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ABSTRACT Fetal phonocardiography (fPCG) is a non-invasive technique for detection of fetal heart sounds
(fHSs), murmurs and vibrations. This acoustic recording is passive and provides an alternative low-cost
method to ultrasonographic cardiotocography (CTG). Unfortunately, the fPCG signal is often disturbed
by the wide range of artifacts that make it difficult to obtain significant diagnostic information from this
signal. The study focuses on the filtering of an fPCG signal containing three types of noise (ambient noise,
Gaussian noise, and movement artifacts of the mother and the fetus) having different amplitudes. Three
advanced signal processing methods: empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD), and adaptive wavelet transform (AWT) were tested and compared. The evaluation
of the extraction was performed by determining the accuracy of S1 sounds detection and by determining the
fetal heart rate (fHR). The evaluation of the effectiveness of the method was performed using signal-to-noise
ratio (SNR), mean error of heart interval measurement (|1Ti|), and the statistical parameters of accuracy
(ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1).
Using the EMD method, ACC > 95% was achieved in 7 out of 12 types and levels of interference with
average values of ACC = 88.73%, SE = 91.57%, PPV = 94.80% and F1 = 93.12%. Using the EEMD
method, ACC > 95% was achieved in 9 out of 12 types and levels of interference with average values of
ACC = 97.49%, SE = 97.89%, PPV = 99.53% and F1 = 98.69%. In this study, the best results were
achieved using the AWT method, which provided ACC > 95% in all 12 types and levels of interference
with average values of ACC = 99.34%, SE = 99.49%, PPV = 99.85% a F1 = 99.67%.

INDEX TERMS Fetal phonocardiography (fPCG), fetal heart rate (fHR), non-invasive fetal monitoring,
empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), adaptive wavelet
transform (AWT).

I. INTRODUCTION
Electronic fetal monitoring is an important part of obstetrics,
used mainly to prevent fetal hypoxia. Hypoxia is a dan-
gerous condition, and if it is diagnosed, it is necessary to

The associate editor coordinating the review of this manuscript and
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terminate the pregnancy by caesarean section [1]. In clin-
ical practice, a cardiotocography (CTG) method, is used
for fetal monitoring. However, fetal monitoring using CTG
is burdened with a high degree of disagreement among
obstetricians, leading to a high number of unnecessarily
performed caesarean sections [2]–[5]. The efforts of sci-
entists are focused on improving alternative methods for
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fetal monitoring such as fetal electrocardiography (fECG)
[6], [7], fetal magnetocardiography (fMCG) [8], [9] or fetal
phonocardiography (fPCG) [10]–[13]. A comparison of the
advantages and limitations of techniques for electronic fetal
monitoring is summarized in Table 1.

The fPCG method seems to be one of the most promis-
ing techniques based on recording fetal acoustic heart
sounds (fHSs) during pregnancy. These sounds are gener-
ated by opening and closing of the heart valves and blood
flow [14]. They can be described as an almost periodic signal
with a frequency of 20 to 110 Hz. There are four heart sounds
in total to be distinguished, but only the first heart sound (S1)
and the second heart sound (S2) are detectable in fPCG signal
recordings [15]. The S1 sound is generated by opening and
vibrating the bicuspid and tricuspid valves, formed by the
onset of systole, i.e. by a sudden rise in pressure. S1 is the
longest and loudest sound with low-frequency vibrations, fol-
lowed by ventricular ejection, which is also characterized by a
low-frequency signal. At this stage, blood is expelled into the
aorta and pulmonary arteries [16]. The systolic time interval
occurring between S1 and S2 sounds is generally shorter than
the diastolic one (between S2 and S1) [15]. The S2 sound is
generated by vibrations when closing the semilunar valves
during the isovolumic relaxation phase of the diastole. Due
to the characteristic differences in the valves, it usually has
a lower amplitude and shorter duration than S1 [15], [17].
The acoustic fPCG signal generated in this way provides
valuable information on heart murmurs and the fetal heart
rate (fHR), which is an important indicator of the health and
overall well-being of the fetus [18].

The first mention of the potential diagnostic significance of
fHSs was described as early as 1820 by a Swiss obstetrician.
However, listening to the fetal heart did not become part of
clinical practice until 1833, when Evora Kennedy of Dublin
published an extensive book to convince doctors to use fPCG
for clinical diagnosis [19]. The first examination of fetal
heart sounds was conducted by means of placing the ear on
the mother’s abdominal wall. The improvement occurred in
1917, when the stethoscope was invented by David Hillis,
an American obstetrician. The doctors were able to check at
least basic information about the fHR, such as the current
fHR, arrhythmias or a cardiac arrest [20]. Stethoscopes are
still used today, mainly for their low cost, unlimited life,
and independence of power supply. The progress in science
and technology has enabled the development of an electronic
stethoscope that converts acoustic waves detected from the
mother’s abdomen into electrical signals. These signals are
amplified and digitized in the internal circuits, the ambient
interference is eliminated, and the sound energy is optimized
for listening at different frequencies [21], [22].

Making a high-quality recording is essential for its further
processing and accurate determination of the fHR, therefore,
great attention is paid to the development of sensors for
obtaining an fPCG signal with the highest possible signal-to-
noise ratio (SNR). The simplest, but also the least effective
way to detect sound, is based on placing a microphone on

the surface of the body [22], [23]. Another method involves
placing a piezoelectric crystal in contact with the mem-
brane [22], [24]–[26]. Furthermore, four separate piezoelec-
tric vibration sensors for recording abdominal audio signals
were developed in [27]. The passive sensor based on the
principle of induction allowing long-term observation of fetal
movements and sounds was described in [28]. The authors of
study [29] designed a non-invasive fiber-optic sensor and an
adaptive signal processing system, which could be used for
non-invasive fHR monitoring in the future.

It is the complete non-invasiveness of this technique that
makes the fPCG a very useful tool suitable for use in clinical
practice. Other advantages of this approach include the low
cost of the examination, and moreover, both the mother and
the fetus are not exposed to any kind of radiation, as in the
case of CTG. The CTG method uses ultrasound radiation,
which is a potential risk for both the mother and the fetus,
thus not allowing long-term monitoring [30].

II. STATE OF THE ART
In addition to the large number of advantages of the fPCG
technique mentioned above, it is important to note its limita-
tion, which consists in the presence of interfering signals that
are recorded from the abdominal area of the mother together
with the useful fetal signal. The most significant types of
interference include ambient noise, door closing, speech,
breathing or movement artifacts, cough, organ sounds, and
other [10], [31]. When examining with a stethoscope, it is
necessary to pay attention to its correct location and mini-
mizing the ambient noise, so that the fHSs are clearly audi-
ble. Possible artifacts can then be eliminated by selecting a
suitable filtration method and its optimal settings.

A. METHODS FOR FETAL PCG EXTRACTION
In order to obtain a high-quality fPCG signal, a number of
studies dealing with filtration methods for fPCG extraction
have been presented in the past few years. However, in addi-
tion to an effective filtration, it is also necessary to choose
an appropriate algorithm that can accurately detect the fHSs.
Some authors deal with the detection of S1 and S2 sounds
and some with the S1 only, both approaches are sufficient for
the determination of the fHR.Moreover, some focus on signal
segmentation, and, besides S1 and S2, they detect systolic and
diastolic intervals. The subsequent analysis of these fPCG
signal elements enables obtaining important information and
differentiates the fPCG signals into abnormal or normal [18].
Some commonly used techniques for fPCG signals extraction
are summarized in this subchapter.

• A combination of adaptive correlation and signal power
was used in the study [11]. The accuracy of the method
was comparedwith simultaneouslymeasured ultrasound
recordings. The test results showed the possibility of
implementing the method in a portable device for con-
tinuous monitoring of fHR.

• The authors of study [32] implemented simplified spec-
tral subtraction to remove unwanted noise occurring
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TABLE 1. Comparison of techniques for electronic fetal monitoring.

in the fPCG signal. However, the performance of this
method was not as promising as when using CTG. The
authors therefore recommend the use of this technique
only as a supplementary tool.

• Wavelet transform (WT), which was presented, for
example, in studies [13], [33]–[40], is a frequently
tested and very effective method. The results in these
studies proved that WT can very effectively suppress
noise with the optimal setting of thismethod. Combining
this algorithm with other filtration methods will further
increase the effectiveness of filtration. Many authors,
therefore, believe that monitoring devices based on this
algorithm belong to the most promising techniques for
continuous fHR monitoring.

• In studies [10], [41], [42], a method based on the decom-
position of the input signal into intrinsic mode functions
(IMFs), which is called empirical mode decomposition
(EMD), was tested. As with the WT, its optimal set-
ting is crucial for this method. According to the results
achieved, this method can very well suppress especially
low-frequency interference.

• Independent component analysis (ICA) and principal
component analysis (PCA) are well-known and widely
used methods based on the principle of blind source
separation (BSS). The PCA was tested in study [43]
and both of these methods were then investigated, for
example, in study [44], where the experiments were
performed on synthetic signals. Both methods, ICA and
PCA, achieved very good results for SNR improve-
ment and fHR determination, but higher accuracy was
achieved using the ICA method.

• Adaptive filters, which are self-learning filters chang-
ing their parameters depending on the change in the
parameters of the input signal, are also very popular.
These types of filters allow filtering interference from
the useful signal if it changes its parameters over time or
its parameters are not known in advance. The least mean

square (LMS), normalized least mean square (NLMS)
and recursive least square (RLS) filters were presented
in [45]. The LMS andNLMS algorithmswere also tested
in study [29]. The testing was performed on synthetic
recordings and the experiments showed that the NLMS
algorithm achieved better results in determining the fHR
according to the sensitivity and positive predictive value
parameters, while the LMS algorithm achieved better
results according to the SNR and root mean square
error RMSE) parameters.

• The authors of study [12] successfully extracted source
signals from noisy single-channel abdominal record-
ings. Firstly, an appropriate matrix of delays was con-
structed, then multiple independent components were
calculated, and, finally, the components were pro-
jected back onto the measurement space and grouped
using K-means method. Three single-channel abdomi-
nal fPCG signals having a length of 3 to 5 minutes were
used. The signals were obtained from pregnant women
between 36 and 40 weeks of gestation. The results of
the experiments proved high quality filtration of fPCG
signals.

• In study [46], a method based on single-channel
separation consisting of three steps was described. The
proposed methodology combines the EMDmethod, sin-
gular value decomposition (SVD) and efficient ver-
sion of fast independent component analysis (EFICA).
Again, very good results were obtained in filtering the
fPCG signals.

B. DETECTION OF HEART SOUNDS
After signal filtering, it is possible to detect the fHSs in order
to extract useful information. A relatively large number of
studies are currently being focused on the development of
methods for the correct S1 and S2 detection in the clas-
sical PCG signal. Fortunately, most of these methods are
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also suitable for the fHSs detection in the fPCG recording.
In this section a brief review of the literature is presented.
An extensive overview of techniques for localizing HSs can
be found for example, in studies [18], [47].
• Autocorrelation, being dealt with in study [40], is, for
example, one of the oldest approaches used to detect
S1 sounds. Unfortunately, this method was not effective
for signals with high noise levels. To achieve better
results, other methods (WT,matching pursuit, or model-
based individual correlation) were combined with auto-
correlation. Using these combined approaches, accurate
detection of S1 sounds can be achieved.

• The authors of study [48] used an S1 and S2 sound detec-
tion and classification algorithm consisting of 4 steps.
In the first step, all sounds were localized using opti-
mized S-transform, then the detection of S1 and S2 was
performed based on Shannon energy of S-transform, fol-
lowed by feature extraction using singular value decom-
position (SVD) and classification using artificial neural
network (ANN). This approach was effective on record-
ings containing noise and murmurs.

• In study [49], a very frequently used duration-dependent
hidden Markov model (DHMM), which was further
developed in study [50], was used for the detection of
HSs along with systolic and diastolic intervals. This
approach was based on the identification of the most
probable sequence of HSs based on the duration of the
events and the amplitude of the signal envelope. The test-
ing, which was performed on real PCG recordings from
adult patients, showed that the DHMM method is suit-
able for segmentation of real clinical PCG recordings.

• The authors of study [51] proposed an algorithm that
identifies HSs using a method based on Gaussian regres-
sion. The results of the experiments proved that this
algorithm is suitable for S1 and S2 sounds detection and
the extraction of cardiac murmurs.

• In study [52], an algorithm combining several
approaches was used for the detection and subsequent
classification of HSs and murmurs. First, the WT
method, which decomposed the input signal so that
HSs and heart murmur subbands could be detected,
was applied. Subsequently, the Hilbert phase envelope
determination was performed to identify the boundaries
of HSs segments. The classification of HSs and heart
murmurs was then performed on the basis of the tempo-
ral features.

• Study [53] presents a method for automatic S1 and S2
sounds detection using the ensemble empirical mode
decomposition EEMD) method combined with kurtosis
features. The method was tested on real recordings and
the experiments provided very promising results.

• The authors of studies [54], [55] identified S1 and S2
sounds by means of a signal envelope detection algo-
rithm using Shannon energy. The peaks were identified
using the local maximum and minimum search function.
The algorithm was able to detect HSs very effectively.

• In study [56], the detection of S1 and S2 sounds using
a combination of frequency filtering, energy detection,
and interval regulation was presented. The proposed
approach allowed for the localization of HSs with higher
accuracy than using theHilbert transform-basedmethod.
The algorithm could thus become very useful for peak
detection in various applications.

• Studies that focus on the localization and recognition of
fHSs in fPCG signals include also the work [57], where
an envelope detector usingHilbert transform and interre-
lated supplementary processes were used for S1 and S2
detection. Subsequently, thresholding was applied and
the envelope was converted to rectangular pulses. Detec-
tion of S1 and S2 sounds was based on the knowledge
of systolic and diastolic period lengths.

• Study [24] was based on a similar principle, but squared
value of the Shannon energy was selected to detect
the signal envelope. The envelope was then divided
into 40ms long segments and the fHSs contained in them
were identified as local maxima.

• In studies [38], [58], an iterative PCG delineator
was used to detect fHSs in fPCG signals. This
threshold-based detector identified both S1 and S2
sounds. The results of the experiments showed that the
algorithm is able to effectively determine the location,
and, moreover, the morphology of the fHSs.

• The authors of study [35] used a combination ofWT and
fractal dimension methods to identify fHSs. The fractal
dimension method was used as a means of detecting the
most important WT coefficients that correspond to the
fHSs in theWT domain, and very promising results were
obtained in the experiments.

From the aforementioned examples, it is obvious that many
authors are involved in the extraction and analysis of clas-
sical PCG signals, but only a fraction of studies focus on
processing of fPCG signals. In addition, different authors use
different recordings and different evaluation parameters for
testing, and an objective comparison of the performance of
the methods presented is almost impossible. The aim of this
study is to make an objective, comprehensive comparison
of three advanced signal processing methods in terms of S1
sounds detection and fHR determination.

III. MATERIAL AND METHODS
This section describes the methods that have been tested
for the purpose of filtering fPCG signals. Methods, which,
according to the literature review, have a high potential to
effectively filter the noisy fPCG signals, have been selected.
They include empirical mode decomposition (EMD), ensem-
ble empirical mode decomposition (EEMD), and adaptive
wavelet transform (AWT). Next, the types of interference
that were added to the reference signal and subsequently
filtered, are described. The chapter also describes statistical
parameters that were used to determine the effectiveness of
the filtration method in S1 sounds detection, and procedures
used to compare the accuracy in determining the fHR.
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A. EMPIRICAL MODE DECOMPOSITION
Empirical mode decomposition (EMD) is a signal processing
technique that is able to decompose any non-stationary and
non-linear signal into oscillating components. These ban-
dlimited components are also called intrinsic mode functions
(IMFs) [46], [59]. Each IMF must comply with two basic
conditions. First, the number of extrema and the number of
zero crossings must be the same or may differ by one at most.
Second, at any point, the mean value of the envelopes defined
by the local maxima and the envelopes defined by the local
minima is zero [46], [60]. The algorithm is iterative and can
be described in the following steps [46], [59]–[61]:

1) The upper and lower envelopes, respectively of the
local maxima and minima, are estimated using a cubic
spline interpolation.

2) The mean m(t) of the two envelopes is subtracted from
the original signal s(t).

e1(t) = s(t)− m(t). (1)

3) If e1(t) meets both of the aforementioned conditions,
it is denoted as IMF1. If not, steps 1. and 2. are repeated
until the first IMF is obtained.

4) Subsequently, a residue ri(t) is defined by subtracting
e1(t) from the input signal s(t).

ri(t) = s(t)− e1(t). (2)

5) To obtain subsequent IMFs, the entire process is
repeated, but, instead of the input signal s(t), the residue
ri(t) is used.

The entire process is repeated until the final residue is a
monotonic function or a constant. The original signal can
be reconstructed by summing all extracted IMFs and the
last residue. More detailed description of the method can be
found, for example, in [60]–[63]. In [10], [46], [59], [64], the
method was tested for the purpose of fPCG filtration.

B. ENSEMBLE EMPIRICAL MODE DECOMPOSITION
The ensemble empirical mode decomposition (EEMD)
method was devised as an improved version of the empir-
ical mode decomposition (EMD) procedure. The EMD is
very effective, but it is burdened by limitations in the form
of so-called mode mixing problem [53], [65]. This is a
phenomenon in which the EMD is not able to correctly
decompose the signal into individual IMFs, resulting in one
IMF containing several components of very different fre-
quencies. This problem usually occurs when the original
low-frequency signal contains discontinuous and isolated
high-frequency oscillations [66], [67]. To prevent this phe-
nomenon, an extended version of this method, termed EEMD,
was proposed. With the EEMD, individual IMFs are obtained
by averaging the results of several EMD cycles, wherein
random white noise with a predefined amplitude is added to
the input signal [66]. The EEMD method algorithm can be
described in the following steps [53], [66]–[68]:

1) Set the number of ensemble trials N and the standard
deviation of the added noise Nstd .

2) Add a random white noise to the input signal.
3) Decompose the resulting signal into individual IMFs

using EMD algorithm.
4) Repeat step 1 and 2 N -times, but with different white

noise series each time.
5) Determine the final IMFj(t) of the EEMD by averaging

all IMFs related to N trials.

IMFj(t) =
1
N

N∑
i=1

IMFi,j(t), (3)

where j is a number of an IMF scale.
The added white noise leads to the correct decomposition

of the signal into IMFs using the EMD method. The final
result is the average of a large number of iterations, in which
a different white noise is used. By averaging, the white noise
is eliminated, and only the resulting signal remains. More
detailed information on this method can be found, for exam-
ple, in [65], [67]–[69]. For the purpose of fPCG processing,
the method was tested in study [70], and, for the purpose of
PCG processing, it was used in [53], [71].

C. ADAPTIVE WAVELET TRANSFORM
Wavelet transform (WT) is a well performing method of
filtering the noise in non-stationary signals. It is also a
well-known technique that is used to eliminate the noise
in fPCG signals [33]. Unlike the Fourier transform (FT),
this advanced signal processing technique can provide good
representation of a signal in the time-frequency domain.

After discretization, the discrete wavelet transform (DWT)
can be defined as [33], [72]:

DWTψ (j, k) =
∫
∞

−∞

s(t) · ψ∗j,k (t)dt, (4)

where ψ∗j,k is the wavelet function after dilation and
translation.

ψ∗j,k = 2
j
2ψ(2jt − k), (5)

in which function ψ indicates the maternal wavelet, ψj,k
denotes the daughter wavelet, j is a scale parameter and
k is a grid parameter [33]. After applying the WT to the
input signal, the wavelet coefficients are obtained, which
are then thresholded. Universal thresholds, minimax thresh-
olds, Stein’s unbiased risk estimation (SURE), empirical
thresholds, etc., are often used to remove the noise from
non-stationary signals [73]. In this study, adaptive threshold-
ing was used, i.e. each wavelet coefficient was assigned with
a certain threshold value. A moving window with a specified
length is used, whereby the threshold responds to changes of
the noise power in the signal waveform [74]. Thresholding
can be further divided into hard and soft. In the case of
hard thresholding, the coefficients below the threshold are
replaced by zeros, while, in the case of soft thresholding, the
remaining non-zero coefficients are shifted towards zero by
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the size of the threshold [73], [74]. Finally, an inverse dis-
crete wavelet transform (IDWT) was used to reconstruct the
filtered fPCG signal [33]. Much literature deals with the issue
of WT. A detailed information can be found, for example,
in [72], [75]–[79], while in [13], [33], [33]–[35], [37], [38]
the WT application for the purpose of fPCG processing was
discussed.

D. REFERENCE SIGNAL AND NOISE
Recordings on which the algorithms are tested and evaluated
form an essential part of the development of methods on
fPCG processing. Unfortunately, the number of databases
containing fPCG recordings is still very limited. Currently,
only two databases containing clinical data and one database
containing synthetic data are available. These databases can
be found in the PhysioBank archive [80]. The databases
with real data include the Fetal PCGs database [81] and
Shiraz University Fetal Heart Sounds Database [82], whereas
synthetic fPCG data can be obtained from the Simulated
Fetal PCGs database. Simulation software generating fPCG
signals is able to imitate physiological and pathological
conditions of the fetus by simply modifying some system
parameters [16]. The disadvantage of real recordings, com-
pared to synthetic ones, is the absence of a reference which
the filtered signal could be compared with. Therefore, a
300 second synthetic signal (a reference) with a sampling
frequency of 1000 Hz and an average fHR of 140 bpm
was used in this study. The signal corresponds to the ideal
fPCG with a gestational age of 40 weeks. Three types of
interference having different amplitudes were added to the
reference recording, which were subsequently filtered by the
selected methods. An example of a reference signal and all
three types of interference is shown in Fig. 1. The created
and used dataset can be found in https://dx.doi.org/
10.21227/tgvb-rw67 [83]. The considered classes of
interference are:
• Ambient noise - this is any noise from the surroundings.
It occurs commonly when recording the fPCG. Its spec-
trum includes frequencies from 10 Hz.

• White Gaussian noise - a random signal with the same
power in any band of the same width.

• Maternal and fetal movement artifacts - a noise caused
by muscle movement or breathing. They occur at low
frequencies, usually up to 100 Hz.

Fig. 2 shows a comparison of the waveforms and fre-
quency spectra of a reference and noisy fPCG signals. Each
sub-figure contains one type of interference with different
intensities. Of course, the added noise signals have lower
SNR than the reference fPCG signal. The level of SNR with
the type of noise is listed in Table 3.
The interference used was created using available fPCG

databases, see [16], [80]–[82], [84]. The fPCG signal can be
expressed by the following expression:

x(t) = s(t)+ n(t), (6)

where s(t) represents the ideal physiological fPCG signal and
n(t) represents superimposed interferences of various type

FIGURE 1. An example of a reference signal and all three types of
interference (ambient noise, Gaussian noise, and movement artifacts).

and SNR level. Fig. 2 show these signals in time and fre-
quency spectra, respectively. Asmentioned above, it is impos-
sible to acquire an ideal fPCG. For these reasons, the n(t)
signal reflects artifacts occurring in the fPCG signal includ-
ing fetal movements and respiration, physiological sounds
caused by maternal body (e.g. heart sounds, respiratory activ-
ity, muscle contractions). Table 2 represents a summary of the
interference we may encounter when monitoring fPCG.

Noise from the surrounding environment caused by speech
and other sounds sums up in so-called background noise.
Sensor noise is caused by quantization noise of the recording
device. Both of these types of interference (SBN - sensor and
background noise) are random white Gaussian wideband sig-
nals. They occur at all frequencies throughout the recording
and lead to a change in the mean and deviation of the signal
obtained.

Significant fetal movements usually last longer than 4 s,
which include change of the fetal position and orientation;
movements lasting from 1 to 3 s are caused simply by moving
the limb or head. The frequency range of these movements
should be in the range 0–25 Hz. Although the fetus does not
have functional lungs until birth and receives nutrients and
oxygen through the placenta, the lungs produce respiratory
movements. Fetal respiration or hiccups fall between short
movements lasting less than 1.5 s and fall in the frequency
band 0.3–1.5 Hz. Uterine contractions, breathing or digestive
sounds of the mother are low-frequency signals that create
amniotic fluid vibrations and thus interference when sensing
the fPCG signal. The frequency, intensity and duration of
uterine contractions are highly related to the week of preg-
nancy. In general, they occur 2–5 times every 10 minutes and
their duration is variable, from 15 to 70 s.Maternal respiration
occurs in the 0.2–2.5 Hz band and has a relatively higher
amplitude compared to fHS and sensor and ambient noise.
Respiration produces isoline fluctuations that overlap with
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FIGURE 2. Waveforms and frequency spectrum of fPCG signal (blue) and noise of different intensities and types: a) and d)
ambient noise, b) and e) Gaussian noise and c) and f) movement artifacts.

TABLE 2. Overview of components in the fPCG signal. fHS - fetal heart sounds, fM - fetal movements, fR - fetal respiration, mHS - maternal heart sounds,
mR - maternal respiration, UC - uterine contractions, mM - maternal movements, PLI - powerline interference, RN - reverberation noise, SBN - sensor and
background noise.

fHR and fetal respiration in the frequency domain. There
is not enough information about digestive sounds and their
influence on the fPCG signal in the literature. All these types
of interference can be likened to random white Gaussian
noise and their frequency band is 0.2–0.5 Hz. Maternal heart
sounds can be classified as frequencies of 10–40Hz.Maternal
movements lead to random impulses with high amplitude
creating echo noise. Table 2 shows overview of components
in the fPCG signal.

Signals n(t) defined by Eq. (6) were modeled on the
basis of [15], i.e. modeling the sounds of the gastrointestinal
tract, maternal respiration and fetal movements were per-
formed by passing white noise through a fifth-order But-
terworth low-pass filter with a cut-off frequency of 25 Hz.
The resulting signal was a low amplitude band signal in
the range of 0 to 25 Hz. The background noise is modeled
by a fifth-order Butterworth high-pass filter with a cut-off
frequency of 100 Hz.
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TABLE 3. Settings of EMD, EEMD, and AWT algorithms.

FIGURE 3. Block diagram of heart sound transmission.

Maternal movements are modeled as random pulses with a
fixed amplitude lasting 0.5 to 1.5 s, see more details in [15].
This fPCG signal model is a direct linear superposition of
fHS,mHS and noise, see Eq. (6). The first type of interference
used for the performed experiments is Gaussian noise with
different noise levels (according to the used constant 1.4; 2; 3
and 5 corresponding to the SNR value in dB), see Fig. 2
and Table 3. The second type of interference is the so-called
Movement artifacts, again with different noise levels (accord-
ing to the used constant 30; 60; 80; 100 corresponding to
the SNR value in dB), see Fig. 2 and Table 3. This signal
reflects the activity of the muscles of the fetus and mother,
including respiration. The last type of interference used is
Ambient noise with different noise levels (according to the
used constant 1; 1.5; 2.5 and 5 corresponding to the SNR
value in dB), see Fig. 2 and Table 3. Fig. 3 shows block
diagram of heart sound transmission.

E. EVALUATION METHODS
The filtered fPCG signal can be evaluated subjectively or
objectively. The subjective evaluation can be performed by
comparing the waveforms of the filtered signal with the ideal
reference signal. In the case of fPCG, it can also be evaluated
by listening to the signals. SNR and mean error of heart inter-
val measurement |1Ti|, statistical evaluation of the accuracy
of S1 sounds detection and fHR determination were used
for the objective evaluation. The fHR determination accu-
racy was ensured by plotting fHR traces and Bland-Altman
plots. The quality indices that are used to verify the proposed
method are the following:

• Signal-to-noise ratio - the SNR parameter is used to
evaluate the ratio between the useful signal and the
noise. The unit for SNR is the decibel (dB). By subtract-

ing the input SNR (SNRin) from the output (SNRout ),
the SNR increase is calculated, making it possible to
find out the signal improvement after filtering. The fol-
lowing equations are used to determine the SNRin and
SNRout [44]:

SNRin = 10 log10

M−1∑
m=1

(fPCGref (m))2

M−1∑
m=1

(fPCGin(m)− fPCGref (m))2
,

(7)

SNRout = 10 log10

M−1∑
m=1

(fPCGref (m))2

M−1∑
m=1

(fPCGfilt (m)− fPCGref (m))2
,

(8)

where M is the number of samples of the reference sig-
nal (fPCGref ), the input signal containing interference
(fPCGin) and the signal after filtering using the specific
method (fPCGfilt ).

• Detection of S1 heart sounds - accurate detection
of S1 sounds (corresponding to the R peaks in the
fetal electrocardiography signal) is crucial for the fHR
determination. The detection was performed using the
Pan-Tompkins algorithm. First, the noise cancellation
is performed, then the signal is derived by a derivative
filter, followed by squaring, and moving window inte-
gration. Subsequently, the Pan-Tompkins decision rule,
using adaptive thresholding, is applied. Thresholding
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FIGURE 4. Steps of S1 sounds detection using the Pan-Tompkins algorithm: a) input signal, b) signal
filtration using a band-pass filter, c) signal filtration using a derivative filter, d) filtered signal is
squared to enhance the dominant peaks, e) application of moving averages with detected S1 sounds
(red line indicates the signal level, green line indicates the adaptive threshold, black line indicates the
noise level), and f) output signal with detected S1 sounds.

determines whether the detector has detected S1 sound
or a noise. If S1 is mistakenly considered to be a
noise and the next S1 is not detected for a long time,
then, a search for the S1 related signal peak is per-
formed, wherein the 166% limit of the average of the
last S1–S1 interval. The occurrence of the missing S1 is
then assumed at the highest peak in the interval. If S1 is
detected, it is not possible for another one to be detected
after another 200 ms, due to the refractory period [85].
A detailed description of the algorithm can be found in
many references [85]–[87]. An example of S1 sounds
detection using Pan-Tompkins algorithm is shown in
Fig. 4.
The quality of S1 sounds detection was evaluated using
the reference recording. A true positive (TP) assessment
was defined as a correctly detected S1 sound, which was
determined 50 ms before or 50 ms after the correspond-
ing S1 sound in the reference recording. The assumed
interval was inspired by study [88]. A false positive (FP)
was defined as a detected, but non-existent S1 sound,
while a false negative (FN) is an existing S1 soundwhich
was not detected. Using TP, FP and FN values, it was
possible to further determine the accuracy (ACC), the
sensitivity (SE), the positive predictive value (PPV), and
F1 score [10], [88]:

ACC =
TP

TP+ FP+ FN
· 100, (9)

Se =
TP

TP+ FN
· 100, (10)

PPV =
TP

TP+ FP
· 100, (11)

F1 =
2 · TP

2 · TP+ FP+ FN
· 100. (12)

• Fetal heart rate determination - the heart rate can be
obtained from the fPCG signal using the time intervals
between S1 sounds. The fHR traces, which were created
by applying the moving averages for the values obtained
by the filtration method and for the values of the refer-
ence recording, were used for the graphical represen-
tation of the fHR. When applying the moving averages,
the best results were achieved with a 30-sample window.
Furthermore, Bland-Altman plots, which are widely
used to evaluate two methods of clinical measurement,
were applied for the comparison. Using Bland-Altman
plots, systematic differences between the measurements
or possible outliers can be identified. The vertical axis
shows the difference between paired values, while the
horizontal axis shows the arithmetic mean of these
values. The middle horizontal line indicates the mean
µ of all differences, and, based on this line, a 95%
confidence interval, which lies in the intervalµ±1.96σ ,
is plotted [89].

• Mean error of heart interval measurement |1Ti| - this
parameter is defined as the mean value of the measure-
ment error |1Ti|, which is defined as the absolute value
of heart interval differences1Ti between the filtered and
reference signal:

|1Ti| = |Ti_filt − Ti_ref |, (13)

where Ti_filt is value of the i-th interval determined
for the filtered signal and Ti_ref is value of the i-th
interval determined for the reference signal, the unit is
millisecond (ms) [90].

F. ALGORITHMS SETTINGS
To achieve the best possible results, the optimal setting of
the parameters of the filtration methods was crucial. For all
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FIGURE 5. Scheme of the algorithm for comparing various combinations of IMFs and selecting the optimal
one. The combination that achieved the highest accuracy according to the ACC parameter compared to the
reference signal was selected. Examples of a) input signal with noise, b) first five IMFs extracted using EMD
or EEMD algorithm, c) selected the most suitable IMFs, d) reference signal and e) resulting filtered signal
generated by summing the most suitable IMFs are also presented.

FIGURE 6. Decomposition a) using the EMD method (example of the first 5 IMFs) when filtering movement
artifacts multiplied by the interference amplitude of 60 and b) using the EEMD method (example of the
first 5 IMFs) when filtering ambient noise multiplied by the interference amplitude of 1.50.

the methods, all parameters were selected based on the auto-
mated algorithm comparing the individual combinations of
the parameters set. Using this algorithm, the most suitable
IMFs were also selected for the EMD and EEMD methods.
The output signals generated based on the parameters set or
combination of IMFs were compared with a reference signal
and evaluated based on the ACC parameter. A combination of
parameters or IMFs whose output signal achieved the highest
accuracy according to the ACC parameter was selected. The
settings of the parameters of the EMD (IMFs combination),
EEMD (IMFs combination, N , and Nstd ), AWT (wavelet
type, number of decomposition levels, hard or soft threshold-
ing) methods providing the highest value of ACC are shown
in Table 3.

1) EMD - the EMD method was based on the decompo-
sition of the input signal into 19 simpler signals called
IMFs. The total number of extracted IMFs depends on

the signal to be processed. The decomposition process
ends when the IMF cannot be extracted. This is a state
where the signal is a constant or a monotonic function.
Subsequently, the most suitable IMFs were selected
using an automated algorithm (as described above) and
summed to create a filtered fPCG. Fig. 5 shows a
block diagram of automated algorithm for selecting the
most suitable combination of IMFs for both EMD and
EEMD algorithms. An example of the first five IMFs
extracted using EMD is presented in Fig. 6.

2) EEMD - the EEMD method was based on a similar
principle as EMD but extracted a total of only 15 IMFs
before reaching the stopping criterion. Further, it was
also necessary to select the best performing IMFs that
were used to obtain the filtered signal, but in addition
it was necessary to find the optimal setting of the
standard deviation of the added noise series Nstd and
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TABLE 4. Statistical evaluation of the S1 detection quality using the EMD method when filtering ambient noise, Gaussian noise, and movement artifacts
of the mother and the fetus.

the number of ensemble trials N . The most suitable
combination of parameters set and combinations of
IMFs was also found using an automated algorithm,
see Fig. 5. An example of the first five IMFs extracted
using EEMD is presented in Fig. 6.

3) AWT - when filtering using the AWT method, optimal
settings of type and width of the maternal wavelet and
the suitable level of decomposition were crucial. In this
study, symlet and Daubechies wavelets were tested.
These wavelet types have a shape similar to the fHSs
and their energy and frequency spectrum is similar to
the spectrum of the fPCG signal. In addition, according
to the literature review, they achieve very good results.
Themost suitable wavelet width, the number of decom-
position levels and the type of thresholding were again
selected based on an automated algorithm. Thewidth of
the wavelets was tested in the range 1 to 20 with step
of 1, the number of decomposition levels was tested in
the range 1 to 10 with step of 1, and soft and hard types
of thresholding. For all types of interference, it was
observed that hard thresholding was more suitable for
low noise amplitudes, while soft thresholding worked
better with higher noise level.

IV. RESULTS
This chapter provides the results of filtering three types of
interference using the methods (EMD, EEMD and AWT)
applied individually. The evaluation of the performance was
conducted in terms of the success rate of the S1 detection and
the fHR determination. A noise-free reference recording was
used to compare the filtration effectiveness. The effectiveness
was first evaluated according to statistical parameters and,
then, by graphical representation of Bland-Altman plots and
fHR traces.

A. STATISTICAL EVALUATION
The TP, FP and FN values were first determined for statis-
tical evaluation of the success rate of S1 sounds detection
and, based on them, the ACC, SE, PPV and F1 parameters
were calculated. The tables show also the value of the SNR

increase, |1Ti| values, and the type and amplitude of the
interference that was added to the reference signal.

• Empirical mode decomposition - according to Table 4,
it can be noticed that the detection of S1 sounds with
the EMD method provides values of ACC and SE above
95% for 7 out of 12 types and levels of interference. The
PPV and F1 over 95%were achieved in 9 out of 12 types
and levels of interference. In 2 cases, all S1 sounds were
correctly recognized and no FP or FN was detected,
consequently, all parameters reached the best possible
value of 100%. The worst results were obtained with the
highest level of the ambient noise (amplitude of 5.00)
and the Gaussian noise (also with the highest interfer-
ence amplitude of 5.00). In both cases, the EMDmethod
was not able to suppress the noise, and low values of
ACC (46.55% and 64.71% respectively) were noticed.
However, high SNR improvement was observed for all
types and levels of interference. For the ambient and the
Gaussian noise, lower SNR improvement values were
noticed compared to the EEMD and AWTmethods, but,
for the movement artifacts, higher SNR improvement
values were achieved. Low |1Ti| values were obtained
only at low amplitudes of ambient noise and movement
artifacts. Nevertheless, in comparison with the EEMD
and AWT, this method achieved the highest |1Ti| values
and thus the least accurate estimation of heart intervals
for the ambient and the Gaussian noise.

• Ensemble empirical mode decomposition - based on
the presented results (Table 5), it can be seen that the
S1 sounds detection with the EEMD method provides
values of the ACC and SE parameters over 95% in 9 out
of 12 types and levels of interference. Values of PPV
parameter of at least 95%were achieved for all types and
amplitudes of interference, and the F1 scores exceeded
the value of 95% for 11 types and levels of noise.
In 5 cases, all S1 sounds were correctly detected and no
FP or FN was observed - all quality measures reached
the value of 100%. The worst results were noticed for
the Gaussian noise with the highest interference (ampli-
tude of 5.00). In this case, the ACC of 89.02% was
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TABLE 5. Statistical evaluation of the accuracy of S1 detection using the EEMD method when filtering ambient noise, Gaussian noise, and movement
artifacts of the mother and the fetus.

TABLE 6. Statistical evaluation of the accuracy of S1 detection using the AWT method when filtering ambient noise, Gaussian noise, and movement
artifacts of the mother and the fetus.

achieved. Significant SNR improvement was obtained
for all interferences, except for movement artifacts with
the amplitude of 30.00. For the ambient and theGaussian
noise, higher SNR improvement was achieved when
compared to the EMD method, but lower in comparison
to the AWT. For the movement artifacts, lower SNR
improvement was achieved when compared to the EMD,
but higher comparing to the AWT method. Low |1Ti|
values were achieved for all types of interference only
at low interference amplitudes. In comparison with the
EMD and AWT, this method achieved the highest |1Ti|
values and thus the least accurate estimation of heart
intervals for movement artifacts.

• Adaptive wavelet transform - it can be noticed that using
the AWT method values of all statistical parameters
(ACC, SE, PPV and F1 in Table 6) above 95% were
achieved for each of the examined tasks. In 7 cases (out
of 12), all S1 sounds were correctly identified and there
was no FP or FN detection, and the highest possible
value of 100% was achieved for all quality measures.
High SNR improvement values were obtained for the
Gaussian and the ambient noise. For these interferences,
higher SNR improvement values were achieved com-
pared to the EMD and EEMDmethods. However, for the
movement artifacts, lower SNR increase was obtained.

Low |1Ti| values were achieved for all types of interfer-
ence only at low interference amplitudes. In comparison
with the EMD and EEMD, this method achieved the
lowest |1Ti| values and thus the most accurate estima-
tion of heart intervals for all classes of inference.

B. VISUAL COMPARISON
In this chapter, the performance of the algorithms will be
analyzed from the visual perspective by comparing the wave-
forms of the signals filtered and the reference recording.
Based on the visual comparison, it can be stated that the
AWT method was the most effective for the ambient and
the Gaussian noise, while the EMD and EEMD were better
when filtering the movement artifacts of the mother and
the fetus. An example of the filtering outcomes extracted
by using all the methods tested for the Gaussian noise (the
interference amplitude of 3.00) is shown in Fig. 7. The figure
shows clearly that the EMD method suppressed some S1
sounds making their detection impossible, and therefore, the
subsequent fHR determination was not successful. Improve-
ments were made by means of the EEMD method, which
was able to extract S1 sounds with a sufficiently resolvable
amplitude, but still, there are noticeable noise residues in the
signal. The best extraction quality was achieved using the
AWT method, which was able to extract S1 sounds with a
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FIGURE 7. An example of the filtering results of the Gaussian noise (the
interference amplitude of 3.00) using all the methods tested.

prominent amplitude. In addition, it was able to filter out
noise residues, thus the AWT approach is considered as the
most effective when filtering the Gaussian noise. Similar
performance characteristic of the methods was also observed
when filtering the ambient noise.

Better results of the EMD and EEMD methods, based on
the visual assessment, were achieved only for the interfer-
ence caused by movement artifacts of the mother and the
fetus. Fig. 8 shows an example of the filtering the movement
artifacts (the interference amplitude of 80.00) using all the
methods tested. Although very accurate fHR detection was
achieved with all algorithms (considering the results of the
statistical evaluation), higher SNR improvement was noticed
for the EMD and EEMD methods when compared to the
AWT approach. In terms of S1 sounds detection, low SNR
improvement did not have any influence on the final AWT
result, but in terms of S2 sounds detection, the AWT method
would perform worse than the EMD and EEMD.

C. BLAND-ALTMAN PLOTS
Bland-Altman plots were used to graphically evaluate the
quality of fHR determination using the EMD, EEMD and
AWT methods. The verification outcome can be interpreted
as follows: the smaller the range of the confidence interval,
the smaller the difference between the fHR determined by
the given method and the reference. Table 7 presents mean
values of µ and values of ±1.96σ for the methods tested
and for all selected types (and levels) of interference. Based
on these results it can be noticed that the EMD method
was effective only in 4 out of 12, and the EEMD in 9 out
of 12 considered cases. The best results were obtained using
the AWT method, which was effective for all 12 cases, since

FIGURE 8. An example of the filtering movement artifacts of the mother
and the fetus (the interference amplitude of 80.00) using all the methods
tested.

all the resulting mean values of µ ranged from−1.00 to 1.00
bpm and, at the same time, the values of 1.96σ ranged from
−5.00 to 5.00 bpm.

An example of Bland-Altman plots for the reference and
estimated fHR values using the EMD method is shown in
Fig. 9. Example a) presents the interference for which the
EMD method was not effective (the ambient noise with the
amplitude of 5.00), and example b) presents the interfer-
ence for which high values of the quality measures were
obtained (the movement artifacts with the amplitude of
30.00). Bland-Altman plots for the EEMDmethod are shown
in Fig. 10. Example a) presents the interference for which the
EEMD method achieved poor performance in determining
the fHR (the Gaussian noise with the amplitude of 5.00),
and example b) shows the interference for which highly
accurate results were obtained (the movement artifacts with
the amplitude of 30.00). An example of Bland-Altman plots
when using the AWT method is shown in Fig. 11. The AWT
method was highly effective in both presented cases, i.e.,
a) for the movement artifacts (amplitude of 100.00) and b)
the ambient noise (amplitude of 1.00). With the movement
artifacts theAWTmethod provided slightlyworse results than
for the fPCG signal disturbed by the ambient noise, however,
the differences were negligible.

D. FETAL HEART RATE TRACES
The fHR traces were determined based on the moving aver-
ages and their accuracy was verified based on comparison
to the reference recording. The graphical representation is
inspired by FIGO classification [91]. Fig. 12 shows the com-
parison of reference and estimated fHR traces after filtering
the ambient noise (the interference amplitude of 5.00) using
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TABLE 7. Mean values of µ and values of ±1.96σ for all methods when filtering ambient noise, Gaussian noise, and movement artifacts of the mother
and the fetus.

FIGURE 9. Comparison of reference and estimated fHR values using the
EMD method obtained for the fPCG signal disturbed by: a) the ambient
noise (amplitude of 5.00); and b) the movement artifacts (amplitude of
30.00).

FIGURE 10. Comparison of reference and estimated fHR values using the
EEMD method obtained for the fPCG signal disturbed by: a) the Gaussian
noise (amplitude of 5.00); and b) the movement artifacts (amplitude of
30.00).

FIGURE 11. Comparison of reference and estimated fHR values using the
AWT method obtained for the fPCG signal disturbed by: a) the movement
artifacts (amplitude of 100.00); and b) the ambient noise (amplitude of
1.00).

all considered methods. Example a) presents a comparison
of the fHR traces obtained using the EMD method, which

provided poor results. It can be seen that the estimated EMD
curve deviates from the reference one repeatedly. This means
that the method does not work properly. Such deviations
may affect the fHR determination and, subsequently, false
diagnosis of fetal. Example b) presents a comparison of the
fHR traces obtained using the EEMD method. In this case
satisfactory results were achieved for a large part of the curve.
The observed small deviations from the reference do not
affect the accuracy of the fHR determination significantly.
The EEMDmethod can, therefore, be considered as effective.
Example c) presents a comparison of the fHR traces estimated
with a help of the AWT method, which provided the best
results. The AWT curve copies the reference trend over the
entire signal length. This method can be considered as the
most accurate and most suitable for the fHR determination
from the fPCG signal disturbed by the ambient noise.

V. DISCUSSION
Based on the results presented in the previous chapter, it can
be stated that accurate fHR determination from fPCG signals
using advanced signal processing methods is possible. In this
study, according to the statistical parameters, the worst results
were obtained using the EMD method, which was effective
in 7 out of 12 types and levels of interference, better results
were obtained using the EEMD method, which was effective
in 9 out of 12 kinds of interference, and the best results were
achieved using the AWT method, which was effective for all
considered noise types (and levels). According to the visual
assessment, the most efficient detection of S1 sounds was
achieved using the AWT method, when filtering the ambient
and the Gaussian noise. While when filtering the movement
artifacts of the mother and the fetus, there were no significant
differences between the algorithms performance in terms of
S1 sounds detection, but in terms of S2 sounds detection,
the AWT method would perform worse than the EMD and
EEMD.

It was also shown that for the low interference level, all
the considered methods were able to filter the fPCG signal
effectively and to determine the fHR accurately, despite the
noise type. With a high interference amplitude, it was more
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FIGURE 12. Comparison of reference and estimated fHR traces after
filtering ambient noise (the interference amplitude of 5.00) extracted
using: a) the EMD method (this method failed when filtering), b) the
EEMD method (providing satisfactory results), and c) the AWT method,
(highly accurate results).

difficult for all the three methods to provide satisfactory
filtering results. An example how the level of interference
affects the filtration outcomes is shown in Fig. 13. Example
a) presents the filtering of ambient noise of the amplitude
equal to 1.00, while example b) concerns also the ambient
noise, but of 5 times higher interference amplitude. It can be
noticed that in the case of low level of interference, all the
methods were able to filter the noise out properly. However,
when a high level of interference was used, the EMD method
failed in the filtration. The EEMDmethod achieved relatively
good results, but still residual noise was present in the signal
filtered. And the AWT approach was best able to filter out
such a high level of noise. It can be concluded, that the quality
of the fPCG recordings is very important factor for the subse-
quent signal processing. Due to the high level of interference
and, thus, poorer filtration effectiveness, an important clinical
information about the fetal condition can be lost. Especially
the ambient noise (as door closing, speech, cough) could be
rather easily eliminated while registering fPCG signals.

The resulting quality of the extracted signal and the accu-
racy of fHS detection are greatly influenced by the set-
ting of the algorithm parameters. As an example, Fïg. 14
shows the effect of different number of decomposition levels
while keeping the same type and wavelength (sym4) for the
AWT method. If only 1 (see Fig. 14a) or 2 (see Fig. 14b)
decomposition levels were selected, the method failed to
sufficiently suppress interference, which led to a reduction
in the accuracy of S1 detection (ACC < 94.00%). Contrary,

FIGURE 13. An example of the influence of the interference amplitude on
the filtration results: a) the ambient noise of the amplitude 1.00, b) the
ambient noise of the amplitude 5.00.

when the number of decomposition levels was 3 (herein
called ‘‘optimal setting’’, see Fig. 14c), all S1 echoes were
detected (ACC = 100.00%). Finally, using 4 decomposition
levels (see Fig. 14d) can be considered unsuitable because,
in addition to noise suppression, S1 echoes were slightly sup-
pressed, and S2 echoes were completely suppressed, which
would not allow their further analysis in the future. Further,
Fig. 14 shows examples of signals extracted using 5 decom-
position levels (Fig. 14e), 6 decomposition levels (Fig. 14f) 7
decomposition levels (Fig. 14g), and 8 decomposition levels
(Fig. 14h). In all these cases, the decomposition level was
too high, leading to disruption of the morphology of the
fPCG signal, loss of important clinical information and low
accuracy in the detection of fHSs. In all cases, ACC accuracy
of < 76.00% was achieved in the detection of S1 echoes,
which has a significant effect on the accuracy of the fHR
determination. Such inaccurate extraction could lead to a
false positive diagnosis of fetal hypoxia.

Finally, we compared our results with those obtained
in other studies. Objective comparison of results is chal-
lenging as there is a lack of open databases with refer-
ence annotations that accurately determine the position of
fHSs. Thus, when testing fPCG extraction methods, different
authors use various databases (Shiraz University Fetal Heart
Sounds Database [14], [38], [82]) or use signals of their
own [33], [37], [46], [81]. In addition, the signals obtain
various interference of different types and intensities, and
also use different evaluation techniques such as mean square
error (MSE) [33] or software quality index (SQI) [81]. Some
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FIGURE 14. Influence of the number of decomposition levels on the quality of fPCG signal
extraction. a) and b) low number of decomposition levels leading to insufficient noise
suppression, c) optimal setting resulting in high quality fPCG extraction. d) inappropriate
choice of decomposition levels suppressing S2 echoes; e), f), g) and h) demonstrate a high
number of degradation levels leading to disruption in fPCG signal morphology and loss of
clinical information.

TABLE 8. Comparison of the results with other studies.

authors do not use any objective evaluation parameters and
only evaluate the visual quality of the signals in time domain
or [12], [46], [82] or their spectrograms [14], [43]. For these
reasons, we made both objective and subjective comparison
of the results summarized in Table 8.
• In [14] the authors tested BSS-based methods on real
records. The authors did not present any statistical

parameters, but according to the visual comparison,
it can be argued that the methods were as effective as the
methods proposed herein. In addition, they were able to
effectively separate the maternal HSs (mHSs) and fHSs.

• The authors in [12] tested temporal decorrelation source
separation (TDSEP) on real records with relatively low
interference intensity. The resulting extracted signals
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were not evaluated using statistical parameters. Accord-
ing to the visual evaluation, the method extracted fHSs
with a sufficiently large magnitude an of a quality that is
comparable to our methods.

• The combination of WT and fractal dimension was
tested in [35] on two datasets with synthetic signals.
Some signals were pathological and included cardiac
arrhythmias. When detecting S1 echoes, an accuracy
in the range of 60.00–100.00% was achieved, which is
better results compared to the EMDmethod tested by us,
but worse compared to EEMD and AWT.

• In [40], a combination of autocorrelation technique
(AT), WT and matching pursuit (MP) methods was
tested and evaluated on real records. The method
was tested on recordings with low, medium and high
noise levels, as well as on signals with strong mHSs
or with significant S1 split. Accuracy in the range
of 92.90–98.50% was achieved in the detection of
echoes. These are better results compared to the EMD
and EEMD methods presented by us, but worse results
compared to the AWT method.

• The combination of ICA, SVD and EFICA was pre-
sented in [46]. The methods were tested on real records.
Unfortunately, the authors do not present any statisti-
cal evaluation, they only show the waveforms of the
extracted signals. According to the visual comparison,
it can be stated that the filtration was comparably effec-
tive, but in their case, only lower levels of interference
were filtered.

• The authors of the study presented in [37] tested the
AWT method on real records. They achieved the best
results using the coiflet2, 6 levels of decomposition and
hard thresholding. The method was tested on records
taken in quiet, noisy, mostly quiet, and mostly noisy
environments. When evaluating the accuracy of the
method, 92.90–98.80% was achieved, which means the
method outperformed the EMD and EEMD tested herein
but achieved worse results than the AWT method (with
different settings) provided in our study.

• In [82], the authors combined EMD and nonnegative
matrix factorization (NMF) and tested the performance
of the algorithm on real records containing also signals
with abnormalities. Accuracy of 83.00–100.00% was
achieved. These are better results compared to the EMD
methodwe tested, but worse compared to the EEMD and
AWT methods.

• The EMD method was tested in [64] on synthetic sig-
nals. The authors do not present a statistical comparison
of the results. According to the visual evaluation of
the signals, it can be stated that the method achieved
comparable results with the algorithms presented herein.

• The combination of matched filtering (MF) and variable
band-pass filtering (VBPF) was tested in [82] on real
records. The authors evaluated the performance of the
algorithm according to different parameters, but accord-
ing to the visual comparison it can be stated that the

methods tested herein were able to suppress noise bet-
ter, especially at the higher intensities, and also better
emphasize S2 echoes.

This study proved that for effective filtration of fPCG
signals, the filtration method and its optimal setting must
be appropriately selected. Furthermore, when recording real
fPCG signals, it is important to pay attention to the qual-
ity of the recordings, which significantly affects filtration
efficiency. From a high-quality recording, it is possible to
accurately determine the fHR and minimize the risk of mis-
diagnosis of the fetal hypoxia. Great number of publications
focus on the adult PCG, which is different from the fetal
one in many aspects (in both frequency and time domain).
There are many specific interferences in fetal PCG that this
study addresses. Currently, attention is paid to the area of fetal
ECG, whereas the area of fetal PCG is still underdeveloped
although it has great potential for home monitoring of the
fetus.

The best results were achieved using the AWT, however,
we have not tested the presence of the murmurs or any
abnormal sounds, but it can be assumed that the algorithm
will be able to perform well even on pathological records.
The problem is lack of such recordings among the public
databases. In fact, there is no publicly available database with
fetal PCG with murmurs (only adults ones). This issue will
be the subject of further research, we will work on collecting
pathological data of our own, such as some authors did (such
as Balogh, 2015 [92]). The aim is creating an open access
database consisting of both pathological and physiological
recordings that can be used for the evaluation of extraction
and classification algorithms. The benefit of the article is the
testing of methods that are known from other areas but have
not yet been correctly tested in the field of fPCG processing.
This is a pilot study in this area, research will continue,
and other algorithms will be tested. According to Table 8,
BSS-based methods, especially ICA, appear to be promising
for the purpose of separating mHSs from fHSs. Adaptive
algorithms (LMS or RLS), which can adapt to the chang-
ing nature of the signal, also have great potential. Hybrid
algorithms will also be tested, which would combine the
advantages of different methods.

VI. CONCLUSION
This study examined the effectiveness of advanced signal
processing methods such as EMD, EEMD, and AWT used
for the purpose of filtering fPCG signals. The main aim was
to create a comprehensive and objective comparison of these
methods when filtering three types of interference that are
often recorded together with fPCG signals. Ambient noise,
Gaussian noise, and movement artifacts of the mother and the
fetus of various amplitudes were considered. The evaluation
was performed by assessing the quality of S1 sounds detec-
tion and the ability to determine the fHR signal correctly.
The effectiveness evaluation was performed using the statis-
tical parameters (ACC, SE, PPV, and F1), the level of SNR
increase, |1Ti| values, the graphical outcome representation

221958 VOLUME 8, 2020



R. Martinek et al.: Passive Fetal Monitoring by Advanced Signal Processing Methods in fPCG

with Bland-Altman plots and the visual assessment of the
resulting fHR traces. Using the EMD method, ACC > 95%
was achieved in 7 out of 12 considered types (and levels) of
interference, with average ACC = 88.73%, SE = 91.57%,
PPV = 94.80% and F1 = 93.12%. Based on the EEMD
method, ACC > 95% was achieved in 9 out of 12 types (and
levels) of noise, with average values of ACC = 97.49%,
SE = 97.89%, PPV = 99.53% and F1 = 98.69%.
Finally, with the AWTmethod, ACC > 95% was achieved in
all 12 considered types (and levels) of interference, with aver-
age ACC = 99.34%, SE = 99.49%, PPV = 99.85% a F1 =
99.67%. In the light of these results, the AWTmethod proved
to be the most suitable for filtering fPCG signals, however the
EMD and EEMD procedures also demonstrated their effec-
tiveness at lower interference amplitudes. The study showed
that it is possible to achieve accurate S1 sound detection
and to determine fHR correctly based on the advanced fPCG
signal processing. The future work will concern the testing
of methods on real fPCG recordings, as well as the ability to
accurately detect S2 sounds.
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