all t . Substituting ë, in Eq. (16) produces

−
kυkd
mυ

υ1 −
cυkd
mυ

υ2 +
kd
mυ

(ueq + usw)+
kd
mυ

dυ

−kd ϋ1des + kpė+ kie = 0 (17)

The equivalent control, ueq, is selected as

ueq = kυυ1 + cυυ2 − d̂υ + mυ ϋ1des −
mυ
kd

(kpė+ kie) (18)
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FIGURE 2. Experimental and estimated frequency response of the system.

where d̂υ (t) is the estimated disturbance. The system’s stabil-
ity is investigated using the following Lyapunov function

V1 =
s2

2
(19)

The sliding surface is given by a liner PID equation, and it
needs to be stable. Thus, it is sufficient to have non-negative
PID gains to achieve a strictly Hurwitz system and hence
the stability. Moreover, the overall stability and trajectories
reachability to the sliding surface are guaranteed through

V̇1 = sṡ ≤ 0, s 6= 0 (20)

where Eq. (20) is called the reaching condition, and V̇1 is
given by

V̇1 = s
kd
mυ

(dυ − d̂υ + usw) (21)

The switching function is designed to preserve the stability
of the system, and to achieve exponential reaching law to the
sliding surface, as follows

usw = −k1 s− k2sign(s) (22)

where k1, k2 > 0. Combining (22) with (21) gives

V̇1 = s
kd
mυ

(d̃υ − k1 s− k2sign(s)) (23)

where d̃υ is the difference between the actual and estimated
disturbance, and it is given by

d̃υ = dυ − d̂υ (24)

The reaching condition in Eq. (20), can be represented by

V̇1 ≤ −k1s2 − k2 |s| + |d̃υ | |s| ≤ 0

−k1s2 − |s| (k2 − |d̃υ |) ≤ 0 (25)
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This condition holds if k2 is designed as

k2 > |d̃υ | (26)

It is worth noting that the stability of the system is determined
by having the switching gain that is larger than the distur-
bance estimation error, rather than the disturbance bound
itself. Thus, this reduction in gain bound will reduce the con-
trol signal chattering. The chattering phenomenon is strongly
presented in the sliding mode control method due to the use
of the signum function in the switching control. Chattering
has an adverse effect on the safety of the actuators, and it
is necessary to reduce its effect. Therefore the continuous
function tanh(s/ε) is used instead of sign(s), where ε is a
design parameter. It worth noting that when ε approaches
zero, the tanh function approaches the signum one. The sys-
tem stability with the tanh(s/ε) function will be revisited in
Section III-C.

B. NONLINEAR DISTURBANCE OBSERVER DESIGN
As explained earlier, the cross-coupling, VCM noise, uncer-
tainty in parameters, etc. have a meaningful presence in the
displacement of each axis. Therefore it is necessary to have an
observer for estimation and compensation of those uncertain-
ties. Nonlinear Disturbance Observer (NDO) has been proven
to outperform linear observers for many systems studied in
the literature [46], [47]. Thus it was adopted in this work. The
state-space model in Eq. (10) is rewritten as

υ̇ = f (υ)+ g1(υ)uυ + g2(υ)dυ (27)

where

f (υ) =

 υ2

−
kυ
mυ
υ1 −

cυ
mυ
υ2

 , g1(υ) = g2(υ) =

 0
1
mυ


(28)

The NDO used for estimating dυ is designed as

d̂υ = z+ p(υ) (29)

ż = −l(υ) (g2(υ) (z+ p(υ))+ f (υ)+ g1(υ)uυ) (30)

where d̂υ is the estimated disturbance, z is the observer’s
internal state, and l(x) is the observer gain given by

l(υ) =
∂p(υ)
∂υ

(31)

Proposition 1: If it is assumed that disturbance dynamics
changes slowly with time, and p(υ) is selected such that:

˙̃dυ +
∂p(υ)
∂υ

g2(υ)d̃υ = 0 (32)

then the estimated disturbance d̂υ approaches dυ exponen-
tially.

Proof: Selecting p(υ) as:

p(υ) = k3υ2 (33)

therefore

l(υ) =
∂p(υ)
∂υ
=
[
0 k3

]
(34)

and the observer dynamics is given by:

ż = −
k3
mυ

(z− kυυ1 + (k3 − cυ) υ2 + uυ ) (35)

d̂υ = z+ k3υ2 (36)

differentiating Eq. (36) with respect to time gives:

˙̂dυ = ż+ k3υ̇2 =
k3
mυ

(
dυ − d̂υ

)
=

k3
mυ

d̃υ (37)

Differentiating Eq. (24) with respect to time and combining
it with Eq. (37), results in:

˙̃dυ +
k3
mυ

d̃υ = 0 (38)

which is equivalent to Eq. (32). It is worth noting that ḋυ = 0
in Eq. (38) since it was assumed that dυ varies slowly with
time. The solution to differential equation given in Eq. (38) is
found as

d̃υ = exp (−k3/mυ t) d̃υ (t0) (39)

which converges to zero exponentially with time if k3 > 0.�
Proposition 2: If the single-axis dynamics given in Eq. (10)

is considered with the NDO based sliding mode control
approach proposed in Eqs. (18), (22), (35), and (36), then the
overall system is stable and the control approach attracts the
system’s trajectories towards the sliding surface.

Proof: Finding a positive semi-definite Lyapunov func-
tion candidate, which involves trajectory tracking and distur-
bance estimation errors, is sufficient to prove this proposition.
Thus, the following Lyapunov function is proposed:

V2 = V1 +
d̃υ

2

2
(40)

differentiating Eq. (40) with respect to time gives:

V̇2 = V̇1 + d̃υ
˙̃dυ (41)

= V̇1 −
k3
mυ

d̃υ
2

(42)

≤ −k1s2 − |s| (k2 − |d̃υ |)−
k3
mυ

d̃υ
2
≤ 0 (43)

which holds if the condition in Eq. (26) is satisfied. �
The overall closed loop system block diagram is shown

in Fig. 3, where the micropositioning system dynamics equa-
tion that is used in optimization and simulation is given by
Eq. (11).

C. TIME CONVERGENCE ANALYSIS
The time convergence of the sliding function is investigated
in this section when the disturbance observer, and chattering
reduction methods are used. It follows from Eq. (42), with the
substitution of tanh(s/ε) in V̇1 for chattering reduction, the V̇2
is rewritten as:

V̇2 = s
kd
mυ

(
d̃υ − k1s− k2 tanh(s/ε)

)
−

k3
mυ

d̃υ
2

(44)
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FIGURE 3. The overall closed loop system.

V̇2 ≤ −k1s2 −
k3
mυ

d̃υ
2
+ |s|

∣∣∣d̃υ ∣∣∣− k2s tanh(s/ε)
= −k1s2 −

k3
mυ

d̃υ
2
+ |s|

∣∣∣d̃υ ∣∣∣− k2 |s| + k2 |s|
−k2s tanh(s/ε) (45)

Lemma 1 [48]: The following inequality holds ∀ ε > 0,
s ∈ R,

0 ≤ |s| − s tanh(s/ε) ≤ δε

where δ is a constant that satisfies δ = e−(δ+1), hence
δ = 0.2785.

Thus, Eq. (45) is written as:

V̇2 ≤ −k1s2 −
k3
mυ

d̃υ
2
− |s|

(
k2 −

∣∣∣d̃υ ∣∣∣)+ k2δε (46)

with the consideration of the condition in Eq. (26), it can be
found that

V̇2 ≤ −k1s2 −
k3
mυ

d̃υ
2
+ k2δε (47)
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V̇2 ≤ −η

(
s2

2
+
d̃υ

2

2

)
+ k2δε (48)

which is equivalent to:

V̇2 ≤ −ηV2 + k2δε (49)

where η = 2min (k1, k3/mυ). The solution of Eq. (49)
according to Lemma 2 is given by:

V2(t) ≤ ρ + (V2(t0)− ρ) e−η(t−t0) (50)

where ρ = k2δε/η, and it represents the maximum bound of
the tracking error. Thus the sliding mode function is globally
uniformly ultimately bounded. Moreover, the error bound ρ
can be reduced by designing k1, k2, k3, and ε.
Sliding mode chattering phenomena has a severe influence

on the safety of the closed-loop system if not attenuated.
Attenuationmethods were proposed in the literature to reduce
its impact. These methods cause the error to approach a
given bound rather than zero. The parameters that affect this
bound was not thoroughly identified and optimized in the
literature towards optimal tracking. Thus, this bound (ρ) was
theoretically derived in this section, and the parameters that
affect it were established. These parameters are usually tuned
in a try and error approach, which does not guarantee optimal
performance. In this study, they are optimized to achieve
better tracking performance and thus reducing ρ.
Lemma 2 [49]: Let V , f : [0,∞) ∈ R, if V̇ ≤ −ηV + f ,
∀t ≥ t0 ≥ 0, then V (t) is bounded by the following function
for any finite non-negative constant η

V (t) ≤ e−η(t−t0)V (t0)+
∫ t

t0
e−η(t−τ )f (τ )dτ (51)

Proof: Let µ(t) = V̇ (t)+ ηV (t)− f (t), where µ(t) < 0,
then:

V̇ (t) = −ηV (t)+ f (t)+ µ(t) (52)

integrating Eq. (52) with respect to time gives:

V (t) = e−η(t−t0)V (t0)+
∫ t

t0
e−η(t−τ )f (τ )dτ

+

∫ t

t0
e−η(t−τ )µ(τ )dτ (53)

since µ(t) < 0, then ∀t ≥ t0 ≥ 0, it holds that:

V (t) ≤ e−η(t−t0)V (t0)+
∫ t

t0
e−η(t−τ )f (τ )dτ (54)

and that completes the proof. �

IV. CONTROLLER OPTIMIZATION WITH ALO ALGORITHM
ALO mimics the foraging behavior of antlions during
the larvae stage of their life cycle. Antlion excavates a
funnel-shaped pit and hides at its bottom by coving itself with
sand, as shown in Fig. 4. This pit forms a trap for ants that
roam the area. Once an ant falls down the trap, it will find it
difficult to escape due to the sharp edges of the trap. Then,

FIGURE 4. Antlion hunt mechanism.

antlion throughs sand on the trapped ant to prevent it from
escape and to slide it down towards its jaws. Once the antlion
captures its prey, it will consume it, and discard the remains.
Then it will repair the pit and prepare it for the next hunting
cycle.

ALO algorithm has two populations: antlions and ants,
both collaborate to solve the optimization problem. The
ants work as exploration agents in the solution space, while
antlions disguise within the space, to capture the ants. Once
an antlion captures a prey at a position, it would record that
position, and hence it emerges as a fitter. The parameters of
the problem represent the solution space dimensions, while
ants positions refer to a particular solution within that space.
The locations of ants and antlions are stored throughout the
propagation of the algorithm as matrices. These matrices are
used by ALO operators to converge towards the solution, and
they are given by

Mant =


Ant1,1 Ant1,2 . . . Ant1,d
Ant2,1 Ant2,2 . . . Ant2,d
...

...
...

...

Antn,1 Antn,2 . . . Antn,d

 (55)

Mantlion =


AntL1,1 AntL1,2 . . . AntL1,d
AntL2,1 AntL2,2 . . . AntL2,d
...

...
...

...

AntLn,1 AntLn,2 . . . AntLn,d

 (56)

where d is the number of dimensions (number of parameters),
and n is the number of ants/antlions. The locations of each
ant and antlion are evaluated by an objective function f .
Moreover, the fitnesses are found and stored for later use by
the optimization processes. The fitness matrices are given by

MOFant =



f
([
Ant1,1, Ant1,2, . . . , Ant1,d

])
f
([
Ant2,1, Ant2,2, . . . , Ant2,d

])
...

f
([
Antn,1, Antn,2, . . . , Antn,d

])


(57)
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MOFantlion =



f
([
AntL1,1, AntL1,2, . . . , AntL1,d

])
f
([
AntL2,1, AntL2,2, . . . , AntL2,d

])
...

f
([
AntLn,1, AntLn,2, . . . , AntLn,d

])


(58)

The following section describes the operations of ALO.

A. OPERATIONS OF ALO
The following operations are involved in the ALO.

1) RANDOM WALKS
The random walk of an ant in the ith dimension is described
by:

X ki =

0, 1∑
j=1

(
2rj − 1

)
,

2∑
j=1

(
2rj − 1

)
,

. . . ,

Niter∑
j=1

(
2rj − 1

) (59)

where Niter is the maximum number of iterations, r is a
random number described by:

rj =

{
1 if rand > 0.5
0 if rand ≤ 0.5

(60)

where rand is a uniformly distributed random number. Ran-
dom walks are normalized to retain them within the search
space using the following expression:

X ki |norm =

(
X ki − a

k
i

) (
dki − c

k
i

)
bki − a

k
i

+ cki (61)

where aki , and bki , are the minimum and maximum of the
random walk X ki of the dimension i at the kth iteration,
respectively. Moreover, cki , and d

k
i are the upper and lower

bounds of the ith dimension at the kth iteration.

2) ANTS TRAP IN PITS
The antlions traps affect the search space of ant, and that is
modeled by

cki = AntLkj,i + c
k
i (62)

dki = AntLkj,i + d
k
i (63)

3) TRAPS BUILDING
The antlions are selected based on the roulette wheel selection
method. The antlions with higher fitness will have a higher
probability of being selected, and hence they participate in
convergence towards the optimal solution.

4) ANTS SLIDING
When an ant is trapped in the antlion’s pit, the antlion starts
to throw sand grains on the ant to push it towards the bottom
of the pit. This behavior is simulated by reducing the dimen-
sions’ boundaries adaptively as follows:

cki =
cki
I

(64)

dki =
dki
I

(65)

where I is an adaptive parameter that increases with the
number of iteration, and it is given by:

I =
10wk
Niter

(66)

w is given by:

w =



2 if k > 0.1Niter
3 if k > 0.5Niter
4 if k > 0.75Niter
5 if k > 0.9Niter
6 if k > 0.95Niter

(67)

and it changes the accuracy of the solution with the iterations.

5) HUNTING A PREY AND AMENDING THE PIT
When the antlion hunts its prey, it will consume it. If the ant
has better fitness than the antlion, the antlion will relocate
itself to the position of the ant as follows

AntLkj = Antki if f (Antki ) > AntLkj (68)

6) ELITISM
The best antlion in any iteration is selected as the elite one and
kept for the next iteration. Thus, the best solution produced
so far is preserved for the next iteration. The motion of the
ants are updated by antlion selected from the roulette wheel,
and the elite one, as follows

Antki =
RkA + R

k
E

2
(69)

where RkA is a random walk of the ith ant around an antlion
from the roulette wheel, similarly, the ant random walk
around the elite antlion is given by RkE .

B. ALO ALGORITHM
The developed control approach requires the tuning of seven
parameters in each axis (kp, ki, kd , k1, k2, k3, and ε), that
means it is required to tune 21 parameters in total. Based
on the operators presented in the previous section, the ALO
algorithm for optimizing the developed robust controller in
Section III is presented by Algorithm 1. The cost function is
based on mean square error, and it is given by

cost =
1
n

n∑
i=0

(
e2x(i)+ e

2
y(i)+ e

2
θ (i)

)
(70)
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Algorithm 1ALOAlgorithm for Optimizing Control Param-
eters
Require: cost function, parameters range, n, d, Niter
Result: A vector of optimized control parameters
1: Initialize the two populations randomly
2: Calculate the fitness using the objective function
3: stopCondition = False
4: while not stopCondition do
5: for each ant do
6: Use Roulette wheel to select an antlion
7: Update the boundaries c and d using Eqs. (62), (63),

(64), and (65)
8: Create a normalized random walk using Eqs. (59),

and (61)
9: Update the ant’s position using Eq. (69)
10: end for
11: Calculate the fitness of all ants using Eq. (70)
12: Replace antlions with ants if they offer better fittness
13: Update the elite antlion
14: if (reached maximum iterations) or (reached a target

fitness) then
15: StopCondition = True
16: end if
17: end while
18: Return the Elite antlion

where n is the number of simulation samples; ex , ey, and
eθ are the trajectory tracking error in x-, y-, and θ -axis,
respectively. The number of ants are set to 25, and the number
of iteration is selected as 100. The optimized parameters are
given in Table 2. The cost function of the final iteration is
7.726e-13. The convergence curve of the optimization algo-
rithm is shown in Fig. 5.

FIGURE 5. Cost function convergence curve.

V. EXPERIMENTAL RESULTS
The experimental setup of the system is shown in Fig. 6.
It consists of three subsystems: optical system, electrical
system, and mechanical system.

The optical system is based on Zygo laser-based dis-
placement measurement system. It involves a laser head and
three optical measurement paths. Each path measures a linear

TABLE 2. Optimized controller and observer parameters.

displacement for a point on the target stage using a laser inter-
ferometer. These three points are converted into two linear
and one angular displacements. Three laser interferometers
were used, two on the x-axis and one on the y-axis. The two
x-axis interferometers are used to detect x and θ displace-
ments, and the one on the y-axis is to detect y displacement
only. Retroreflectors and external plane mirrors were used to
reduce sensitivity to laser misalignment. The retroreflectors
attached to the moving stage will reflect the incident beams
in a parallel manner to off-stage plane mirrors, which in
turn reflect them to the source. Then the laser beams travel
through the optical components back to the interferometers
to get finally picked up and transferred through the fibre
optic cables to the measurement cards. Fold mirrors and beam
splitters were used to facilitate laser beam steering from the
laser head to the interferometers. The linear displacement
measurements from the laser interferometers are converted
in the software into two linear displacements (x and y), and
one angular displacement (θ).
The electrical system consists of Advantech PCI-1723 ana-

log output data acquisition card, three VCMs VCAR0087-
0062-00A, three LCAM 5/15 linear VCM drivers, and one
unregulated DC power supply. The control action is sup-
plied from the realtime software through the PCI-1723 as
current commands to the VCM drivers. Each VCM driver
has an internal closed-loop system to regulate the current in
the VCM coil to the desired current command. The drivers
require an unregulated power supply to function properly.

Themechanical system entails the 3-DOFmicropositioner,
VCM bases, mechanism base, and three studs to level the
mechanism with the optical paths. The micropositioner was
fabricated from Aluminum 7075-T6 and machined by wire
electrical discharge machining technology for its high manu-
facturing precision.

The three systems were integrated into one feedback
control system. An industrial PC deployed with Simulink
realtime operating system was used to read the laser mea-
surement and to send the VCM commands. Moreover, it also
runs the control method, monitors, and records the signals.
The sampling rate for the control experiment was selected
as 5000 Hz, while for the system identification experiment,
it was 10 kHz.

Several experiments were conducted to study the
cross-coupling effect, and also to investigate the control
approach performance in terms of resolution and trajectory
tracking.
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FIGURE 6. Experimental setup: (1) beam splitter, (2) fold mirror, (3) laser head, (4) fiber optic cable, (5) interferometer, (6) retroreflector, (7) plane mirror,
(8) 3-DOF micropositioner, (9) Advantech PCI-1723 wiring terminal, (10) Advantech PCI-1723 extension cable, (11) vibration isolation optical table, (12)
LCAM 5/15 VCM driver, (13) unregulated DC power supply.

FIGURE 7. Single sided frequency spectrum for motion in x .

FIGURE 8. Single sided frequency spectrum for motion in y .

A. CROSS-COUPLING EXPERIMENT
The single-sided frequency spectrum was utilized to show
the impact of the cross-coupling near the resonant frequency.
This spectrum can clearly show the amplitude and natural

FIGURE 9. Single sided frequency spectrum for motion in θ .

FIGURE 10. x-axis resolution.

frequency of the intended motions and cross-couplings. The
primary axes of motion were excited individually in open
loop with the aid of inverse kinematics. A 0.1 V amplitude
sinusoidal signal with a frequency spectrum from 1-350 Hz,
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FIGURE 11. y-axis resolution.

FIGURE 12. θ-axis resolution.

FIGURE 13. Whirlpool trajectory 3D plot.

and a sampling frequency of 10 kHz was used as input to
each axis in three open-loop experiments. The experimen-
tal time response data were recorded for each experiment.
Then, the fast fourier transform is utilized to obtain the
single-sided frequency spectrums with the aid of MATLAB.
The severity of cross-coupling can be investigated through its
magnitude near the resonant frequency of the primary axes.
The single-sided frequency spectrums are shown in Figs. 7-9.
It can be noticed that the cross-coupling from θ -axis exhibits
a high magnitude at the resonance frequency of x- and
y-axis. This indicates that the cross-coupling is interfering

FIGURE 14. Whirlpool trajectory tracking of x-axis.

with the intended motions near the natural frequency and its
effect should be attenuated.

In terms of natural frequencies, the intended motion of
θ -axis appears slightly higher than the other two axes. How-
ever, the cross-coupling frequency of the θ-axis contaminates
the intended motion of the other axes, as discussed earlier.
The resonance frequency of the x-axis and y-axis are very
close, which indicates the similar dynamics response in these
two axes.

B. RESOLUTION TEST
The position resolution in the closed-loop scheme was exper-
imentally investigated. A stair-step signal with 0.1 µm was
used for testing the motion in both x and y axes, and 2 µrad
was used to test the resolution of θ -axis. No overshoot was
observed in the results due to the small step size. As shown
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FIGURE 15. Whirlpool trajectory tracking of y-axis.

in Figs. 10-12, the control approach was able to resolve a
resolution of 0.1 µm in x- and y-axis, and 2 µrad in θ -axis.
It must be noted that resolution is sensitive to the noise
level in the laser-based measurement system, VCM-coils,
VCM-drivers, and analog channels of the data acquisition
card. This represents a physical limitation to the resolution
improvement.

C. TRAJECTORY TRACKING VALIDATION
A whirlpool 3-DOF trajectory was used to investigate the
tracking performance when all the axes are simultaneously
activated. The trajectory is described by

xref = 2t cos(3t/2) (71)

yref = 2t sin(3t/2) (72)

θref = 2t (73)

FIGURE 16. Whirlpool trajectory tracking of θ-axis.

where it has a diameter of 100 µm, and a height of 50 µrad
when t reaches 25 s.

It can be seen from Fig. 14 and Fig. 15 that the SMC-NDO
offers better tracking performance for both x and y axes
than the classical SMC. As evident from Table 3, the SMC-
NDO had improved the tracking by 91%, and 92%, for
x- and y-axis, respectively. The error levels are comparable
in the θ -axis as shown in Fig. 16, however, SMC-NDO was
less sensitive to signal amplitude. The SMC-NDO achieved
49% improvement for θ -axis when compared with SMC. The
control actions of the three axes are shown in Figs. 17-19.
In these figures, the SMC-NDO exhibit higher control action
than its counterparts as it provides disturbance compensation.
Moreover, it was faster than the one from the SMC. Fur-
thermore, the control signal for both methods showed less
chattering due to the use of the tanh function.
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FIGURE 17. Control action to VCM 1.

FIGURE 18. Control action to VCM 2.

FIGURE 19. Control action to VCM 3.

The disturbance in mechanical systems can be estimated
by rewriting Eq.(8), as follows [50]:

dυ (T ) = mυ ϋ(T )+ cυ υ̇(T )+ kυυ(T )− uυ (T − 1) (74)

However, this approach heavily depends on the sampling
rate and the estimation accuracy of the acceleration signal,

FIGURE 20. Disturbance estimation in x-axis.

which may not be practical for many systems. The estimated
disturbance from the NDO was compared with the computed
one given in Eq.(74). The acceleration signal in Eq.(74) was
estimated using a digital differentiator with a low pass filter.
The results are presented in Figs. 20-22. It can be noted
from these results that the disturbance dynamics follow a
similar shape of the reference signal. Moreover, the distur-
bance was changing slowly, which makes the assumption in
Proposition 1 holds for all time. The disturbance estimated by
the NDO was smother than the computed one, especially in
θ -axis. That indicates the effectiveness of the NDO method.

Next, the accuracy of the simulated model was investigated
in a comparative study with the experimental results. The
SMC-NDO control method was utilized in the closed-loop
feedback system, and the tracking error was used as a com-
parative index. The tracking errors of the simulated and
experimental system are shown in Fig. 23. It can be noticed
that the system’s actual error levels were modeled accurately
by the simulated system. However, the simulated system
error signals were much smoother than the experimental
ones. That is mainly ascribed to the noise accompanying the
experimental system signals. Thus, the simulated system’s
error curves appeared almost matching the zero line, while
the experimental system’s error curves exhibited small fluc-
tuations around that line.
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FIGURE 21. Disturbance estimation in y-axis.

FIGURE 22. Disturbance estimation in θ-axis.

It can be concluded that the optimized control approach
was able to provide high performance in both resolu-
tion and trajectory tracking experiments. Moreover, the

FIGURE 23. Simulated and experimental system tracking error when
SMC-NDO was used.

TABLE 3. RMS error.

cross-coupling effect is quite prominent in the tracking per-
formance when the disturbance observer was not used. That
was evident from the comparison of the SMC with the SMC-
NDO. The SMC gains k1 and k2 were kept the same as in the
SMC-NDO as increasing them resulted in oscillatory behav-
ior of the mechanism. This can be attributed to the larger
chattering that entered the system. This was avoided by the
NDO as it estimates and compensates for the adverse effect
of the cross-coupling disturbances without the need to have
a larger controller gain. In fact, the use of the NDO reduced
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the condition of having a gain that is larger than the bound
of disturbance to a gain that is larger than the bound of the
disturbance estimation error, which is much smaller. Thus the
proposed method provides promising results for improving
the tacking tasks of muti-DOF micro/nanopositioners.

VI. CONCLUSION
This paper presented the design, optimization, and analysis
of a robust control technique for multi-DOF microposition-
ing. A nonlinear disturbance observer was merged with a
sliding mode control approach to compensate the unavoid-
able cross-couplings presented in the system. Time conver-
gence and stability analyses were performed to investigate the
maximum tracking error and feedback stability, respectively.
Manual tuning of a high number of controller parameters
could result in suboptimal performance. Thus the antlion
optimizer algorithm was used to automate the tuning pro-
cess. Experimental results revealed that the developed control
methodology provided better performance when compared
with the classical sliding mode control, which is gener-
ally used for similar systems. Moreover, the experimental
and simulated results were consistent, which indicates the
accuracy of the modeling technique. The control method
developed in this paper can be adopted to improve the
tracking results for multi-DOF micro/nanopositioners that
suffer from cross-coupling, parameter uncertainty, and distur-
bances. In future work, the proposed control method will be
implemented to control coarse and finemotions inmulti-DOF
micropositioning stages.

APPENDIX A
Dynamic system transfer functions are given below

Gx1(s) =
27.72

s2 + 32.86s+ 3.772e04
(75)

Gx2(s) =
−4.933e− 05s+ 0.6427
s2 + 16.17s+ 3.994e04

(76)

Gx3(s) =
0.6064

s2 + 47.24s+ 4.778e04
(77)

Gy1(s) =
0.482

s2 + 12.45s+ 3.814e04
(78)

Gy2(s) =
27.48

s2 + 32.29s+ 3.693e04
(79)

Gy3(s) =
1.039

s2 + 40.68s+ 4.42e04
(80)

Gθ1(s) =
0.1891s+ 12.35

s2 + 22.54s+ 4.11e04
(81)

Gθ2(s) =
−0.0573s− 19.17

s2 + 30.09s+ 4.787e04
(82)

Gθ3(s) =
48.98

s2 + 97.96s+ 5.215e04
(83)
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